
TMA4190: Introduction to Topology.

Final Exam

• Let n ≥ 1. We will always denote by Rn the set consisting of n-tuples of
real numbers equipped with the standard topology (the one you know
from Calculus).

• We let Qn ⊂ Rn be the subset of those tuples that consist in rational
numbers equipped with the subspace topology.

• We denote by [0, 1] = {x ∈ R| 0 ≤ x ≤ 1} ⊂ R the closed unit interval,
equipped with the subspace topology.

• We denote by S1 = {(x, y) ∈ R2| x2 + y2 = 1} ⊂ R2 the unit circle,
equipped with the subspace topology.

Problem 1. Define the notion of a topological space and provide the following
examples:

i) Three different topologies on the set X = {a, b, c, d}.

ii) A topological space which is a metric space.

iii) A topological space whose topology does not come from a metric space.
(Remember to provide a proof of your claim).

Solution. A topological space is a pair (X, τ) consisting in a set X together
with a collection of subsets τ of X which we call the open sets, satisfying the
following axioms:

1. The subsets X, ∅ ∈ τ .
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2. Given a set I and a collection {Xi}i∈I of subsets such that Xi ∈ τ for
every i ∈ I then it follows that the union⋃

i∈I

Xi ∈ τ

is also an open subset of X.

3. Given a finite set N and a collection {Xj}j∈N of subsets such that
Xj ∈ τ then it follows that the (finite) intersection⋂

j∈N

Xj ∈ τ

is again an open subset of X.

i) We define three topologies on X = {a, b, c, d} given by τ1 = {X, ∅},
τ2 = {A ⊆ X| A is a subset of X} and τ3 = {X, ∅, {a}}. It is clear
that in each of the τi for i = 1, 2, 3 satisfy the axioms above and thus
define three different topologies on X.

ii) Let X = R and define a metric by d : R × R → R via the formula
d(x, y) = |x− y| (where | − | denotes the absolute value). Let us check
that d defines a metric

M1) It follows from the definition of the absolute value that for every
x, y ∈ R we have |x− y| ≥ 0 and |x− y| = 0 if and only if x = y.

M2) It is also immediate from the definition that |x− y| = |y − x| for
every x, y ∈ R.

M3) Finally, given x, y, z ∈ R we know from calculus that the triangle
inequality holds, in order words, we have

|x− z| ≤ |x− y|+ |y − z|.

iii) Let (R, τcof) be a topological space where we declare a subset U (dif-
ferent from R, ∅) to be open if R \ U = {x ∈ R|x /∈ U} is a finite set.
We saw in class that this defines a topology on R so we need to show
that this topology does not come from a metric in R.
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Let (X, d) be a metric space and let x, y ∈ X such that x ̸= y. Let
d(x, y) = ϵ and note that ϵ > 0. Then it follows that the open balls

B
(
x,

ϵ

2

)
∩B

(
y,

ϵ

2

)
= ∅

have empty intersection. Indeed, given z ∈ B(y, ϵ
2
) then it follows from

the triangle inequality that

d(x, y) ≤ d(x, z)+d(y, z) ⇐⇒ d(x, z) ≥ d(x, y)−d(y, z) = ϵ−d(y, z) >
ϵ

2

To finish the proof we will show that given x, y ∈ R we cannot find
open sets U, V ∈ τcof such that x ∈ U , y ∈ V and such that U ∩ V = ∅.
To see this we observe that since by definition U = R\A and V = R\B
where A,B are finite sets it follows that

U ∩ V = R \ A ∪B.

Since an union of two finite sets cannot not be equal to R it follows
that U ∩ V ̸= ∅.

■

Problem 2. Let A ⊂ X where X is a topological space and such that A ̸= ∅.
Let Ao be the interior of A, and let A be the closure of A. Prove that if
Ao = A then A is both open and closed in X.

Proof. By definition we have that Ao is the union of every open set U in X
which is contained in A, i.e. U ⊆ A. This implies that Ao ⊆ A and that Ao

is always open in X.
Dually, A is the intersection of all closed subsets Z ⊆ X such that A ⊆

Z. This definition implies that A ⊆ A and that A is always closed in X.
Summarizing this we have

Ao ⊆ A ⊆ A.

If Ao = A then it follows that A = Ao = A and consequently, A is both open
and closed in X.

Problem 3. Let A ⊂ X where X is a topological space.

i) What does it mean for A to be dense in X?
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ii) Prove that Qn ⊂ Rn is dense for n ≥ 1.

Solution. i) A is dense in X for every open subset U ⊆ X we have that
A ∩ U ̸= ∅.

ii) Let us suppose that we have proven the statement for n = 1 and let
us prove the general claim for n. Let U ⊆ Rn be an open subset. We
know that since Rn is equipped with the product topology there exists
some V ⊂ U such that V is of the form

V =
n∏

i=1

(ai, bi) ⊂ U.

Now, by the case n = 1 we can pick for each interval (ai, bi) a rational
number qi ∈ (ai, bi). It then follows that the tuple q⃗ = (q1, q2, . . . , qn) ∈
Qn and that q⃗ ∈ V . This implies that U ∩Qn ̸= ∅.
To show the case n = 1 (you might aswell cite that we did it in class) we
consider an open interval (a, b) and we wish to show that there exists
some q ∈ Q such that q ∈ (a, b). Let x ∈ (a, b) if x ∈ Q we are done.
Let us suppose that x /∈ Q. Let an be the real number whose decimal
expression consists in the first n-digits of the decimal expression of x.
In particular an ∈ Q. It follows that |x − an| → 0 when n → ∞. In
particular there must exist some natural number k such that ak ∈ (a, b)
and thus the claim follows.

■

Problem 4. Let [0, 1] × [0, 1] and define C = [0, 1] × [0, 1]
/

∼ where the
equivalence relation identifies (0, y) ∼ (1, y) and (x, 1) ∼ (x′, 1). Show that
C is homeomorphic to D2 = {(a, b) ∈ R2|a2 + b2 ≤ 1}.

Solution. We define a map Ψ : [0, 1]× [0, 1] → D2 given by

Ψ(x, y) = ((1− y) cos(2πx), (1− y) sin(2πx)).

this map is clearly continuous (we know it from Calculus). We see that,

(1− y) cos(2πx))2 + ((1− y) sin(2πx))2 = (1− y)2 ≤ 1

so it follows that Ψ(x, y) ∈ D2.
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We wish to show that Ψ descends to C which amounts to checking that
Ψ preserves the equivalence relation in the definition of C. To see this we
note that

Ψ(0, y) = ((1−y) cos(0), (1−y) sin(0)) = ((1−y) cos(2π), (1−y) sin(2π)) = Ψ(1, y).

Similarly we note that

Ψ(x, 1) = (0, 0) = Ψ(x′, 1).

Consequently we obtain a continuous map, Ψ : C → D2 by the properties of
the quotient topology on C.

To finish the proof we need to show that Ψ is an homeomorphism. For a
fixed value y0, let i be the inclusion of iy0 : [0, 1]/0 ∼ 1 ≃ S1 → C sending t
to (t, y0). Then the composition

Ψ ◦ iy0 : S1 → D2

is an homeomorphism into the circle of radius (1 − y0)
2. In particular, this

shows that Ψ is surjective. We observe that we identified every point in
[0, 1]× [0, 1] where Ψ was not injective. This shows that Ψ is injective.

At this point we have a continuous bijective map Ψ : C → D2, so the
only thing left to do is to show that its inverse is continuous as well. From
the theory, we know that it is enough to show that Ψ is a closed map (i.e. it
maps closed sets in C to closed sets in D2).

Let Z ∈ C be a closed set. Observe that since C is a quotient of a compact
space it follows that it is itself compact. Moreover, a closed set of a compact
space is (by the theory) again compact. It follows that Ψ(Z) is compact in
D2. We know from the theory that a compact subset of a Hausdorff space is
itself closed. Since D2 is Hausdorff it follows that Ψ(Z) is again closed and
thus Ψ is an homeomorphism. ■

Problem 5. Let A ⊂ X where X is a topological space. Define the subspace
topology on the subset A and prove the following:

• A subset Z ⊆ A is closed in the subspace topology if and only if there
exists some ZX ⊆ X which is closed in X such that ZX ∩ A = Z.

Solution. A subset U ⊆ A is open in the subspace topology if and only if
there exists some open set W ⊆ X such that U = W ∩ A.
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• Let Z ⊆ A be a closed subset in the subspace topology. Then it follows
that A\Z = U is open. Let W be an open set in X such that W∩A = U .
We claim that X \ W = K is a closed subset such that K ∩ A = Z.
Indeed, we have

K ∩ A = X \W ∩ A = A \ (A ∩W ) = A \ U = Z.

The converse follows from the same argument going in the other direc-
tion.

■

Problem 6. Let K ⊂ X (with K ̸= X) be a compact subset of a Hausdorff
space and let x ∈ X \ K. Show that there exists open sets U, V such that
K ⊂ U , x ∈ V and U ∩ V = ∅.

Solution. For every y ∈ K let Uy and Vy be open subsets such that y ∈ Uy,
x ∈ Vy and such that Uy ∩Vy = ∅. The existence of such opens is guaranteed
by the fact that X is a Hausdorff space. We know observe that the collection
{Uy}y∈K is a covering for K. Since K is compact we have a finite collection
of points {y0, y1, . . . , yn} such that

K ⊆
n⋃

i=0

Uyi = U.

We define V =
⋂n

i=0 Vyi and observe that x ∈ V by construction. Moreover,
V is an open subset since it is given by a finite intersection of open sets. By
construction we have

U ∩ V = ∅
which finishes the proof. ■

Problem 7. Let 2 = {0, 1} be the topological space where we declare the
subset {0} to be the unique non-trivial open set. Show that the map

H : 2× [0, 1] → 2,

sending an element (x,m) to H(x,m) where the later is given by

H(x,m) =

{
x, if m < 1/2

1, else

is continuous. Conclude the following:
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• Given a homotopy equivalence f : X → Y where X is Hausdorff, then
in general it is not true that Y is Hausdorff.

Proof. To show that H is continuous we only need to show that H−1({0}) is
open in 2× [0, 1]. Using the definition of H we find

H−1({0}) = {0} × [0, 1/2)

since {0} is open in 2 and [0, 1/2) is open in [0, 1] it follows that {0} ×
[0, 1/2) ⊂ 2× [0, 1] is open in the product topology and consequently we see
that H is continuous.

• Let ∗ denote the topological space consisting in one point. It is clear
that ∗ is Hausdorff. We claim that 2 is homotopy equivalent to ∗. To
see this we consider the map i : ∗ → 2 mapping the unique point to
1. Since i−1(0) = ∅ it follows that i is continuous. Let t : 2 → ∗ be
the unique map which is clearly continuous. It is clear that t ◦ i = id
is the identity map. The only thing that is left to show is that i ◦ t is
homotopic to the identity on 2. The map H above gives the desired
homotopy.

To finish the proof, we need to show that 2 is not Hausdorff. This is
clear since we cannot separate the points 0 and 1.

Problem 8. Let f : X → Y be a homotopy equivalence and suppose that Y
is connected. Show that X is connected as well.

Solution. We assume for contradiction that X is not connected. Let U, V ⊂
X be two open sets such that U, V ̸= X, ∅, U ∩ V = ∅ and U ∪ V = X.

Given a connected topological space Z and a continuous map h : Z → X
it follows that h(Z) is either in U or in V since otherwise h−1(U) and h−1(V )
would give a separation for Z which contradicts the fact that Z is connected.
In particular, given points x ∈ U and y ∈ V it follows that since [0, 1] is
connected there cannot exist a path connecting x and y.

The fact f is a homotopy equivalence implies that there exists a map
g : Y → X and a homotopy between g ◦ f and the identity map on X. Let
us assume without loss of generality that g(Y ) ⊂ U . Given x ∈ V it follows
from the existence of the homotopy g ◦ f ∼ idX that there is a path between
g ◦f(x) ∈ U and x ∈ V which is a contradiction by the discussion above. ■
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Problem 9. What does it mean for a continuous map f : X → Y to be
open? Give an example of an open map.

Proof. A map is open if given an open set U ⊆ X then it follows that f(U)
is open in Y . Let X, Y be topological spaces and let X × Y be the cartesian
product. We consider the map πX : X × Y → X given by πX = (x, y) = x
and claim that πX is open.

We know from theory that any open U ⊂ X × Y can be expressed as

U =
⋃
i∈I

Ai ×Bi,

where Ai ⊆ X is open and similarly Bi ⊆ Y is also open. Then it follows that
πX(U) =

⋃
i∈I Ai which is an union of open sets of X and thus is open.

Problem 10. Let Mo = [0, 1] × [0, 1]
/

∼ where the equivalence relation
identifies (0, x) ∼ (1, 1 − x). Show that Mo is path connected and compute
π1(Mo, x).

Hint: S1 ≃ {(x, y) ∈ Mo |y = 1/2} ⊂ Mo

Solution. First let us show that Mo is path connected. We consider the
(continuous) quotient map

π : [0, 1]× [0, 1] → Mo

and observe that π is surjective. Given x, y ∈ Mo we pick a pair of points
a, b ∈ [0, 1] × [0, 1] such that π(a) = x and π(b) = y. We note that we can
construct a path γ : [0, 1] → [0, 1]× [0, 1] joining a and b. This is true since
we can connect points in [0, 1]× [0, 1] using straight lines. To finish the proof
we observe that π ◦ γ is the desired path.

The final thing to do is to compute π1(Mo, x). We will do this by showing
that the map in the hint defines a homotopy equivalence. Then it will follow
that π1(Mo, x) ≃ π1(S1, x) ≃ Z. We define a map

T : [0, 1]× [0, 1] → S1 = [0, 1]/0 ∼ 1

which sends (s, x) to s. The map T is clearly continuous. Now we show that
T preserves the equivalence relation. This follows easily after noting that

T (0, x) = 0 ∼ 1 = T (1, 1− x).
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We conclude that we have a continuous map T = Mo → S1. Let i : S1 → Mo
be the map in the hint. Then it is clear that T ◦ i is the identity map on S1.
To finish the proof we construct a homotopy

H : Mo×[0, 1] → Mo

between the identity map on Mo and i ◦ T . We define for z ∈ Mo with
z = (x, y)

H(z, t) = (x, t/2 + (1− t)y).

Observe that we have H(z, 0) = (x, y) and H(z, 1) = (x, 1/2) so the final
thing to check is that H is a well defined continuous map. This amounts to
showing that H respect the equivalence relation in the definition of Mo. Let
z = (0, y) then we have

H(z, t) = (0, t/2 + (1− t)y) ∼ (1, 1− (t/2 + (1− t)y)),

on the other hand, given z′ = (1, 1− y) we have

H(z′, t) = (1, t/2 + (1− t)(1− y)),

we only need to check that

1− t

2
+ (t− 1)y =

t

2
+ (1− t)(1− y) ⇐⇒

1− t

2
+ (t− 1)y =

t

2
+ (1− t) + (t− 1)y ⇐⇒ 1− t

2
=

t

2
+ (1− t).

■
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