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1. Introduction

These are lecture notes from the course TMA4190 Introduction to Topology given in the Spring
semester 2021 at NTNU. They are intended as a supplement to the lectures and may not be
entirely self-contained.

Please send me an email if you spot any errors!

What is topology?

Topology! The stratosphere of human thought! In the twenty-fourth century it might
possibly be of use to someone. . .

— Aleksandr Solzhenitsyn

Topology is a part of mathematics concerned with the study of spaces. In topology, we consider
two spaces to be equivalent if one can be continuously deformed into the other. Such a continuous
deformation is known as a homeomorphism, i.e., a continuous bijection with a continuous inverse.
See Figure 1.1 for an example of two homeomorphic spaces.

Figure 1.1: The surface of the (unit) cube and the (unit) sphere S? are homeomorphic.

We might ask ourselves the following question.

Question Let X and Y be two spaces. Does there exist a homeomorphism ¢: X — Y? In
other words, are X and Y homeomorphic?

Showing that two spaces are homeomorphic involves the construction of a specific homeomor-
phism between them. Proving that two spaces are not homeomorphic is a problem of a different
nature. It is a hopeless exercise to check every possible map between the two spaces for whether
or not it is a homeomorphism. Instead we might check to see whether there is some “topological
invariant” of spaces (where this invariant is preserved under a homeomorphism) that allows us to
differentiate between the two spaces.


marius.thaule@ntnu.no

Figure 1.2: The disc D? and the annulus are not homeomorphic.

One instrument to help us detect topological information of a space is the fundamental group
associated to the space. It is reasonable to expect that the disc D? and the annulus are not homeo-
morphic. The annulus has a hole through it while the disc does not, see Figure 1.2.

To detect the hole through the annulus we may use loops, i.e., continuous maps from the unit
interval to the annulus with the endpoints identified. See Figure 1.3.

Figure 1.3: A loop.

It is then possible to construct a group involving such loops. This group is what is known as the
fundamental group.

Some applications

To help illustrate some of the power of topology, let us consider two theorems, both of which may be
proved using topology and more specifically, the fundamental group.

The first theorem is the Brouwer fixed point theorem.

Theorem 1.1 (Brouwer fixed point theorem) Let f: D™ — D™ be a continuous map from
the (unit) disk in R™ to itself. Then f has a fixed point, i.e., there is some point x € D™ such
that f(x) = x.

For n = 1 this is a well-known result from calculus: The graph of any continuous map f: [0,1] =
[0, 1] must cross the diagonal y = x for some x, € [0, 1]. Hence, f(x,) = x,. See Figure 1.4.

The second theorem is the fundamental theorem of algebra.
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Figure 1.4: The graph of any continuous map from [0, 1] to [0, 1] must cross the diagonal.

Theorem 1.2 (The fundamental theorem of algebra) A polynomial equation
2"+ ap_1z" 1+ +a;z+a;=0

of degree n > 0 with complex coefficients has at least one complex root.

. J

To prove it we will use the fact that the fundamental group of the circle is isomorphic to the group
of integers. The fundamental theorem of algebra may be proved in many different ways, including
using only algebraic techniques and analysis. However, the proof we will provide (based on [4]) is a
fairly simple corollary of the computation of the fundamental group of the circle.



2. Continuous maps

2.1 Metric spaces

From calculus we know what to mean by a continuous map from R™ to R™: a map f: R* - R™
is continuous at p € R™ if for all € > 0 there exists a § > 0 such that if ||p — q||gn < 6, then
IIf (@) — f(@)|lrm < €. Here || - ||gn denotes the Euclidean norm in R™. Similarly, || - ||gm denotes
the Euclidean norm in R™.

Topological spaces provide the most general setting for which the concept of continuity makes
sense. Before we get to the concept of a topological space, let us consider metric spaces. Metric
spaces allow us to speak of distance between elements. Using the notion of distance between ele-
ments we can make sense of continuity of maps between metric spaces.

Definition 2.1 (Metric spaces) A metric space (X, d) is a non-empty set X together with a
map d: X X X — R called a metric such that the following properties hold:

M1 d(x,y) > O0forallx,y € X,and d(x,y) = 0ifand only if x = y;
M2 d(x,y)=d(y,x)forallx,y € X;

M3 d(x,z) <d(x,y)+d(y,z)forallx,y,z € X.

The first condition says that the distance between two elements is always positive, and equal to zero if
and only if the two elements are the same. The second condition says that distance is symmetric. The third
condition says that the triangle inequality holds. The metric d is sometimes also referred to as a distance
function.

Example 2.2 (R" seen as a metric space) Let X = Rand d be the map defined by d(x,y) =
|x — y|(= +/(x — y)?). The first two requirements for d are clearly satisfied, and the third
follows from the usual triangle inequality for real numbers,

dx,z) = |x—z| =|(x =+ @ -2 <|x =yl +|y —z| = d(x,y) + d(y,2).

For X = R™ with n > 0 an integer, let d(x,y) = ||x — y|| where || - || is the Euclidean
norm, e.g., forn = 2, d(x,y) = ||x — y|| = /(x1 —y1)? + (x, — y2)2. Again, the first
two requirements for d are clearly satisfied. The third requirement follows from the triangle
inequality for vectors in R™.

We may equip R™ with other metrics than the one described in Example 2.2. For instance, for
X = R?, let
d(x,y) = |x1 = y1| + |xz = y2|.

8
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This is known as the taxi cab metric.
We say that two metrics d4 and d, on the same set X are equivalent if there exist constants L and
M such that

di(x,y) < Ld(x,y) and dp(x,y) < Mdy(x,y)

forallx,y € X.
Example 2.3 (Discrete metric spaces) ForanysetX,letd: X X X — R be the map given by

1 x+y,

d(x,y) = 0 x=y

We call d the discrete metric on X.

Example 2.4 (C[a,b]) Let X = C[a,b], i.e., the set of continuous maps from the interval
I =[a,b] € RtoR,and let

d(x,y) = max|x(i) — y(@DI-

Example 2.5 |Ifdisa metriconasetX,and A € X is any subset of X, then d is also a metric
on A.

2.2 Continuous maps between metric spaces

The definition of continuity of maps between metric spaces is completely analogous to the situation
that we have from calculus.

Definition 2.6 (Continuous maps between metric spaces) Let (X, dy) and (Y, dy) be two
metric spaces. Amap f: X = Y is continuous at p € X if for all e > 0 thereisa § > 0 such

that if dy(p, q) < & then dy(f(p), f(9)) <e.
If f is continuous at every p € X, we say that f is continuous.

To get us to the setting of topological spaces we will need the concept of open and closed sets.

Definition 2.7 (Open and closed balls) Let (X,d) be a metric space, and let a € X and
r > 0 be real number. The open ball centered at a with radius r is the subset

Bla;r) ={x€X|d(x,a) <r}
of X. The closed ball centered at a with radius r is the subset
B(a;7) = {xeXld(xa)<r}

of X.

\. J

In Euclidean space with the usual metric (induced from Euclidean norm), a ball (as defined above)
is precisely what we think of as a ball in everyday language. Open balls are sometimes referred to as
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simply balls, and closed balls are sometimes referred to as discs, e.g. Theorem 1.1.

Example 2.8 (Open balls in discrete metric spaces) Let (X, d) be the metric space defined
in Example 2.3. Then
B(x;r) ={x} and B(x;n)=X

forall0 <ry < landallr, > 1.

Definition 2.9 (Open and closed sets) Let (X, d) be a metric space. Asubset A S X is open
in X if for every point a € A, there is an open ball B(a; r) about a contained in A. We say that
Ais closed in X if the complement A = X\ A ={x € X | x &€ A} is open.

Most subsets are neither open nor closed. Subsets that are both open and closed are sometimes referred
to as clopen. In particular, both @ and X are clopen in X.

Lemma 2.10 Let (X,d) be a metric space, x € X and r > 0 a real number. Then the open
ball B(x;r) € X is open in X, and the closed ball B(x;r) € X is closed in X.

Proof. We prove the statement about open balls. The statement about closed balls follows from a
similar argument.

Assume that y € B(x;7r). We need to prove that there is an open ball B(y; €) about y that is
contained in B(x; ). Let € = r — d(x,y). By the triangle inequality of the metric d, M3, we have
that for z € B(y; €),

d(x,z) <d(,y)+dy,z) <d(x,y)+e=d(x,y)+r—d(x,y)=r.
Hence, B(y; €) € B(x; 7). O

For a metric space (X, d), a subset A € X and x € X, we say that: (i) x is an interior point of A if
there is an open ball B(x; r) about x which is contained in 4, (ii) x is an exterior point of A if there is
an open ball B(x; r) which is contained in A€ and (iii) x is a boundary point if all open balls about x
contains points in A and in A€. Hence, A is openin X if and only if A only consists of its interior points.
An interior point will always belong to A. An exterior point will never belong to A. A boundary point
will some times belong to 4, and some times to A°€.

Definition 2.11 (Neighborhoods) Let (X, d) be a metric space, A a subset of X and x € X.
We say that A is a neighborhood of x if there is an open ball about x that is contained in A. We
say that A is an open neighborhood (of x) if A itself is open.

Theorem 2.12 (Continuity at a point) Let (X,dy) and (Y, dy) be two metric spaces, and
letp € X. Amap f: X — Y is continuous at p if and only if for all neighborhoods B of f (p),
there is a neighborhood A of p such that f (4) € B.

\. J

Proof. Assume that f is continuous at p. If B is a neighborhood of f(p), then, by definition, there
is an open ball By (f(p); €) about f(p) that is contained in B. Since f is continuous at p, there is a
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6 > 0suchthatif dy(p,q) < 8, then dy(f(p), f(q)) < €. Hence, f(Bx(p; 6)) € By(f(p); €) S B.
That is, if we let A = Bx(p, §), then for all neighborhoods B of f(p), we have that f(4) € B where

A is a neighborhood of p.

Assume that for all neighborhoods B of f(p), there is a neighborhood A of p such that f(4) € B.
We need to prove that forall e > 0, thereisa § > 0 such thatif dx(p,q) < 6, thendy(f(p), f(q)) <
€. By utilizing the fact that B = By (f (p); €) is a neighborhood of f(p), then, by assumption, there
must be a neighborhood A of p such that f(A) € B. Since A is a neighborhood of p, there is an open
ball Bx(p; &) about p that is contained in A. Now assume that dy(p,p’) < 6. Thenp’ € Bx(p; 6) S
A. Thus f(p') € B = By(f(p); €), and hence, dy(f (p), f(p")) < €. Thus fis continuous atp. [

The following theorem gives an alternative description of continuous maps between metric spaces.

Theorem 2.13 (Continuous maps between metric spaces) Let (X,dy) and (Y, dy) be two
metric spaces. Amap f: X = Y is continuous if and only if for every subset B C Y openinY,
the preimage of B under f,

fTYB)={x€X|f(x) EB}CX,

is openin X.

Proof. Assume that f is continuous. For B € Y open in Y, we have to prove that f ~1(B) € X is open
in X. Let a € f~1(B). We want to prove that there is an open ball about a in X that is contained in
f~1(B). By assumption, B € Y is open in Y. Hence, there is an € > 0 such that By(f(a); €) S B.
From the assumption that f is continuous thereisa § > 0 such that By(a; 8) € f~1(By(f(a);€)) S
f1(B).

We now prove the opposite implication. Assume that for every subset B € Y open in Y, the
preimage f~1(B) of B under f is openin X. Let a € X and € > 0 be a real number. From the first
assumption it follows that f~1(By(f(a); €)) € X is open in X. As f~1(By(f(a); €)) is open and
contains a, there isa § > 0 such that By(a; §) € f~1(By(f(a); €)). Thus x € Bx(a; &) implies that
f(x) € By(f(a); €). Hence, f: X = Y is continuous. O

Let A and B be sets, and let f: A > B. Then f~1(B) will always exist even if there is no inverse map. In
the cases where f has an inverse there is no ambiguity. If U and V are both subsets of B then

AUV =7 WU V) and fTHUNY) =10 NIV,
and furthermore, if U € V then f~1(U) € f~*(V). LetU € Aand V C B, then
Ucf'(f) and fIV)EV.
We also note that if U is a subset of B then

fTEBA\D) = fHU) = (FHUN = A\ ().
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2.3 Exercises

Exercise 2.1 Does d(x,y) = (x — y)? define a metricon X = R?

Exercise 2.2 Show that R? equipped with the taxi cab metric is a metric space.

Exercise 2.3 Let (X,d) be a metric space. Show that the map d’': X X X — R given by

d(x,y)

TN = T dey)

is also a metric on X.

Exercise 2.4 Draw a picture of the open ball B((0,0); 1) in the metric space (R?, d) with
(@ dxy) =di(xy) = [x2 =yl + |x2 =yl
(b) d(x,y) =dy(x,y) = (x1 —y1)? + (x2 — ¥2)%

() dxy) =de(xy) =max{|x; — |, |x2 — 2}

Exercise 2.5 Show thatd,, d, and d, (as defined in Exercise 2.4) are equivalent on X = R?.

Exercise 2.6 Show thatin a discrete metric space (X, d), cf. Example 2.3, every subset is both
open and closed in X.

Exercise 2.7 Show that for equivalent metrics d and d’ on the set X, the open sets are the
same.

Exercise 2.8 Let (X,dy) and (Y, dy) be metric spaces, and let f: X — Y be a map. Show
that f is continuous if and only if for every subset B € Y closed in Y, the preimage f~1(B) is
closed in X.



3. Topological spaces

3.1 Definition and examples

Topological spaces are spaces constructed to support continuous maps. The definition is as follows.

Definition 3.1 (Topological spaces) A topological space is a set X together with a collection
T of subsets of X that are called open in X, such that the following properties hold.

Tl Thesubsets @ and X are in 7.
T2 The union of the elements of any subcollection of T is in 7.

T3  The intersection of the elements of any finite subcollection of T isin T.

A topological space is strictly speaking an ordered pair (X, T). We refer to 7" as the topology on X. We will
often omit specific mention of T if no confusion will arise.

The following theorem states that every metric space (X, d) is a topological space with the metric
topology T; on X.

Theorem 3.2 (Metric spaces are topological spaces) Let (X,d) be a metric space. Let Ty
be the collection of subsets U € X with the property that U € Ty if and only if for each x € U
there is anr > 0 such that B(x;r) € U. Then J; defines a topology on X.

Proof. Clearly, ® € T;. To show that X € J;, note that for any x € X, B(x; 1) € X. Hence, X € Tj.
Thus T1 is satisfied.

Let {Uj}1ea be any subcollection of 7;. We need to prove that V = U, Uy € 7. Let x € V.
From V = U, U, thereis A € A such that x € U,. By the property of U, satisfied by the U, in 7
thereisan r > 0 such that B(x;r) € U,. Hence, B(x;r) € V. Thus V € Ty, and T2 is satisfied.

We prove that the intersection of two elements of T is also an element of 7. The general result
then follows by an induction argument. Let U;, U, € J;. We need to prove that U; N U, € J;. Let
x € U;NU,. Since U;NU, S U;, we have that x € U; fori = 1, 2. By the defining property of 7; there
isanr; > O suchthat B(x;7;) € U; fori = 1,2. Letr = min{ry,r»}. Then B(x; 1) € B(x;1;) € U; for
i=1,2. Thus B(x;r) € U; N U,, and so Uy N U, € T;. Hence, T3 is satisfied. O

The following theorem relates the metric topologies for two equivalent metrics.

Theorem 3.3 Let X be any set, and let d, and d, be two equivalent metrics on X. Then
le = sz.

13
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3.1. Definition and examples

This follows from Exercise 2.7.

Example 3.4 (Discrete topology) Let X be any set. The collection T of all subsets of X, i.e.
the power set P (X) of X, is a topology on X. We refer to this topology as the discrete topology.
A set X equipped with the discrete topology is referred to as a discrete topological space.

The discrete topology is the unique topology where the singletons are open. We can think of a
discrete topological space as a space of separate, isolated points, with no close interaction between

different points.

For any set X, the discrete topology is the largest topology we may equip X with. The smallest

topology is called the indiscrete topology.

Example 3.5 (Indiscrete topology) Let X be any set. The collection T consisting of @ and
X is a topology on X, referred to as the indiscrete topology on X. A set X equipped with the
indiscrete topology is referred to as an indiscrete topological space.

Example 3.6 LetX = {a,b, c}. The following collections all define a topology on X.
(1) Ti=Tia =1{0 X}

) 7 ={0{a} X}

B3) 7 ={2{a b} X}

) 7, ={0{a},{a, b}, X}

(5)  J5 =1{9,{a b}, {b},{b,c}, X}

(6) T =Tqisc = P(X) ={0,{a},{a, b}, {a,c},{b},{b, c},{c} X}

There are in total 29 topologies on X. However, there are also collections of subsets of X
which do not define topologies on X. None of the following collections of subsets of X define
a topology on X.

(1) {2 {a},{b}, X}
2) {9{a} {c} X}
3) {@{a b} {b c} X}

Definition 3.7 (Comparable topologies) Let X be any set and suppose that 7; and T, are
two topologies on X. If T; € T,, we say that J; is coarser than 7, and that T, is finer than 7;.
We say that 73 and 7, are comparable if either 73 € 75 or 75, € 73.

Clearly, for any set X, the discrete topology T 4isc contains the indiscrete topology Ting: Tgisc 2
T'ing- Hence, the discrete topology is finer than the indiscrete topology and the indiscrete topology is

coarser than the discrete topology.
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Example 3.8 (Cofinite topology) Let X be any set. The collection T of subsets of X consisting
of subsets U S X such that U¢ = X \ U is either finite or all of X is a topology on X. We refer
to this topology as the cofinite topology on X.

If X is a finite set, the cofinite topology is equal to the discrete topology. If X is an infinite set, the
cofinite topology is strictly coarser than the discrete topology, in the sense that the cofinite topology
is properly contained in the discrete topology.

We end this section with a theorem that we can use to prove that some set is open. To state the
theorem we need the following definition.

Definition 3.9 (Neighborhoods) Let X be a topological space, U a subset of X and x € X.
We say that U is a neighborhood of x if x € U and U is open in X.

A neighborhood in the sense of the previous definition is sometimes referred to as an open neigh-
borhood, cf. Definition 2.11.

Theorem 3.10 Let X be a topological space. A subset U of X is open in X if and only if for
every x € U there is a neighborhood U, of x such that U, € U.

Proof. Assume that U is open in X. Then for every x € U, U is a neighborhood of x that is contained
inU.

We prove the other implication. Assume that for every x € U thereis a U, € T such that
x € U, € U, i.e., that U, is a neighborhood of x such that U, € U. To prove that U € T, we will
prove that U = U,y Uy. Assume that x’ € U,s. Then x' € Uy S U,y Uy. Furthermore, any point
in U,y Uy isin Uy forsome x € U so by assumption, U, € Uandx € U, € U. Hence, U = U,y U,.
As U is the union of open sets it must be an open set as well by T2. ]

3.2 Continuous maps

We know from Theorem 2.13 that a map between metric spaces is continuous if and only if the preim-
age of an open set is open. This motivates the following definition.

Definition 3.11 (Continuous maps between topological spaces) Let X and Y be topological
spaces. Amap f: X — Y is said to be continuous if preimages of open sets are open, i.e., if V
is an open set in Y then the preimage f~1(V) of V under f is open in X.

Hence, all continuous maps between metric spaces (X, dy) and (Y, dy) are also continuous maps
between the corresponding topological spaces X and Y with the metric topologies 7, and 73, re-
spectively.

Example 3.12 Let X and Y be topological spaces. Then all constant maps from X to Y are
continuous: the preimages are either empty or the entire space, and these are always open,
cf. T1.
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Example 3.13 Let X be a discrete topological space and Y a topological space. Then all maps
from X to Y are continuous.

Example 3.14 Let X be any topological space and Y be an indiscrete topological space. Then
all maps from X to Y are continuous.

Example 3.15 Let Ry be the discrete topological space consisting of the real numbers with
the discrete topology, and let R be the topological space consisting of the the real numbers
with the usual (Euclidean) metric topology. Then the identity map
id

]Rdisc — R

is continuous by Example 3.13, while the identity map
id
R — Rdisc

is not continuous: singletons are open in the discrete topology but not in the (Euclidean) metric
topology.

The following theorem says that the composition of two continuous maps is a continuous map.

Theorem 3.16 (Composition of continuous maps) Let X, Y and Z be topological spaces. If
f:X—>Yandg:Y — Zare continuous maps, then the composite go f: X = Z is continuous.

Proof. Let W C Z be open in Z. We need to prove that (g o f)~1(W) is open in X. Since
GeNTW)={xeX|g(f(x)) eW}
={xeXIf(x)eg W)}
={x€XIx€f Mg W)} =g (W)
and that g~1(W) is openin Y and f~1(g~1(W)) is open in X (by continuity of g and f), it follows
that (g o f)"1(W) is open in X. Hence, g ° f is continuous. O

We can express continuity at a point for maps between topological spaces using neighborhoods.
(See Theorem 2.12 for the case of metric spaces.)

Definition 3.17 (Continuity at a point) Let X and Y be topological spaces, and let x € X. A
map f: X — Y is continuous at x if for all neighborhoods V of f(x) there is a neighborhood
U of x such that f(U) € V.

Theorem 3.18 Let X andY be topological spaces. Amap f: X = Y is continuous if and only
if it is continuous at each x € X.

Proof. Assume that f is continuous, and let x € X and V be a neighborhood of f(x). Then the set
U = f~1(V) is a neighborhood of x such that f(U) € V.

Assume that f is continuous at each x € X. LetV € Y be openin Y. Choose x € f~1(V). Since
f is continuous at x there is neighborhood U, of x such that f(U,) € V. Hence, U, € f~1(V). It
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follows that £ ~1(V) can be written as the union of the open sets U,, and hence, it is open in X. Thus
f is continuous. O

3.3 Homeomorphisms

We now introduce the notion of topological equivalence, also known as homeomorphism.

Definition 3.19 (Homeomorphisms) Let X and Y be topological spaces. A bijective map
f: X - Y with the property that both f and f~1: Y — X are continuous, is called a homeo-
morphism. If there exists a homeomorphism f: X — Y, we say that X and Y are homeomor-
phicand write X = Y.

A homeomorphism f: X — Y gives a one-to-one correspondence between open sets in X and Y. As a
result, any property of a topological space that can be expressed in terms of its elements and its open subsets
is preserved by homeomorphisms. Such a property is called a topological property.

Example 3.20 Let R be the topological space of the real numbers with the (Euclidean) metric
topology. The map

f:R->R
x> 2x—1
is a homeomorphism. Let
g:R->R
1
yrs;0+1)

then, clearly, g(f(x)) = x and f(g(y)) = y for all real numbers x and y. Thus f is a bijection
and f~1 = g. From calculus we know that f and g are continuous. Hence, f is a homeomor-
phism.

Example 3.21 LetX = {a,b},andletT; = {@,{a}, X} and T, = {@, {b}, X} be two topologies
onX. Themap f: X = Xgiven by f(a) = band f(b) = a s clearly a continuous bijection
(with the domain given J; as topology, and the codomain given 7, as topology). Also, f is its
own inverse: f = f~1. Hence, f is a homeomorphism and (X,7;) = (X, 7).

Homeomorphisms are continuous bijections, but the converse is not true.
Example 3.22 Let X = {a, b}. The identity map id: X — X where the domain is given the
discrete topology and the codomain is given the indiscrete topology is a continuous bijection

but not a homeomorphism: the inverse map is not continuous.

The following theorem says that being homeomorphic is an equivalence relation on any set of
topological spaces.
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Theorem 3.23 Let X,Y and Z be topological spaces.

Reflexivity  The identity mapid: X — X (where the domain and the codomain are equipped
with the same topology), given by id(x) = x for x € X, is a homeomorphism.

Symmetry If f: X = Y is a homeomorphism, then f‘1: Y — X is also a homeomorphism.

Transitivity Iff: X - Yand g: Y — Z are homeomorphisms, then g o f: X = Z is also a
homeomorphism.

Proof. The identity map id: X — X (where the domain and the codomain are equipped with the
same topology) is clearly continuous and bijective. As the identity map is its own inverse, then it is
also a homeomorphism. Hence, X = X and so = satisfies the reflexivity condition for an equivalence
relation.

If f: X > Y is a homeomorphism, then f~1: Y - X is also a homeomorphism: f ! is a continu-
ous bijection with continuous inverse (f "1)™ = f: X > Y. Hence, X = Y ifand only if Y = X. Thus
= satisfies the symmetry condition for an equivalence relation.

Theorem 3.16 tells us that the composition of two homeomorphisms f: X - Yandg: Y - Zis
continuous. The composition of two bijective maps is always bijective. Hence, g ° f is a continuous
bijection. We need to prove that its inverse, (g o f) ™1, is continuous. Since

(gef)t=fteg™
is a composition of continuous maps, then by Theorem 3.16 sois (g o f)~*. Thus g ° f is a homeo-

morphism. Hence, if X = Yand Y = Z, then X = Z. Thus = satisfies the transitivity condition for an
equivalence relation. L]

3.4 Closed sets

Recall that in a topological space X, a subset A of X is an open subset if and only if 4 is an element of
the topology of X, i.e.,, A€ T.

Definition 3.24 (Closed subsets) A subset K of a topological space X is closed in X if and
only if the complement K¢ = X \ K is open in X.

This is completely analogous to how we defined closed subsets in metric spaces, cf. Definition 2.9.

Example 3.25 Let X be a discrete topological space. Since every subset of X is open in X, it
follows that every subset of X is also closed in X.

Example 3.26 LetX be anindiscrete topological space. The only subsets of X that are closed
in X are @ and X (which are also the only subsets that are open in X).

Recall that in a discrete topological space, all the singletons are open sets. This is usually not the
case.
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Example 3.27 Let R be the topological space of the real numbers with the (Euclidean) metric
topology. Theneverysubset[a,b] = {x € R | a < x < b} € Risclosedin R: the complement
[a,b]¢ = R\ [a,b] = (—,a) U (b, ) is a union of open sets in R, and hence, is open in R.
Furthermore, all the singletons are closed: the complement {a}¢ = R\{a} = (—o0,a)U(a, =)
is a union of open sets in R, and hence, is open in R.

By passing to complements we get the following theorem.

Theorem 3.28 Let X be a topological space.
(1) Both @ and X are closed (as subsets) in X.
(2) The intersection of any subcollection of closed sets in X is closed in X.

(3) The union of any finite subcollection of closed sets in X is closed in X.

. J

It follows that we could have defined a topological space X by specifying a collection of subsets
of X satisfying the three statements in Theorem 3.28 where we would say that a subset of X is open
in X if its complement is closed in X.

We end this section with a theorem describing the connection between continuous maps and
closed sets. We will need the following definition.

Definition 3.29 (Closure) Let X be a topological space, and let A be a subset of X. The
closure of A, written 4, is the intersection of all subsets of X that contain A and which are
closed in X.

From the definition it follows that 4 is the smallest subset of X that contains 4 and which is closed
in X. Furthermore, if A is closed in X, then A=A

There is an analogous definition for open sets where we take union instead of intersection. We
can define the interior of A, written Int(A), to be the union of all subsets of X that are contained in
A and which are open in X. It follows that Int(A) is the largest subset of X that is contained in A and
which is open in X. Furthermore, Int(4) € A € A.

Example 3.30 Let X be atopological space consisting of the set {a, b, c} and the topology T" =
{9, {a}, {a, b}, X}. Then the closed subsets in X are @, {b, c}, {c} and X. Thus the intersection of
all of the closed subsets that contain {b} is simply {b, c} N X = {b, c}, and hence, {b} = {b, c}.

Example 3.31 Let R be the topological space of the real numbers with the (Euclidean) metric

topology. Assume that a < b are real numbers. Then (a, b] = [a, b] and Int((a, b]) = (a, b).

Let (X, d) be a metric space. If we consider X as a topological space with the metric topology 73,
the closure B(x;r) of an open ball B(x;r) about x € X is, in general, not the same as the closed
ball E(x; 7). If d is the discrete metric and X has at least two elements, then B(x; 1) = {x} while
B(x; 1) = X. It is always the case that B(x; ) S B(x; ).

Definition 3.32 (De_nse) Let X be a topological space, and let A be a subset of X. We say
that Ais dense in X if A = X.
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From the definition it follows that A is dense in X if and only if A N U +# @ for every nonempty
subset U of X which is openin X.

Example 3.33 Let R be the topological space of the real numbe_rs with the (Euclidean) metric
topology. Then the subset Q of rational numbers is dense in R: Q = R.

Example 3.34 For any topological space X, the subset X is dense in X. If X is a discrete
topological space, then the subset X is the only dense subset in X.

Theorem 3.35 Let f: X = Y be a map between topological spaces. Then the following are
equivalent:

(1)  fis continuous;
(2)  for every subset A of X, we have f(A) S f(A);

(3) forevery closed subset B of Y, the preimage f~1(B) of B under f is closed in X.

Proof. By passing to complements, it follows readily that (1) and (3) are equivalent. We will prove
that (2) is equivalent to (3).

Assume (2). Let B be a subset of Y that is closed in Y, and let A = f~1(B). We must show that A
is closed. We have f(4) € B. If x € 4, then f(x) € f(A) S f(A) S B. Hence, x € f"1(B) = A. In
other words, A € A. Thus A = 4, and hence, f‘l(B) is closed in X.

Now assume (3). Let A be a subset of X. We must show that f(4) < m Since m is
closed in Y, it follows by assumption that f ~1(f (A)) is closed in X. Furthermore, A S f~1(f(A4)) S
F71(f(A)). Since f~1(f(A)) is closed in X, it follows that A € f~1(f(A)). Hence, f(4) € f(4). O

3.5 Exercises

Exercise 3.1 LetX = {a,b,c,d}. Show that T = {@,{a}, {a, b},{a, b, c},{b,c,d}, X} is not a
topology on X. Find a topology 7" (different from the discrete topology) on X such that7 € 7.

Exercise 3.2 Let X be a non-empty set, and let x; be an element of X. Show that
T={UCX|xy&UorX\Uis finite}

is a topology on X.

Exercise 3.3 Let X be a set, and let A be a subset of X. Define the coarsest topology on X
such that A is open in X.

Exercise 3.4 Show that the discrete topology T i is finer than the cofinite topology T .,; on
any set X.
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Exercise 3.5 LetX = {a,b,c,d}. Find two topologies 7; and T, with 7; # T, such that a
bijection f: X — X is a homeomorphism (where the domain is given 7; as topology and the
codomain is given 7, as topology).

Exercise 3.6 Let X be atopological space, and let A and B be subsets of X.

(a) Assume that A € B. Show that ACB.

(b) ShowthatAUB = AUB.
We say that a set A intersects or meetsaset Bif AN B #+ Q.

Exercise 3.7 Let X be atopological space, and let A be a subset of X. Show that x € Aifand
only if every neighborhood of x intersects A.

Exercise 3.8 LetX = {a,b,c,d, e}, andlet
T ={0,{a,b},{a,b,c},{a b,d e}, {b},{b,c}{b,d e} {b,cd, e} {d e} X}

be a topology on X. Is the subset {a, b} dense in X?



4. Generating topologies

4.1 Generating topologies from subsets

The following theorem tells us how we may extract a third topology from two other topologies on the
same set.

Theorem 4.1 (The intersection of two topologies is a topology) Let X be a set, and let 7}
and T, be two topologies on X. Then 71 N T, is also a topology on X.

Proof. Clearly, @ and X are in 73 N 75, so T1 is satisfied.

Let {U;},¢ea be a collection of sets such that U, € 73 NT, foreach A € A where Ais some index set.
Then, fori =1,2,U, € T;foreachA € A. Thus U ¢, Uy € T;fori = 1,2. Hence, U, Uy ET1 N T,
and so, T2 is satisfied.

Finally, to prove that T3 is satisfied, let U,V € 73 N J,. Thus, fori = 1,2, U,V € J; implies that
UNV eJ;.Hence, UNV €T; NT,. O

Theorem 4.1 may be extended to hold for a family of topologies: if {T3},¢4 is a family of topologies on X,
then N;cp 77 is also a topology on X. If we follow the convention that for subsets S of a fixed (large) set U,

ﬂS =U,
Sep
then the extended version of Theorem 4.1 may also include an empty family {7} } ¢4 of topologies with
(7 =7w.
A€
i.e., the discrete topology on X (with our fixed (large) set U being equal to P (X)). However, not all mathemati-
cians follow this convention. Thus we will in general not define the intersection of an empty family.

The union of two topologies is not necessarily a topology.

Example 4.2 LetX = {a,b,c}, and letT; = {@,{a} {a, b}, X} and T, = {@,{c}, X} be two
topologies on X. Then
N7 ={0,X}

is the indiscrete topology on X while
T U7, = {9,{a},{a,b},{c}, X}

is not a topology on X: 77 U T, does not satisfy T2.

22
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Recall from Section 3.1 that for any set X the discrete topology T 4 is the largest topology we
may equip X with, and the indiscrete topology T4 is the smallest topology we may equip X with. For
any topology 7 on X we have

Tind SE S Tdisc-

That is, we have partially ordered topologies on X by inclusion.
Let X be a set. We often want to have a collection of subsets § of X to be the open subsets of a
topology on X.

7~

Definition 4.3 (Topology generated by a collection of subsets) Let X be a set, and let § be
a collection of subsets of X. The topology generated by S is the topology

=[] 7

T topology
SCT

on X.

In other words, (S) contains § and for any other topology 7’ containing §, we have (S} € 7.
Thus (S) is unique.

Example 4.4 Let X be aset,andletS = @. Then (S) is the same as the indiscrete topology

onk,i.e.,
($) =Ting = {0, X}.

Example 4.5 Let X be a set, and let § be the collection of all the singletons of X, i.e., § =
{{x} | x € X}. Then (S) is the same as the discrete topology on X, i.e.,

() = Taise = PX).

4.2 Basis for a topology

It is often convenient to define a topology T on a set X by only specifying a subcollection B of T
satisfying certain properties. The open subsets of X are then precisely the unions of subcollections
of B. In this way, we say the basis determines, or generates, the topology.

Definition 4.6 (Basis) Let X be a set. A basis for a topology on X is a collection B of subsets
of X such that

Bl foreachx € X, thereisa B € B such that x € B;

B2 ifB;,B, € Bandx € B; N B,, then thereisa B; € Bsuchthatx € B; € B; N B,.

The elements of B are sometimes referred to as basis elements. Basis elements are subsets of X.

Example 4.7 Let X be aset, and let B be the collection of all the singletons of X. Then Bis a
basis for the discrete topology on X.
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Example 4.8 Let (X,d) be a metric space. Then the collection of (open) e-balls
B ={B(x;¢e) | x € X,e > 0}
is a basis for the metric topology 75, as defined in Theorem 3.2, on X.

The following theorem describes a topology generated by a basis.

Theorem 4.9 Let X beaset, and let B be basis for a topology on X. The collection T generated
by B of subsets U of X with the property that for each x € U there is a basis element B € B
with x € B € U is a topology on X.

Proof. Clearly, @ and X are both in T. Hence, T1 is satisfied.

Let {U,},ea be a subcollection of 7. Let V = U ep Uz. We need to prove thatV € 7. Let x € V.
Then there isa A € A such that x € Uj. Since U, € T, there is a basis element B € B such that
x€EBC U, AsU, cV,itfollowsthatx € B € V. Hence,V € T, and so, T2 is satisfied.

Let U;,U, € T. We need to prove that Uy N U, € T. Letx € U; N U,. Since Uy N U, € U;
we have x € U;, and thus there is a basis element B; € B with x € B; € U; fori = 1,2. Hence,
x € B; N B, € U; N U,. By B2 there is a basis element B; € B with x € B; € B; N B,. Thus
X € B; € U; N U,, and hence, T3 is satisfied. O

The topology generated by a basis may also be described using the following theorem.

Theorem 4.10 Let X be a set, and let B be a basis for a topology T on X. Then T is equal to
the collection of all unions of elements of B.

Proof. Let B € B be any basis element. Then for each x € B we obviously have x € B and B € B.
Thus B € 7. It follows that any union of basis elements is a union of elements of 77, and hence, is in
T.

Conversely, let U € T. For each x € U thereisa B, € B withx € B, and B, € U. Then
U = U,ey By, and thus, U is the union of elements of B. O

We end this section with a theorem describing a criterion for whether one topology is finer than
another when both topologies are described using bases.

Theorem 4.11 Let X be a set, and let By and B, be bases for topologies T, and T,, respec-
tively, on X. Then the following are equivalent:

(1) T is finerthan 73, i.e., T3 € T5.

(2) Foreach B, € By and each x € B, thereis a B, € B, such that x € B, € B;.

\. J

Proof. Assume (1). Let B; € B; and x € B;. Since B; € J; and J; € 7, we have B; € T,. Further-
more, as 75 is the topology generated by B, there is a B, € B, such that x € B, where B, € B;.
Hence, (2) is satisfied.

Now assume (2). Let U € J;. We must prove that U € 7. Since B, generates 73, then for each
x € U thereisa By € By suchthatx € By € U. By assumption there is a B, € B, such that
X € B, € B;. Hence, B, € U, and so, U € T7,. Thus (1) is satisfied. ]
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In order to have 7} € T, it is not necessary to have B; € B,, i.e., each basis element in B; need not be a
basis element in B,. However, for each basis element B; € B; and each point x € B; there should be some
(possibly) smaller basis element B, € B, such that x € B, € B;.

4.3  Subbasis for a topology

Let X be a set, and let § be a collection of subsets of X. We can form a basis B for a topology by simply
taking all finite intersections

n

B = Si

i=1
of elements of §. Thus the open sets in the topology generated by this basis are all unions of such
basis elements B, cf. Theorem 4.10. Thus the open sets are all unions of all finite intersections of
elements of §. The collection § is then referred to as a subbasis.

Definition 4.12 (Subbasis) Let X be a set. A subbasis for a topology on X is a collection S of
subsets of X whose union equals X.

Lemma 4.13 Let X be a set, and let § be a subbasis for a topology on X. The collection B
consisting of all finite intersections of elements of S is a basis for a topology on X and is called
the basis associated to S.

Proof. Each x € X must liein some S € §. Hence, x € S. Thus x is an element of the basis element
S in B, and so, B1 is satisfied.

Let B; = NiZ; S; and B, = N, S/ be two basis elements of B, and let x € B; N B,. We must
prove that there is a basis element B; € B such that x € B; € B; N B,. Let

w=(()(0%)

Then Bj is also a finite intersection of elements of S, and hence, B; € B with x € B3. Thus B2 is
satisfied. O

By combining the previous lemma with Theorem 4.10, we get the following lemma.

Lemma 4.14 Let X be a set, and let § be a subbasis for a topology on X. The collection
T generated by S consisting of all unions of all basis elements of the associated basis B is a
topology on X.

When referring to the topology T generated by the subbasis § we mean the topology generated
by the associated basis B. We have § € B C 7.

The following theorem provides an explicit description of the topology generated by a collection
of subsets S of a set X.
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Theorem 4.15 Let X be a set, and let § be a subbasis for a topology on X. Then there is
a unique topology (S) generated by S which is coarser than any other topology containing S,

where -
(8) = {U ﬂ Sai

AEA i=1

Sai € 5}.

In other words, (S) is the topology for which § is a subbasis.

Proof. Since the discrete topology Tgi.c = P(X), there is at least one topology on X that contains
S. We know from Theorem 4.1 that taking the intersection of all topologies that contain § is again a
topology which clearly still contains §. By construction, (S) is then contained in any other topology
containing §. Thus (S) is the unique topology with this property.

Let

ny
T = {U (Vs |52 € S}.
AEA i=1
Clearly, Ts € (S). We need to prove that they are equal. To do this we will prove that T is a topology
on X that contains S. Hence, by the first part (§) = Js. Since § is a subbasis for a topology on X, by
Lemma 4.14 we know that the topology generated by S is equal to the collection of all unions of basis

elements of the associated B to S. Hence, T is a topology on X. O]

We end this section with a theorem about continuity and (sub)basis.

Theorem 4.16 Let X and Y be topological spaces, and let B (resp., S) be a basis (resp.,
subbasis) for the topology on Y. Then a map f: X — Y is continuous if and only if for each
B € B (resp. S € S) the preimage f~*(B) (resp., f ~1(S)) is open in X.

Proof. We prove the statement about basis.

Assume that f is continuous. Since each basis element B € B is open in Y, then by continuity
f~Y(B)isopenin X.

Assume that for each B € B the preimage f~1(B) is open in X. Let T}, be the topology on Y.
Since every V € Jy is a union V = U ;¢ By of basis elements B, € B, we have

o= e

AEA
Thus if each f~1(B,) is openin X, sois f~1(V). O

4.4 Exercises

Exercise 4.1 LletX = {a,b,c,d, e}, and let
T ={9,{a,b},{a,b,d, e}, {b},{b,d, e}, {b,c,d, e} {c,d e}, {d e}, X}

be a topology on X. Show that § = {{a, b}, {b,d,e},{c,d,e}} is a subbasis for T. IsS' =
{{a, b},{b, c,d, e}, {d, e}} a subbasis for T'?
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Exercise 4.2 Let B be the collection of all open intervals (a,b) = {x ER | a < x < b}inR.

(a) Show that B is a basis for a topology on R. The topology generated by B is called the
standard topology on R denoted by T 4.

(b) ShowthatT 4y = T; where T is the metric topology obtained from the metricd(x,y) =
lx = yl.

Exercise 4.3 Show that
S={(a,©) | a€R}U{(—,b) | b € R}

is a subbasis for the standard topology on R.

Exercise 4.4 Let Q deonte the set of rational numbers, and let R denote the set of real
numbers. Show that
B={(a,b)la<b,abeqQ}

is a basis for the standard topology on R where (a,b) = {x € R | a < x < b}.

Exercise 4.5 Let B be the collection of all half-open intervals of the form [a,b) = {x € R |
a<x<b}inR.

(a) Show that B is a basis for a topology on R. The topology generated by B is called the
lower limit topology on R.

(b) Find the closure of the subset (0, 1) of R given the lower limit topology.

Exercise 4.6 Foreachn € Z, let

{n} if n is odd,
B(n) = o
{n—1nn+1} ifniseven.
Show that the collection B = {B(n) | n € Z} is a basis for a topology on Z. The topology gen-
erated by B is known as the digital line topology on Z. See [1, pp. 44—46] for some applications
of this topology.

Exercise 4.7 Let B be the collection of all subsets of the form A, , = {az + b | z € Z} of Z,
where a,b € Z and a # 0. (The set 4, ;, is known as an arithmetic progression.)

(a) Show that B is a basis for a topology on Z.

(b) Show that there are infinitely many primes by using the topology generated by B. (This
topology is known as the arithmetic progression topology on Z and it was used originally
by Furstenberg [3] to show that there are infinitely many primes.)
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4.4. Exercises

Exercise 4.8 Let X be atopological space, and let B be a basis for the topology on X. Show
that a subset A of X is dense in X if and only if every non-empty basis element in B intersects
A. (Recall that a set U intersectsaset VifUNV # @.)



5. Constructing topological spaces

5.1 Subspaces

Let A be a subset of a topological space X. There is a natural way to define a topology on A that is
based on the topology on X.

Definition 5.1 (Subspace topology) Let X be a topological space, and let A be a subset of
X. The collection
Ty={ANU | UisopeninX}

of subsets of A is called the subspace topology on A.

The subspace topology is indeed a topology.

Lemma 5.2 Let X be a topological space, and let A be a subset of X. Then the collection
Ty={ANU|UisopeninX}isatopology on A.

\. J

Proof. Let T denote the topology on X.

Since@, X €T, 0 =ANn@and A = AN X,then, clearly, , A € T7,. Hence, T1 is satisfied.

Let {1} 1A be a collection of subsets of A who are openin 4, i.e., V; € J4. We must show that
Ujea Va € Ty. Foreach 4 € Athereisa Uy € T such that V) = AN U,. Thus

UVA=U(A0U/1)=A0UU/1-

AEA AEA AEA

Since U ¢p Uy € T, it follows that U ¢, V) € T4. Hence, T2 is satisfied.
Let 1, 15, ..., V,, be subsets of A that are openin 4, i.e., V; € T, fori = 1, 2, ..., n. We must show
that Nj=, V; € Ty. Foreachi € {1,2,...,n} thereis a U; € T such that V; = A n U;. Thus

n n n
Vi=ﬂ(AnUi)=AﬂﬂUi.
i=1 i=1 i=1

1

Since NiL, U; € T, it follows that N}, V; € T4. Hence, T3 is satisfied. O

Let X be a topological space (with topology T), and let A be a subspace of X. If IV is a subset of 4, there are
two possible meanings to the statement “V is open.” We can either take VV to be openin X, i.e., V € T, or we
can take VV to be openin 4, i.e., V € T4. In general, these do not mean the same thing.

We say that V is closed in A if V is closed in the subspace topology of A. In other words, if V is closed in A4,
then A\ Vis openin A.

29
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Theorem 5.3 Let X be a topological space, and let A be a subspace of X. Then a subset K of
Ais closed in A if and only if there is a closed subset L of X with K = AN L.

Proof. Assume that K is a closed subset of A. ThenV = A\ K is open in 4, i.e., there is an open
subset U of X withV = A N U. Moreover, L = X \ U is a closed subset of X and

ANL=An(X\U)=A\(ANU)=A4\V =K.

See Figure 5.1.

Figure5.1: K=ANL

Now assume that L is a closed subset of X with K = AN L. Then U = X \ L is an open subset of
X,andso, V = AN Uisan open subset of A. Furthermore,

A\NK=A\(ANL) =AnX\L)=AnU=V.

See Figure 5.2. Hence, K is a closed subset of A. ]

Figure5.2: V= A\ K

The next example illustrates the fact that we may have subsets of a topological space X that are
open in the subspace 4 but which are not open in X.
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Example 5.4 Let R denote the set of real numbers equipped with the standard topology, cf.
Exercise 4.2, and let I = [0, 1] be a subspace of R. Then sets of the form [0, @) and (a, 1] with
0 <a<1areopeninlbutnotinR.

The following theorem describes how we may extract a basis for the subspace topology on A from
the basis of a topology on X.

Theorem 5.5 Let X be a topological space, and let B be a basis for the topology on X. If A is
a subset of X, then the collection

B,={ANB|B € B}

is a basis for the subspace topology on A.

Proof. We need to prove that By is a basis for the subspace topology on A. We first prove that B, is a
basis for a topology on 4, and then that the topology generated by B, equals the subspace topology
on A.

First note that each B € Bis openin X, and so,each AN B € By isopenin A. Foreachx € X
there is a basis element B € B such that x € B. Let x € A. Since A = A N X, there must be a basis
element B € Bsuch thatx € AN B. Hence, B1 holds. Now let x € AN (B; N B;) where B; and B, are
basis elements of B. Since B is a basis for the topology on X, it follows that there is a basis element
B; of Bsuchthat B; € By NB,andx € AN B; € AN (By N B,). Hence, B2 is satisfied. Thus By is a
basis for a topology on A.

Let 7, be the subspace topology on A. We want to prove that the topology 7’ generated by By is
equalto 7. IfANU € T, and x € AN U, then, using the fact that B is a basis for the topology on X,
we have B € Bsuchthatx e ANB S ANU. ThusANU € 77, cf. Theorem 4.9. By Theorem 4.10
we know that 7" is equal to the collection of all unions of elements of B,. Hence, if W € T’ then W
equals a union of elements of B,. Since each element of B, belongs to 7, and T is a topology, W
also belongs to 7. O

We end this section with an alternative description of the subspace topology. Let X be a topolog-
ical space, and let T be a set. There do exist topologies on T that make f: T — X continuous, e.g.,
the discrete topology. If 7 is the intersection of all topologies on T such that f is continuous, then J¢
is the coarsest topology for which f is continuous and

T ={f~*(U) | Uis openin X}.
From this we may define the subspace topology as follows: Let X be a topological space, and let A be
subset of X. The subspace topology on A is then the coarsest topology on A for which the inclusion
i: A - X, givenbyi(x) = xfor x € 4, is continuous. This coincides with our previous definition as
i"Y(U) = AN U for any subset U of X. Thus
Ti={i"*(U) | UisopeninX} ={ANU | UisopeninX},

and hence, 7; = Ty.
The following theorem describes a universal property for the subspace topology.



32 5.1. Subspaces

Theorem 5.6 Let X be a topological space, and let A be a subset of X. Then the subspace
topology on A is the only topology on A with the following universal property: for every topo-
logical spaceY andeverymap f: Y — A, fis continuous ifand only ifiof: Y — X is continuous
where i: A — X is the inclusion map given by i(x) = x for x € A.

X

vl

Y — A
f

Proof. We will first prove that the subspace topology T4 has the universal property that for every
topological space Y and everymap f: Y = A, fis continuous ifand onlyifie f: Y — X is continuous.
Then we will prove that T} is the only topology on A with this property.

Consider A as a subspace of X. Assume that f is continuous. Since the inclusion map i is con-
tinuous (with A given the subspace topology), and the composition of two continuous maps is again
continuous, cf. Theorem 3.16, it follows that i o f is continuous. Now assume that i o f is continuous.
Let V be an opensetin4,i.e.,V = AN U for some open set U in X. Since

W) =fAnD) =IO =@ H7HO)

is open in Y by continuity of i o f, it follows that f is continuous. Thus the subspace topology 74 has
the desired property.

Let T’ be a topology on A with the universal property that for every topological space Y and every
map f: Y = A, fis continuous ifand only ifio f: ¥ — X is continuous. We must show that 7, = 7.

Let T be the topology on X, and let A be given the topology 7. First let Y = A with the subspace
topology. Then for f = id: (4,T,) = (A,T'), we haveioid = i: (4,T,) - (X,T) which is
continuous. Hence, by the universal property id is continuous.

X, 7)

el

(A' '7:4) T (A' T,)

Thus any V € 7' must also be an element of 7, and so, 7’ € Tj,.
Secondly letY = A with T as its topology. Then, clearly, f = id: (4,7") - (A4,7") is continuous.
Thus by the universal property it follows that i o id = i: (4,7") = (X, T) is continuous.

o

(AT = (AT)

Thus forany U € T, we have i"Y(U) = AN U € T'. Thatis, T, € 7'. Hence, T, = T". O
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5.2 Products

Let X and Y be topological spaces. If we want to give the product X X Y a topology, a first approach
might be to take the collection

C={UxV|UisopeninXandVisopeninY}

as the topology on X X Y. However, C is not a topology. The union of two elements of C is not
necessarily of the form U X V for some U open in X and some IV openin Y. See Figure 5.3.

Uy U,

Figure 5.3: The collection C of all products of open sets in X and in Y is not a topology on X X Y.

We can remedy the situation by taking C as a basis instead. The topology generated from this
basis is what we will take to be the product topology on X X Y.

Definition 5.7 (Product topology) Let X and Y be topological spaces. The product topology
on X X Y is the topology generated by the basis

B={UXxV |UisopeninXandVisopeninY}.

Lemma 5.8 Let X andY be topological spaces. Then the collection
B={UXV |UisopeninXandV isopeninY}

is a basis for a topologyon X X Y.

Proof. Let (x,y) € X X Y. We need to show that there is a basis element U X V € B such that
(x,y) eUXV c X XY.Since XisopeninXandYisopeninY, wesimplytake U =XandV =Y.
Thus B1 is satisfied.

Now let (x,y) € (U; X V3) N (U, X V) where Uy X V3, U, XV, € B. Since

(U X)) N Uy x ) = U nU) X (L N1),

and U; N U, and V; N, are open in X and Y, respectively, it follows by letting U; = U; N U, and
V3 =V, N, that there is a basis element U3 X V3 € Bsuchthat (x,y) € U3 X3 € (U XV)N(U, XK,).
Hence, B2 holds. Thus B is a basis for a topology on X X Y. ]
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The basis described in Lemma 5.8 is relatively large; it consists of pairs of every open set U in X
and every open set Vin Y. The following theorem describes a smaller basis for the product topology
based on bases rather than whole topologies.

Theorem 5.9 Let X and Y be topological spaces. If By is a basis for the topology on X and
By is a basis for the topology on Y, then the collection

BXXY = {BX X By | BX € BX and By € By}

is a basis for the product topology on X X Y.

Proof. We follow the arguments for the proof of Theorem 5.5 and adapt them to our current setting.

First note that each By X By € By X By is openin X X Y as each By is open in X and each By is
openinY. Let (x,y) € X X Y. Using the fact that By and By are bases for topologies on X and Y,
respectively, there are basis elements By € By and By € By such that (x,y) € By X By € X X Y.
Thus B1 is satisfied. Now let (x,y) € (Bx1 X By1) N (Bx, X By,) where Bx1,Bx, € By and
By 1, By ; € By. Since

(Bx,1 X By1) N (Bx2 X By2) = (Bx,1 N Bx2) X (By1 N By ;)

and By and By are bases for the topologies on X and Y, respectively, it follows that there are basis
elements By 3 € By and By 3 € By suchthatx € By3 € By; N Bx,, ¥ € By3 € By, N By, and
(x,¥) € Bx3 X By3 € (Bx1 N Bx,) X (By; N By,). Thus B2 holds. Hence, By is a basis for a
topologyon X X Y.

Let Ty.y be the product topology on X X Y. We want to prove that the topology 7' generated
by Byxy is equal to Tyyy. Let W € Tyyy, and let (x,y) € W. Then there is an open set U in X and
anopen set VinY such that (x,y) € U XV € W, cf. Theorem 4.9. Since U is open in X and By is a
basis for the topology on X, it follows that there is a basis element By € By such thatx € B, € U.
Likewise, there is a basis element By € By such thaty € By € V. Thus (x,y) € By X By € W,
and so, W € J7, cf. Theorem 4.9. By Theorem 4.10, we know that 7 is equal to the collection of all
unions of elements of Byy. Hence, if W € T’ then W equals a union of elements of Byy. Since
each element of Byy belongs to Ty«y and Ty«y is a topology, W also belongs to Ty yy- ]

Example 5.10 Llet X = {a,b,c,d,e} and Y = {1,2,3} with topologies Ty =
{0,{a, b},{b},{b,c,d, e}, X} and Ty = {@, {1}, {1, 2}, Y}, respectively. Then the collection

Byxy = {{a,b} x {13, {b} x {1}, {b, ¢, d, e} x {1},
{a,b} x {1,2},{b} x {1,2},{b,c,d, e} x {1,2},
{a,b} xY,{b} xY,{b,c,d,e} x Y}

is a basis for the product topology on X X Y.

Example 5.11 Let R denote the set of real numbers equipped with the standard topology,
cf. Exercise 4.2. Then the collection

Bgz = {(a,b) X (c,d) | a < b,c < d}

of open rectangular regions in R? is a basis for the product topology on R? = R X R, since a
basis for the standard topology of R is the collection of open intervals of the form (a, b) where
a<hb.
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Example 5.12 Let St denote the circle {(x,y) € R? | x2 + y? = 1} seen as a subspace
of R? (with the standard topology), i.e., S is given the subspace topology. A basis element B
for the product topology on the torus T2 = S* x S is illustrated in Figure 5.4. Note that the
surface depicted in Figure 5.4 is homeomorphic to T?; it is the surface of revolution generated
by revolving a circle, say of radius 1 in the xz-plane with center (2,0, 0), about an axis, e.g.,
the z-axis.

Figure 5.4: An illustration of a basis element B for the product topology on T2 = S x S1.

We end this section with an alternative description of the product topology. The mapm;: XXY —
X given by
m(x,y) =x
for (x,y) € X XY is called the projection of X X Y onto X. Similarly, the map 7, : X XY — Y given by
T (x,y) =y

for (x,y) € X X Y is called the projection of X X Y onto Y.

' D

Theorem 5.13 Let X andY be topological spaces. Letm: X XY = Xandm,: X XY - Y be
the projections of X X Y onto its first and second factors, respectively. The product topology is
the only topology on X X Y with the following universal property: for every topological space
Zandeverymap f: Z - X XY, fis continuous ifand only iftiof: Z - Xandmyof: Z - Y
are continuous.

XxXY XXY
. .
Z X Z——Y
mTyof Tyof

Proof. We follow the arguments for the proof of Theorem 5.6 and adapt them to our current setting.
We first prove that the product topology Ty «y has the universal property that for every topological
space Zandeverymap f: Z - X XY, fiscontinuous ifandonlyifty o f: Z > Xandmyof: Z > Y
are continuous.
Let X X Y be given the product topology, and let f: Z — X X Y be continuous. Since 7 1(U) =
UXY foranopensetUin XandYisopeninY, it follows that ir4 is continuous. Likewise, m,: XXY - Y
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is continuous. Thus by Theorem 3.16 both 4 o f and 1, o f are continuous. Now assume that 7t; o f
and 1, o f are continuous. Let U X V be a subset of X X Y where U is an open set in X and V is an
opensetinY. Since U XV = n71(U) n ;1 (V) and

fUXV) = fHmrt(U) Nt (V)
=@t O) N NV
= (@ o NN (e V)

is open in Z by continuity of m{ o f and m, o f, and subsets of the form U X V form a basis for the
product topology on X X Y, cf. Lemma 5.8, it follows that f is continuous.

Let T be a topology on X X Y with the universal property that for every topological space Z and
everymap f: Z - X XY, fis continuous ifand onlyif ty o f: Z - Xandmy o f: Z — Y are
continuous. We must show that Tywy = 7.

Let Ty be the topology on X and Jy be the topology on Y, and let X X Y be given the topology 7.
First let Z = X X Y with the product topology. Then for f = id: (X XY, Tyyy) = (X XY,T), we have
myoid =m: (X XY, Txuy) = (X,Tx) and my oid = my: (X X Y, Tyxy) = (Y, Ty) which are both
continuous. Thus by the universal property id is continuous.

(X XY,T) (X XY,T)
2 2l
(X XY, Txxy) o id X, 7x) (X XY, Txxy) ——y ¥, 7y)

Hence, any W € T must also be an element of Ty, and so, T € Tyyy.

Secondly let Z = X X Y with T as its topology. Then, clearly, f =id: (X XY, T) = (X XY, T)is
continuous. Thus by the universal property it follows that both 7y cid = 1 : (X X Y,T) = (X, Ty)
andmy oid =m,: (X X Y,T) = (Y,Jy) are continuous.

X XY,T) X XY,T)
id id
/ J’“ / J”Z
X XY,T) —— (X,Tx) A XY, T) ——0 (V,5)

Thus foreach U € Ty and V € Ty, we have
nfl(U)=UXY€ET and m'(V)=XXVET,
andso, U xV = n71(U) nm;1(V) € T. Hence, Tyxy S T. Thus Tyxy = 7. O

We can extend our discussion of the product topology from X X Y to X; X X, X -+ X X, where each X;
is a topological space. If we are to extend to the product [[,., X3, which we can think of as the set of maps
f+ A= Ujep Xy where f(4) € X, for each A € A, of an indexed family {X},¢5 of topological spaces we may
proceed in two ways. We may equip [[,c, X1 with the topology generated by the basis [[,., Uy where U, is
open in X, for each A € A. This is known as the box topology. We may also equip ]—IAEA X, with the topology
generated by the subbasis § = U#EA{nljl(Uﬂ) | Uy isopeninX,}. Thisis known as the product topology.
For finite products ]_[?=1Xi the two topologies are the same. Also, the box topology is, in general, finer than
the product topology. Finally, several results regarding finite products may be extended to arbitrary products
when using the product topology but not the box topology.
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5.3 Quotient spaces

Let X be atopological space. In Section 5.1, we discussed how to define the coarsest possible topology
on a subset A of X such that the inclusion map i: A = X is continuous. This is known as the subspace
topology. If we let A be a set which is not necessarily a subset of X and we consider a surjective map
m: X — A, the quotient topology is the finest topology on A such that T is continuous.

The torus T? = S x S (see Figure 5.4) can be constructed by taking a rectangle and “gluing”
its edges together in an appropriate way as shown in Figure 5.5. Such a construction involves the
concept of quotient topology.

a

a

Figure 5.5: Constructing the torus T?2.

Definition 5.14 (Equivalence classes) Let X be a set, and let ~ be an equivalence relation
on X. The equivalence class of x € X is the subset

[x] ={y €X1x~y}

of X. Let
X/~={[x] | x € X}

be the set of equivalence classes.

J

By definition, x € [x] for each x € X and [x] = [y] if and only if x ~ y. Moreover, two
equivalence classes [x4] and [x,] are either disjoint or equal. Finally, the union of all equivalence
classes equal X.

e

Lemma 5.15 Let X and A be sets, and let m: X — A be a surjective map. Then the map
p: X/~ A

given by
e([x]) = m(x),

where xq ~ x, if and only if t(x1) = m(x,), is a bijection.

Proof. The map is well-defined since [x1] = [x;] onlyif x; ~ x5, and so, m(x1) = m(x;) by definition
of the equivalence relation. It is injective since @([x1]) = @([x;]) implies m(x;) = m(x;), and
SO, X1 ~ Xy, i.e., [x1] = [x,]. Finally, it is surjective since 7 is; every element of A is of the form
m(x) = @([x]) for some x € X. O

Thus by Lemma 5.15 we can, up to a bijection, go back and forth between equivalence relations
on X and surjective maps X — A.
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Definition 5.16 (Quotient space) Let X be atopological space, let A be aset,andletm: X —
A be a surjective map. The quotient topology on A induced by 1 is the collection of subsets U
of A such that m~1(U) is open in X. We say that 7 is a quotient map if A is given the quotient
topology, and we call A the quotient space.

In other words, m: X — A is quotient map if it is surjective and a subset U of A is openin A4 if and
only if ~1(U) is open in X. Equivalently, 7 is a quotient map if it is surjective and U is closed in A if
and only if =1(U) is closed in X. Clearly, a quotient map is continuous.

Lemma 5.17 Let X be a topological space, let A be a set, and let m: X — A be a surjective
map. Then the quotient topology on A induced by m is a topology and it is the finest topology
on A such that 1 is continuous.

Proof. Since m~1(@) = @ and m~1(A) = X, and both @ and X are open in X, it follows that @ and A
are open in A. Thus T1 holds.
Let {U;}1en be a collection of subsets of A that are open in A. Then t~1(U,) is open in X for each

A € A. Since
n1 (U UA) = J=w»

AEA AEA
is a union of open sets in X, it must be open in X. Hence, U;¢5 U, is open in A. Thus T2 is satisfied.
Let U; and U, be subsets of A that are open in A. Then both m~1(U,) and m~1(U,) are open in
X. Since
(U nUR) =~ (Uy) N (Up)

is a (finite) intersection of open sets in X, it must be open in X. Hence, U; N U, is open in 4, and so,
T3 is satisfied. Thus the quotient topology is a topology.

Let T be a topology on A such that m is continuous. We must show that T is coarser than the
guotient topology. Since 7 is continuous when A is given T as its topology, we have foreachV € T
that m~1(V) is open in X, and so, V is in the quotient topology. Hence, T is coarser than the quotient
topology. ]

Example 5.18 Let R be the set of real numbers equipped with the standard topology, let
A ={a,b,c}, and let

n:R->A
be the map given by
a x=0,
n(x) =4b x<0,
c x>0.

Then the quotient topology on A induced by 7 is the collection {@, {b}, {b, c}, {c}, A} of subsets
of A.

Definition 5.19 (Open and closed maps) Let X andY be topological spaces,andletf: X - Y
be a continuous map. We say that f is an open map if for each subset U of X that is open in X
the image f(U) is open in Y. Likewise, we say that f is a closed map if for each subset V of X
that is closed in X the image f (V) is closed in Y.
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If f+ X = Yisanopen (closed) map and A is a subset of X then itis not true in general that f|4: A = f(4)
is an open (closed) map. However, if we also assume that A is an open (closed) subset of X, then f|4: A = f(A)
is an open (closed) map.

Consider the case where A is open in X and f is an open map. Let U be a subset of A that is open in A4,
i.e., U = ANV for some open subset IV of X. Then U is also open in X, and hence, f|,(U) = f(U) is an open
subset of Y. Furthermore, since f(A) isopeninY and f(U) € f(A), f(U) must be open in f(4).

Example 5.20 Any homeomorphism is both open and closed. However, the converse is, in
general, not true. Let R be the set of real numbers equipped with the standard topology, and
let * be the space consisting of a single element. Then R — * is both an open and a closed map
but it is clearly not a homeomorphism.

Theorem 5.21 Let X and Y be two topological spaces, and let f: X — Y be a bijective
continuous map. Then the following are equivalent:

(1)  fis a homeomorphism;
(2) fisanopen map;

(3) fisaclosed map.

Proof. We will show that (1) is equivalent to (2) and that (2) is equivalent to (3).
Since f is a bijection, we have

(FW) " W) = W)

forany subset U of X. In particular, if U is an open subset of X and if we assume that f is a homeomor-
phism then f(U) must be open in Y as f~1 is continuous. Hence, f is an open map. Furthermore, if
we assume that f is open instead of being a homeomorphism then f(U) is openin Y for U an open
subset of X. Hence, f~1: Y — X is continuous. Thus f is a homeomorphism. Hence, (1) is equivalent
to (2).

Assume that f is an open map. Since f is a bijection, we have

fXNU) =fU) = fU) =Y\ fU).

Thus fisclosed: X\Uisclosed and Y\ f (U) is closed. The opposite implication follows by a completely
analogous argument. Hence, (2) is equivalent to (3).
This completes the proof. O]

The following lemma establishes a relation between open and closed maps, and quotient maps.

' 1

Lemma 5.22 Let X andY be topological spaces, and let t: X — Y be a surjective continuous
map.

(1) Ifmisin addition open then it is a quotient map.

(2) Ifmisin addition closed then it is a quotient map.
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Proof. Assume that 7 is in addition open. Let V be a subset of Y. If V is open in Y then = 1(V) is
open in X by assumption of continuity of 7. If T~ (V) is open in X then since m is surjective, we have

n(r (V) =V

which is open in Y since we have assumed that i is an open map. Hence, (1) holds.

Now assume that 7 is also closed in addition to being a surjective continuous map. Let W be
a subset of Y. If W is closed in Y then m~1(W) is closed in X by assumption of continuity of . If
=1 (W) is closed in X then since m is surjective, we have

n(r (W) =w

which is closed in Y since we have assumed that  is a closed map. Hence, (2) holds. O]

Example 5.23 Let R be the set of real numbers equipped with the standard topology. Con-
sider [0, 1] as a subspace of R and S? as a subspace of R? where R? is also given the standard
topology. Let

m: [0,1] - St

be the map given by
n(t) = (cos(2mt), sin(2mt)).

Then, clearly, m is a surjective continuous map. We can show that  is also closed (to do this it
helps to have defined compactness). Thus by Lemma 5.22 7 is a quotient map. Note that 7 is
not open as ([0, t)) is not open for 0 < t < 1 (where we are using the fact that [0, t) is open
in[0,1] for0 <t < 1).

Let ~ be the equivalence relation on [0, 1] given by s ~ t if and only if m(s) = m(t), and let

p:[0,1] = [0,1]/~

be the map given by
p(®) = [t].

Then, clearly, p is a surjective continuous map. The induced bijective map
¢ [0,1]/~ - S*

given by
([t = m(t)

is then a homeomorphism from [0, 1]/~ with the quotient topology induced by p to S with
the quotient topology induced by 7. See Figure 5.6.

Figure 5.6: Constructing the circle S1.
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Example 5.24 Consider [0,1] X [0, 1] as a subspace of R X R = R? where R? is given the
standard topology, and T? = S x ST as a subspace of R? x R? = R* where R* is also given
the standard topology. Let

m: [0,1] X [0,1] » St x ST

be the map given by
(s, t) = (cos(2ms), sin(2ms), cos(2mt), sin(2mt)).

Clearly, it is a surjective continuous function. As in the previous example, we can show that
is closed, and so, by Lemma 5.22 it is a quotient map.
Let ~ be the equivalence relation on [0, 1] X [0, 1] given by (s,0) ~ (s,1) and (0,t) ~
(1,t), and let
p: [0,1] x [0,1] = ([0,1] x [0,1])/~

be the map given by
p(s,t) = [s, t].
Then, clearly, p is a surjective continuous map. The induced bijective map

@: ([0,1] x [0,1])/~ - S* x St

given by
o([s,t]) = n(s,t)

is then a homeomorphism from ([0, 1] X [0, 1])/~ with the quotient topology induced by p to
S1 x ST with the quotient topology induced by . The equivalence classes are then the sets

{(0,0),(0,1),(1,0),(1,1)}

(the four vertices of the square are identified),

{(s,0),(s, D} and {(0,0), (1, 1)}

(opposing edges of the square are identified), and

{(s, )}

fors,t € (0,1). See Figure 5.5.

Example 5.25 The real projective space is the quotient space
RP" = S™/~

where S™ is the n-sphere and ~ is the equivalence relation given by x ~ yifandonlyifx = ty,
i.e., [x] = {x, —x}. We say that x and —x are antipodal points. The topology on RP" is defined
by the quotient map

m: S™ - RP"

given by
m(x) = [x].

41
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We end this section with an alternative description of the quotient topology.

Theorem 5.26 Let X be a topological space, let A be a set, and let t: X — A be a surjective
map. The quotient topology is the only topology on A with the following universal property: for
every topological space Y and everymap f: A = Y, f is continuous ifandonly if femr: X - Y
is continuous.

an
Vs

— Y
f

Do X

Proof. We follow the arguments for the proofs of Theorem 5.6 and Theorem 5.13 and adapt them to
our current setting.

We first prove that the quotient topology 7™ has the universal property that for every topological
space Y and every map f: A = Y, fis continuous if and only if f o r: X — Y is continuous.

Let A be given the quotient topology induced by 7, and assume that f: A — Y is continuous.
By definition of the quotient topology w~1(U) is open in X if and only if U is open in A. Hence,  is
continuous. Thus by Theorem 3.16 f o r: X = Y is continuous. Now assume that f om: X = Y'is
continuous. Let V be an open set in Y. Since 7 is a quotient map and (f o m)~1(V) = =~ 1(f~1(V))
is open in X by assumption of continuity of f o m, it follows that f~1(V) is open in A. Thus f is
continuous.

Let T’ be a topology on A with the universal property that for every topological space Y and every
map f: A - Y, fiscontinuousifandonlyif fom: X — Y is continuous. We must show that 7" = J™.

Let T be the topology on X, and let A be given the topology T”. First let Y = A with the quotient
topology induced by fom. Thenfor f =id: (4,7") - (4,T7™), wehaveidor = m: (X,T) - (4,T™)
which is continuous. Hence, by the universal property id is continuous.

X, 7)

| e

(AT) 5 (AT

Thus any V € 7™ must also be an element of 7/, and so, 7™ € J".
Secondly letY = A with T as its topology. Then, clearly, f = id: (4,7") - (A4,7") is continuous.
Thus by the universal property it follows that ider = : (X,T) — (4,T") is continuous.

X, 7)

| e

(4,7 = (AT)

Since the quotient topology induced by 7 is the finest topology on A such that m is a continuous map,
cf. Lemma 5.17, it follows that 7/ € T™. Hence, 7' = J™. O
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5.4 Exercises

Exercise 5.1 Let R be the set of real numbers equipped with the standard topology. Show
that any subspace of the form (a, b), i.e., an open interval, is homeomorphic to R.

Exercise 5.2 Let X be atopological space and let Y be a subspace of X. If A is a subset of ¥,
show that the subspace topology on A inherited from Y is equal to the subspace topology on
A inherited from X.

Exercise 5.3 Let R be the set of real numbers equipped with the standard topology, and
consider the set of rational numbers Q as a subspace of R. Show that the subset

A:{er|—\/§<x<\/§}

of Q is both open and closed in Q.

Exercise 5.4 LetX = {a, b, c,d} be given the topology 7y = {®, {a},{a, c,d},{c,d}, X}, and
let Y = {1, 2,3} be given the topology 7, = {@,{1},{1,3},Y}. Find a basis for the product
topologyon X X Y.

Exercise 5.5 Let X and Y be topological spaces, and let A and B be subsets of X and Y,
respectively. Show that the topology on A X B as a subspace of the product X X Y is equal to
the product topology on A X B where A and B are given the subspace topology inherited from
X and Y, respectively.

Exercise 5.6 Let X andY be topological spaces. Show that the product topology is the coars-
est topology on X XY for which both of the projection mapsm;: XXY = Xandm,: XXY =Y
are continuous.

Exercise 5.7 Let X and Y be two topological spaces, and let X X Y be given the product
topology. Show that if f: X — Y is a continuous map, the subspace

G={(xy) EXXYIy=f(x)}

of X X Y, is homeomorphic to X.

Exercise 5.8 Let R be the set of real numbers equipped with the standard topology. Let
m:R->Z
be the map given by
X X€EZ
m(x) = . .
n x €m—1,n+1),andnisan odd integer.

Show that the quotient topology on Z induced by m is equal to the digital line topology, cf.
Exercise 4.6.



6. Topological properties

6.1 Connected spaces

One of the fundamental results of calculus is the intermediate value theorem. The theorem says that
for a continuous map f: [a, b] = R and for a real number r between f(a) and f(b) there is a real
number ¢ € [a, b] such that f(c) = r. See Figure 6.1. From this result we can deduce that the graph
of a continuous map (in this setting) is connected.

f(b)

f(@)

> X

|
|
|
|
|
|
|
|
|
I
b

Figure 6.1: The intermediate value theorem.

Definition 6.1 (Connected space) Let X be a topological space. A separation of X is a pair
of non-empty subsets U and V that are open in X, disjoint and whose union equal X. We say
that X is connected if there are no separations of X. Otherwise it is disconnected.

The property of being connected is a topological property as it is formulated entirely in terms of open
subsets. In other words, if X and Y are homeomorphic topological spaces and X is connected then sois Y.

Example 6.2 Let X be the set {a,b,c,d,e}. If we equip X with the topology 7; =
{0,{a,b},{a,b,c},{a,b,d, e}, {d, e}, X} then it is disconnected; the pair U = {a,b,c} and
V = {d, e} is a separation of X in this topology.

However, if we equip X with the topology 7, = {@,{a, b, c},{c},{c, d, e}, X} then it is con-
nected; there are no separations of X in this topology.

44
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Example 6.3 Let X be an indiscrete space. Then X is connected as there are no separations
of X, i.e., there are no non-empty open subsets of X who are disjoint and whose union equal
X.

Example 6.4 Let X be adiscrete space containing two or more points. Then X is disconnected.
Letp € XandletU = {p}and V = U¢ = X \ {p}. Then the pair U and V is a separation of X.

Example 6.5 Let R be the set of real numbers equipped with the standard topology, and
let X = [0,1) U (1,2) be a subspace of R. Since U = [0, 1) is open in X (but not in R) and
V =(1,2)isopenX,UNV = @and U UV = X, they form a separation of X. Thus X is
disconnected.

In the above examples the spaces that are connected all share the property that the only subsets
that are both open and closed in X are @ and X. Likewise, the disconnected spaces all share the
property that there are non-empty proper subsets of X that are both open and closed in X.

Theorem 6.6 Let X be a topological space. Then X is connected if and only if the are no
non-empty proper subsets of X that are both open and closed in X.

Proof. We prove the equivalent statement that X is disconnected if and only if there are non-empty
proper subsets of X that are both open and closed in X.

Assume X is disconnected, i.e., that there is a separation of X. Let U and V be a separation of X.
Thus U isopenin X. SinceUNV =@andUUV = X, we have U = X\ U = V. Thus U€ is open
in X, and so, U is closed in X. Hence, U is both open and closed in X. Likewise, V is both open and
closed in X.

Assume that the non-empty proper subset U of X is both open and closed in X. LetV = U°¢ =
X\U.ThenVisopeninX,UNV =@and U UV = X. Hence, the pair U and V is a separation of X.
Thus X is disconnected. L]

Theorem 6.7 Let X be a connected space, Y be a topological space, and let f: X = Y be a
surjective continuous map. Then Y is connected.

Proof. We prove the equivalent statement that if f: X — Y is a surjective continuous map and Y is
disconnected then X is disconnected.

Assume that Y is disconnected, i.e., there is a separation of Y. Let the pair U and VV be a separation
of Y. Then f~1(U) and f~1(V) are non-empty subsets of X which are open in X as f is a surjective
continuous map. Furthermore,

fFfANnft @) =f7WUnv)y=9 and fHOOUFIV)=fTUUY)=X.
Hence, the pair f~1(U) and f ~1(V) is a separation of X. Thus X is disconnected. O
A subset A of a topological space Z is connected if A is connected in the subspace topology. Thus the

theorem can be extended to saying that the continuous image of a connected space is connected, i.e., assuming
X is a connected space and f: X — Y is a continuous map then f(X) is connected in Y.
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We may also describe connectedness by way of the following theorem.

Theorem 6.8 Let X be atopological space. Then X is connected if and only if every continuous
map form X to a discrete space, with at least two points, is constant.

Proof. We prove the equivalent statement that X is disconnected if and only if there is a non-constant
continuous map from X to a discrete space (with at least two points).

Assume that X is disconnected. Let U be a non-empty proper subset of X that is both open and
closed in X. Let Y = {a, b} be given the discrete topology. The map f: X = Y that sends U to a and
U¢ = X \ U to b is continuous and not constant.

Let Y be a discrete space with at least two points. Assume that f: X — Y is a non-constant
continuous map. Then for each y € Y, f~1({y}) is a non-empty proper subset of X that is both open
and closed in X. Thus by Theorem 6.6, X is disconnected. O

We will prove that the (finite) product of connected spaces is again connected. To prove this we
will need the following two results.

Lemma 6.9 LetX be adisconnected space with separation U andV, and let A be a connected
subspace of X. ThenA S UorACV.

Proof. Since U and V are open in X, the intersections A N U and A NV are both open in A (in the
subspace topology). Furthermore, the complementof ANUin Aisequalto ANV asU¢ = X\U =V.
Hence, ANUis also closed in A. Thus by Theorem 6.6, ANU is either empty or all of A as A is connected.
FANU =@0thenASV.IfANU=AthenACc U. O

Theorem 6.10 Let X be a topological space, and let {A;},cp be a collection of connected
subspaces of X such that N5 Ay is non-empty. Then U;cp A, is connected.

Proof. LetY = U,cp A). Suppose that Y is disconnected, i.e., that there is a separation of Y. Let
U and V be a separation of Y. We will show that this leads to a contradiction, and so, Y must be
connected.

Let p € Njep A4, Theneitherp € U orp € V. Assume without loss of generality thatp € U.
By Lemma 6.9 it follows that for each 1 € A either Ay € U or A; € V. Since we have assumed that
p € Uwe must have A; € U forall A € A. Thus Y € U. But this implies that V is empty, and hence,
contradicts that U and V is a separation of Y. Thus Y is connected. ]

We can prove that the (finite) product of connected spaces is again connected.

Theorem 6.11 Let Xq,X,, ..., X, be connected spaces. Then the product space X; X X, X
-+ X X, is connected.

Proof. We prove the statement for the product of two connected spaces. The general result then
follows by an induction argument.

Let X and Y be two connected spaces. We must prove that X X Y is connected. Since for each
x € X the subspace {x} X Y of X X Y is homeomorphic to Y, it follows that {x} X Y is connected.
Similarly, for each y € Y the subspace X xX{y}is homeomorphicto X, and hence, X X {y}is connected.
Thus by Theorem 6.10 it follows that for each x € X and each y € Y the subspace ({x}*xY)U (X x{y})
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is connected as it is the union of two connected spaces whose intersectionis ({x} X Y) N (X X {y}) =

{(x, )} # 0.

Fixxo € Xand let Ay, = ({xo} X Y) U (X X {y}). Then for each y € Y the subspace A, of X X Y'is
connected as it is the union of two connected spaces whose intersection is equal to {(xy, ¥)}. Hence,
by Theorem 6.10 it follows that U,cy 4y, is connected as it is the union of connected spaces whose

intersection in non-empty. Since
| Jay=xxv,

YEY

it follows that X X Y is connected. O
The theorem can be extended to hold for arbitrary products, [],., X2, if we equip the product with the
product topology. If we equip ]‘[AeA X, with the box topology the statement is no longer true.

An important example of a connected space is the set of real numbers equipped with the standard
topology.

Theorem 6.12 (The real numbers are connected) Let R be the set of real numbers equipped
with the standard topology. Then R is connected.

We will use the fact that the real numbers satisfy the following two properties.

(1) Every subset of R that is bounded above has a least upper bound. This is known as the least
upper bound property.

(2) Ifx,y € Rwithx < ythen thereisareal number z such that x < z < y.

Proof. Assume that Ris disconnected, i.e., that there is a separation of R. Let U and I/ be a separation
of R, and choose a € U and b € V. We may assume without loss of generality that a < b.

Let A = [a,b]NUand B = [a,b] N V. Then the pair A and B is a separation of [a, b], witha € A
and b € B. Also note that A is bounded above by b. Hence, by the least upper bound property A has
a least upper bound; ¢ = sup A. Thus a < ¢ < b. We will show that ¢ belongs neither to A nor to B
thus contradicting the fact that A and B is a separation of [a, b].

Assume that ¢ € B. Since a € B and B is open in [a, b], it follows that there is a real number d
such thata < d < cand (d, c] € B. Thisimplies that d is an upper bound of A and that d is less than
the least upper bound c. That is a contradiction, and so, ¢ & B.

Now assume that ¢ € A. Since A is open in [a,b] and b & A, there is a real number d such that
[c,d) € A. Forany e € (c,d) it follows that e € A and e > c. That is a contradiction to the fact that
c is an upper bound of A. Thus ¢ & A.

Hence, ¢ € A and ¢ € B. This is a contradiction to the fact that ¢ € [a, b] and that A and B is a
separation of [a, b]. Thus R must be connected. O

As an immediate consequence of Theorem 6.12, we get that open intervals of the form (a, b),
(—o0,b) and (a, o) are all connected as they are all homeomorphic to R (with the standard topology).
We can also show that every closed interval [a, b] is connected. Furthermore, by Theorem 6.11 and
Theorem 6.12 R" is a connected space.



48 6.1. Connected spaces

Theorem 6.13 (Generalized intermediate value theorem) Let X be a connected space, and
let f: X = R be a continuous map where R is given the standard topology. If a,b € X and if
r is a real number that lies between f(a) and f(b), there is a c € X such that f(c) =r.

Proof. Assumethatr € f(X). We will show that this contradicts the assumption that X is connected.
By the assumption thatr € f(X), i.e., f(X) € R\ {r} = (—oo,7) U (1, ), we have a separation
of X:

U=f"1(-o,r) and V=f"(r,o))

are disjoint non-empty open subsets of X whose union equals X. Thus they are a separation of X.
This contradicts the assumption that X is connected. Hence, r € f(X). In other words, there is a
c € X suchthat f(c) =r. O

We end this section with a discussion of path connectivity.

Definition 6.14 (Path connected space) Let X be a topological space, and let x,y € X. A
path from x to y is a continuous map f: [a, b] = X such that f(a) = x and f(b) = y where
[a, b] is a subspace of R with the standard topology. We say that X is path connected if every
pair of points of X can be joined by a path in X.

The property of being path connected is a topological property as it is completely described using the
elements of X and its open subsets. In other words, if X and Y are homeomorphic topological spaces and X is
path connected thensois Y.

Example 6.15 Let R be the set of real numbers equipped with the standard topology. Then
R is path connected as for any two points, p, g € R, there is a path from p to g in R, e.g., the
path given by f(t) = (1 — t)p + tq where t € [0, 1].

Example 6.16 Foralln > 2, R™ with the standard topology is path connected, and so is
R™ \ {p} foreachp € R™. Forn = 1, R\ {p} is not (path) connected.

The next theorem states that path connectedness implies connectedness. While the converse
is not true in general, it is true that open subsets of R™ that are connected (where R" is given the
standard topology) are also path connected. See [6, Proposition 12.25] for a proof of this fact.

Theorem 6.17 (Path connectedness implies connectedness) Let X be a path connected
space. Then X is connected.

Proof. Assume that X is path connected but that X is disconnected, i.e., there is a separation of X.
Let U and V be a separation of X. Let f: [a,b] = X be a path fromx € Utoy € V. Then f~1(U)
and f~1(V) are disjoint non-empty open subsets of [a, b] whose union is equal to [a, b]. Thus they
are a separation of [a, b]. This is a contradiction to the fact that [a, b] is a connected space. O
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Example 6.18 (The topologist’s sine curve) The topologist’s sine curve is the subspace

S={<x,sin<%>> ‘ 0<x<1}u{(0,y)|—1<y<1}

of R? with the standard topology. It can be shown that S is connected but not path connected.
For a proof of this fact, see [4, pp. 156—157]. See Figure 6.2.

Figure 6.2: The topologist’s sine curve.

6.2 Hausdorff spaces

A common feature that we typically want a topological space to have is the ability to separate the
individual points. This is commonly referred to as separation axioms. We will in this section focus on
the most common separation axiom.

Definition 6.19 Let X be a topological space. We say that X is Hausdorff if for each pair of
points x, y € X, with x # y, there are disjoint neighborhoods U and V of x and y, respectively.
In other words, for each pair of distinct points x,y € X there are open subsets U and V of X
withx e Uandy € VwhereUNV = 0.

The property to be a Hausdorff space is completely described using the elements of X and its open subsets,
and so, it is a topological property. In other words, if X and Y are homeomorphic topological spaces and X is
Hausdorff then so is Y. To see this let X be a Hausdorff space and let y; and y, be distinct points in Y. If
f: X - Y is a homeomorphism then f~1(y;) and f~*(35,) are distinct points in X. Since X is Hausdorff this
means that there are disjoint neighborhoods U, and U, of f~1(y;) and f~1(y,), respectively. Thus f(U;) and
f(U,) are disjoint neighborhoods of y; and y,, respectively. Hence, Y is Hausdorff.

Example 6.20 Let X be the set {a, b, c}. If we equip X with the discrete topology then X
is Hausdorff since for all pairs of distinct points x,y € X, the open subsets {x} and {y} are
neighborhoods of x and y, respectively, and {x} N {y} = @.

However, if we equip X with the topology {@, {a, b}, {b}, X} it is not Hausdorff; the only
neighborhood of cis U = X, and no neighborhood V of either a or b can be disjoint from X.
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Example 6.21 Let X be a set, and let 73 and 7, be two topologies on X. If 7, is finer than 73
and X equipped with 7 as its topology is Hausdorff then X equipped with 7, as its topology is
also Hausdorff.

[ Theorem 6.22 Every metric space is Hausdorff. ]

Proof. Let (X, d) be a metric space, and let x and y be two distinct points in X. We must show that
there are disjoint neighborhoods U and VV of x and y, respectively.

Let§ =d(x,y). Thend > 0. Let U = B(x;6/2) and V = B(y; §/2) be neighborhoods of x and
y, respectively. Thenby M3, U NV = Q. O

Example 6.23 For all integers n > 1, the metric space (R", d) is Hausdorff. In particular, R"
with the standard topology is Hausdorff.

All Hausdorff spaces share the property that finite subsets are closed which is an immediate con-
sequence of the following theorem.

Theorem 6.24 Let X be a Hausdorff space. Then for each x € X the subset {x} of X is closed
in X.

Proof. Let x,y € X with x # y. Since X is Hausdorff, we have neighborhoods U and V of x and y,
respectively, such thiU NV =0. Thenx & V._In other words, xiVC =X\ V. SinceVisopen, V¢
is closed in X. Thus {x} € V¢, and hence, y & {x}. Hence, {x} = {x}. Thus {x} is closed in X. O

There are examples of topological spaces who are not Hausdorff but have the property that finite
subsets are closed. One such example is the set of real numbers equipped with the cofinite topology.
We have seen that the (finite) product of connected spaces is connected, cf. Theorem 6.11. The
same statement holds for Hausdorff spaces, i.e., the (finite) product of Hausdorff spaces is Hausdorff.

Theorem 6.25 LetX;,X,, ..., X, be Hausdorffspaces. Then the product space X, XX, XXX,
is Hausdorff.

Proof. We prove the statement for two Hausdorff spaces. The general result then follows from an
induction argument.

Let (x1,¥1) and (x5, ¥,) be two distinct points in X X Y, i.e.,, x; # x, or y; # y,. If x4 # x,
there must be neighborhoods Uy and Vy in X of x; and x,, respectively, such that Uy N Vy = @ as
X is assumed to be Hausdorff. Then Uy X Y and V4 X Y are neighborhoods of (x4, y;) and (x5, ¥,),
respectively, where (Uxy XY)N(Vy XY) = @. Similarly, if y; # y, there must be neighborhoods Uy and
Wy inY of y; and y,, respectively, such that Uy NV, = @ as Y is assumed to be Hausdorff. Then X x Uy
and X X I are neighborhoods of (x4, y;) and (x5, y,), respectively, where (X X Uy) N (X X I}) = @.
Hence, X X Y is Hausdorff. ]

The theorem be extended to hold for arbitrary products, [, , X2, if we equip the product with either the
product topology or the box topology.
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We end this section with a result that helps us decide whether or not a topological space is Haus-
dorff.

Theorem 6.26 Let X be a topological space. Then X is Hausdorff if and only if the diagonal
A = {(x,x) | x € X} is closed in the product space X X X.

Proof. Assume that X is a Hausdorff space. Thus for any two distinct points x and y in X there are
neighborhoods U and V of x and y, respectively, suchthat U NV = @. Thus U X Visopenin X X X
and (x,y) € UXV,andso, (UxV)NA = @. Hence, there is a neighborhood N(y .,y of (x,y) such
that Niy,) © A° = (X X X) \ A. Thus by Theorem 3.10, it follows that A® is open in X X X, and so, A
is closed in X X X.

Now assume that A is closed in the product space X X X. Then for any point (x,y) € X X X with
x # y,i.e., (x,y) € AS, there is a basis element U X V for the product topology on X X X such that
(x,y) €U XV < A°. Since U X V < A°, we have U NV = @. Thus U and V are neighborhoods of x
and y, respectively, such that U NV = @. Hence, X is Hausdorff. O

6.3 Compact spaces

In Section 6.1 we saw how the intermediate value theorem might be generalized to connected spaces.
In this section we will see how the extreme value theorem may be generalized to compact spaces. The
extreme value theorem says that for a continuous map f: [a, b] = R there are points m,M € [a, b]
such that f(m) < f(x) < f(M) for all x € [a, b]. See Figure 6.3.

fM) -

f(m) =

| 1 1
a M m

Figure 6.3: The extreme value theorem.

Definition 6.27 (Cover of a space) Let X be a topological space, and let A be a collection
of subsets of X. We say that A is a cover of X, or covering of X if X = Uy 4A. If Ais also
openin X for each A € A, we say that A is an open cover of X, or open covering of X. We say
that A’ is a subcover of A if A’ is another cover of X that satisfies A’ S A.

Example 6.28 Let X be a topological space, and let B be a basis for the topology on X. Then
B is an open cover of X. Similarly, if § is a subbasis for the topology on X, then § is an open
cover of X.



52 6.3. Compact spaces

Definition 6.29 (Compact spaces) Let X be a topological space. We say that X is compact
if every open cover A of X contains a finite subcover.

The property of being compact is a topological property as it is formulated entirely in terms of the collection
of open sets. In other words, if X and Y are homeomorphic topological spaces and X is compact then sois Y.

Example 6.30 Let X be a finite topological space. Then X is compact as there are only finitely
many different open subsets A of X, and so, any collection covering X must necessarily be finite.

Example 6.31 Let X be an indiscrete space. Then X is compact as the only open covers are
the collections {X} and {@, X} which are finite.

Example 6.32 Let R be the set of real numbers equipped with the standard topology. Since
the open cover
A={(n—-1n+1)IneZ}

does not admit a finite subcover, R is not compact.

Definition 6.33 (Compact subspaces) Let X be a topological space, and let A be a subset of
X. We say that A is compact if A is compact in the subspace topology.

If A is a subspace of X, a collection A of subsets of X is a cover of A if the union of elements of A
contains A.

Lemma 6.34 Let X be a topological space, and let A be a subspace of X. Then A is compact
if and only if every cover of A by open subsets of X contains a finite subcollection that covers
A.

Proof. Assume that A is compact. Let C be a cover of A by open subsets of X. Then the collection
C'={ANU|UEC}

is an open cover of A. Since A is compact there must be a finite subcover {AN U, ANU,, .., ANU,}
of C'. Hence, {U;, U,, ..., U, } is a finite subcollection of C that covers A.

Now assume that every cover of A by open subsets of X contains a finite subcollection that covers
A. Let C = {V3},¢ep be a cover of A by open subsets of A. Hence, by definition of the subspace
topology, cf. Definition 5.1, we have for each A € A that V; = A N U, where U, is an open subset
of X. Thus the collection C' = {U,},en is a cover of A by open subsets of X. Then, by assumption,
there must be a finite subcollection {U;,,U,,, ..., Uy, } that covers A. Hence, {V3,,13,,...,V3,} is a
finite subcover of C. Thus every cover of A by open subsets of A has a finite subcover, and so, A is
compact. ]

The following two theorems indicates that being compact and being closed are closely related
properties.
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[ Theorem 6.35 Let X be acompact space, and let A be a closed subset of X. Then A is compact. ]

Proof. Let Cbeacoverof4,i.e.,A S Ugee C, by open subsets of X. Since Ais closed in X, A° = X\ A
is openin X. Thus

A = CU{A°}

is an open cover of X. Since X is compact there must be a finite subcover A’ € A of X. If A’ contains
A€, let A" = A"\ {A°}. Then A" is a finite subcover of C that covers A. If A’ does not contain A€
then A’ is a finite subcover of C that covers A. Either way there is a finite subcover of C that covers
A. Thus A is compact. O]

Theorem 6.36 Let X be a Hausdorff space, and let K be a subset of X which is compact. Then
K is closed in X.

Proof. We show that K¢ = X \ K isopen in X. Let x € K€. Then for each y € K there are neighbor-
hoods U,, and V}, of x and y, respectively, such that U, N}, = @, since X is assumed to be Hausdorff
and x # y.

The collection C = {V}, | y € K} of open subsets of X covers K since

Kc U V.
yeK

Since K is assumed to be compact there must be a finite subcollection {V}, ,},,, ..., 13, } that covers
K. letV = Vy1 U Vy2 U--u Vyn' andletU = Uy1 n Uy2 Nn--N Uyn' Then Uis openin X, x € U and
UNV =@. Furthermore, U € X\ V € X \ K = K. Hence, K€ is openin X. O

Theorem 6.37 Let X be a compact space, Y a topological space and let f: X — Y be a
surjective continuous map. ThenY is compact.

Proof. Let C = {Uj;}ea be an open cover of Y. Then A = {f ~1(U,)}1en is an open cover of X. Since
X is compact there must be a finite subcover A" = {f~*(Uy,), f "1 (Up,), ... f ~1(Uy, )} of A. Then
C' = {Uy,,Uy,, ..., Uy, } is a finite subcover of C. Hence, Y is compact. O

The theorem can be extended to saying that the continuous image of a compact space is compact, i.e.,
assuming X is a compact space and f: X = Y is a continuous map then f(X) is compact.

We will prove that the (finite) product of compact spaces is compact. To prove this we need the
following result.

Lemma 6.38 (Tube lemma) Let X be a topological space, and let Y be a compact space.
If x € X and U is an open set in the product space X X Y containing {x} X Y, then there is a
neighborhood W of x in X such that W XY € U.

The set W X Y is often called a tube about {x} X Y. See Figure 6.4.
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Y XXY

w
X X

Figure 6.4: A tube about {x} X Y.

Proof. AsUisopeninXXYand (x,y) € {x}xY € Uforally €Y, thereisa basis element W, xV,, € U
for the product topology on X XY such that (x,y) € W, XV;,. The collection {V},},.¢y is an open cover
of Y. Since Y is compact there must be a finite subcover of {V} }, ¢y, say, {V;,, ,,, ..., 1, }-

Let

Then W is open in X, and it must contain x. Clearly,

n

WXYEU(WyixVyi)EU.

i=1
Thus{x} XY S W XxYandW XY C U. O
The lemma is not true if we remove the assumption that Y is compact; the open set
U={xy) eERXR||xy|]<1}SRXR

does contain {0} X R but does not contain any tube W X R containing {0} X R. (Here we have assumed
that R is given the standard topology, and hence, it is not compact, cf. Example 6.32.)

Theorem 6.39 LetXq,X,, ..., X, be compact spaces. Then the product space X1 XX, X+ XX,
is compact.

Proof. We prove the statement for the product of two compact spaces. The general result then fol-
lows by an inductive argument.

Let X and Y be compact spaces. Let A be an open cover of X X Y. We must show that there is
a finite subcover A’ of A. For each x € X, {x} X Y is compact as it is homeomorphic to Y which
is assumed to be compact. Thus there is a finite subcollection A, of A that covers {x} X Y. Let
Uy = Uy eu, Ax- Then Uy is open in X X ¥ and contains {x} X Y. Thus by Lemma 6.38 for each
x € X there is a neighborhood W, € X such that x € W, and W,, XY € U,. Furthermore, A, covers
W, xY.

Now let x € X vary. The collection {W, },¢x is then an open cover of X. Since X is compact, there
must be a finite subcover {W, , W, ..., Wy } of {Wy}yex. Foreach 1 < i < nthe subspace Wy, XY
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is covered by the finite subcollection Ay, of A. Hence,

n
X><Y=UWxi><Y
i=1

is covered by the subcollection A’ = U?=1 Ay, of A. Thus X X Y is compact. O]

The theorem can be extended to hold for arbitrary products of compact spaces if we equip the product
with the product topology. This is known as Tychonoff’s theorem. It is a deep result whose proof uses several
original ideas. If we equip the product with the box topology the statement is no longer true.

We have already seen that the real line (with the standard topology) is not compact, cf. Exam-
ple 6.32. The next theorem states that all closed intervals of the real line are compact.

Theorem 6.40 Let R be the set of real numbers equipped with the standard topology. Then
every closed interval [a, b] in R is compact.

Proof. Let A = {U;},ep be a cover of [a, b] by open subsets of R, and let
S ={x € [a,b] | [a, x] is covered by a finite subcollection of A}.

Note that S is bounded above by b. Since a € U, for some 1 € A, the singleton {U,} is a finite
subcollection of A that covers [a, a] = {a}. Hence, S is non-empty and it is bounded above. Thus S
has a least upper bound; ¢ = sup S. Clearly, a < ¢ < b.

We will show that ¢ € S. The result follows if we can also show that ¢ = b. Choose 1’ € A with
¢ € Uyr. Since Uyr isopenin Rthereisareal numbere > 0suchthat (c—¢,c+€) € Uyr. Hence, there
isan x € S such that c — € < x. So by definition of S there is a finite subcollection {U,ll, Uz, ...,U,ln}
of A such that [a, x] € Ui, Uy,. Furthermore, [x,c] € Uy. Thus [a,c] = [a,x] U [x, c] is covered
by the finite subcollection {Ull, Upyr - Up U’} of A. Hence, c € S.

We now show that ¢ = b. Assume that ¢ < b. Then there must be a y € [a, b] such that
¢ <y < c+e Thus [a,y]is covered by the subcollection {U; ,Uj,, ..., Uy, Uy} of A such that
y € S. This is a contradiction of the fact that c is an upper bound. Hence, ¢ = b. ]

In order to state and prove the Heine—Borel theorem we need the following definition.

Definition 6.41 (Bounded subsets) Let (X, d) be a metric space, and let A be a subset of X.
We say that A4 is bounded if there isan M € R such that d(aq, a,) < M forall a4, a, € A.

Equivalently, we may say that a subset A of a metric space (X, d) is bounded if thereisa K € R
and x € X suchthatd(a,x) < K forall a € A. In particular, this means that a subset of R" equipped
with the Euclidean metric is bounded if it is contained in some open ball of finite radius centered at
the origin.

Theorem 6.42 (Heine—Borel) Let R™ be given the (Euclidean) metric topology and the Eu-
clidean metric. A subset A of R™ is compact if and only if it is closed and bounded.
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Proof. Assume that A is compact. By Theorem 6.22, R™ is Hausdorff, and so, by Theorem 6.36 A is
closed in R™. We must show that A is also bounded. Let A = {B(0;n) | n € Z,}, i.e., a collection
of open balls centered at the origin in R™. Then A is a cover of A by open subsets of R™. Since A is
compact there must be a finite subcollection of A that covers A. Thus thereisan N € Z, such that
A € B(0; N). Hence, for all a;,a, € A we have d(aq,a,) < 2N. Thus A4 is bounded.

Now assume that A is bounded and closed in R™. Let p = (p1, P2, ---, Pn) € A. Since A is bounded
thereisan M € R such that d(a{,a,) < M for all a;,a, € A. Then A is contained in the product
space

P =[py—M,ps + M] X [p, = M,pz + M] X -+ X [py — M, py + M]
which by Theorem 6.40 and Theorem 6.39 is compact. Since A is closed in R™ and a subset of P, it

follows by extending Theorem 6.35 to our setting that A is compact. Specifically, let C be a cover of
A by open subsets of R™. Since A is closed in R™, A° = R" \ A is open in R™. Thus

A = C U {A}

is an open cover of R™, and thus it is also an open cover of P in the subspace topology. Since P is
compact there must be a finite subcover of A that covers P. This implies that there is a finite subcover
of C that covers A. Thus A is compact. ]

An immediate consequence of Theorem 6.42 is that S™ considered as a subspace of R**1 is com-
pact, and hence, that the torus T2 = St x S is compact.
We end this section with a proof of the generalized extreme value theorem.

Theorem 6.43 (Generalized extreme value theorem) Let X be a compact space, and let
f: X — R be a continuous map where R is given the standard topology. Then there are
m,M € X such that

fm) < f0) < f(M)

forall x € X.

\. J

Proof. By Theorem 6.37, f(X) is compact. We must show that f(X) contains its supremum and its
infimum. If it does, then by setting f(m) = inf f(X) and f (M) = sup f(X) the theorem follows.
We prove that f(X) contains its supremum. The proof for the infimum is similar. Since f(X) is
compact, it is closed and bounded by Theorem 6.42. In particular, f(X) is bounded above. Hence,
the set f(X) has a least upper bound; s = sup f(X). Thusp < sforallp € f(X).
We must show that s € f(X). Assumethats & f(X). Since f(X) isclosed, i.e., f(X)¢ = R\ f(X)
is open, it follows that there is a real number € > 0 such that (s — €,s + €) € f(X)¢, and so,

(s—¢s+e)n f(X) =0.

Hence, there is a real number y such that y is an upper bound of f(X) ands — e <y < s. Thisis a
contradiction to the fact that s is the least upper bound of f(X). Hence, s = sup f(X) € f(X). O

6.4 Exercises

Exercise 6.1 LetX andY betopological spaces. Show thatif f: X — Y is surjective continuous
map and X is path connected then Y is also path connected.



Chapter 6. Topological properties 57

We say that a subset A of a topological space X is path connected if A is path connected in the
subspace topology. Hence, the previous exercise may be extended to saying that the continuous
image of a path connected space is path connected.

Exercise 6.2 Let X be atopological space,andletA € B © Abe subspaces of X.
(a) Show thatif A is connected then sois B.

(b) Show that [a, b), (a, b], [a, b], (—0, b] and [a, o) are all connected spaces when con-
sidered as subspaces of R with the standard topology.

Exercise 6.3 LetX be atopological space, and consider I = [0, 1] as a subspace of R where R
is given the standard topology. Furthermore, let the cone on X be quotient space CX = XXI/~,
where ~ is the equivalence relation on the product space X X I given by (x,0) ~ (x', 0) for all
x,x' € X. Show that CX is path connected.

Exercise 6.4 Let X be a Hausdorff space, and let A be a subspace of X. Show that 4 is
Hausdorff.

Exercise 6.5 Let X be an infinite set with the cofinite topology.

(a) Show that X is compact.

(b) Show that any subset of X is compact.

Exercise 6.6 Let X be a compact space, and let Y be a Hausdorff space. Furthermore, let
f: X = Y be a continuous map.

() Show that f is a closed map.
(b) Show thatif f is a surjective continuous map, then f is a quotient map.
(c) Show thatif f a bijective continuous map, then f is a homeomorphism.

(d) Show that f is proper, i.e., for each subset K of Y that is compact the preimage f~1(K)
is compact.

Exercise 6.7 Show that the surface of the cube centered at the origin,
C = {(x,y,2) € R | max{|x], |y, |zI} = 1},

and the 2-sphere,
§? = {(x,y,z) € R3 | Vx2+y2+42z2= 1},

are homeomorphic where they are both considered to be subspaces of R? with the standard
topology.
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6.4. Exercises

Exercise 6.8 Let X be a topological space, and let A.4,, ..., 4,, be subspaces of X each of

which is compact. Show that
n

O

i=1
is compact.



7. The fundamental group

7.1 Homotopy of paths

The topological properties we have discussed so far do not help us to distinguish between, e.g., the
2-sphere S? and the torus T? = S* x S1. In order to prove that S? and T2 are not topologically
equivalent, i.e., §? % T2, we need new properties and new techniques. A such property is that of
simple connectedness.

A path connected space X is, roughly speaking, simply connected if every closed curve in X can be
shrunk to a pointin X. The 2-sphere S is simply connected as any closed curve on S? can be shrunk to
apointin S2. Onthe other hand, the torus T2 is not simply connected as there are closed curves which
cannot be shrunk to a point in T?. See Figure 7.1. To be simply connected is a topological property.
Hence, if X and Y are homeomorphic topological spaces and one of them is simply connected then
so is the other. We can express that a path connected space is simply connected by saying that its
fundamental group is trivial. In particular, if X = Y then their fundamental groups are isomorphic.
We will show that the fundamental group of S? is not isomorphic to the fundamental group of T?2.
Hence, S? 2 T2. Computing fundamental groups provides us with more information than just that
of being simply connected.

Figure 7.1: The 2-sphere S2 is simply connected while the torus T? = S1xS1 is not simply connected.

In order to define the fundamental group of a topological space, we will need the concept of
homotopy (of paths).

Definition 7.1 (Homotopy) Let X and Y be two topological spaces, and let fy, f1: X = Y
be two continuous maps. Furthermore, let R be the set of real numbers with the standard
topology, I = [0, 1] be a subspace of R, and let X X I be given the product topology. We say
that f, is homotopic to f;, written fy = f;, if there is a continuous map

H: XXI->Y

such that H(x,0) = fo(x) and H(x,1) = f1(x) for all x € X. The map H is called a homotopy
between f; and f;. If fy = f; and f; is a constant map, we say that f;, is nullhomotopic.

59
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We can think of a homotopy as a continuous one-parameter family {H| xx(¢}}te; Of continuous maps from
X toY. See Figure 7.2.

fo

Figure 7.2: A homotopy from f; to f;.

Example 7.2 (Straight-line homotopy) Let X be a topological space. Then any two continu-
ous maps fp, f1: X = R", where R" is given the standard topology, are homotopic. The map
H: X x I —» R" given by

H(x,t) = (1 = 0)fo(x) + tf1(x).

forallx € Xandallt € I = [0, 1] is a homotopy between f; and f;. We call it the straight-line
homotopy as it deforms for each x € X the point f,(x) to the point f; (x) along the straight-line
segment between them.

In particular, any continuous map f: X - R"™ is homotopic to the constant mapc: X - R™
given by c(x) = 0 for x € X. Hence, any continuous map into R" is nullhomotopic.

We will need the following lemma to prove that =~ is an equivalence relation on the set of all
continuous maps between a topological space X and a topological space Y.

Lemma 7.3 (Pasting lemma) LetX = AUB be a topological space, where A and B are closed
in X. Furthermore, let Y be a topological space, and assume that f: A—Yandg: B = Y are
continuous maps. If f(x) = g(x) forall x € A N B, then the map h: X — Y given by

h(x) = flx) x€A
gx) x€B

is continuous.

\. J

Proof. We will prove that the preimage of a closed subset of Y under h is closed in X. Let C be a
closed subset of Y. Then

h=H(O) = FTHO U g~ (0.

Since f is continuous, it follows that f~1(C) is closed in A, and so, it is closed in X. Similarly, g~*(C)
is closed in B, and so, it is closed in X. Hence,

(O = Vg™ ()



Chapter 7. The fundamental group 61

is closed in X as it is the union of two closed subsets of X. Thus h is continuous. O

Theorem 7.4 The relation = is an equivalence relation on the set of all continuous maps
from a topological space X to a topological space Y.

Proof. We must show that = is reflexive, symmetric, and transitive. For any continuous map f: X —
Y there is a homotopy H: X X I — Y given by H(x,t) = f(x) forallx € Xand allt € I. Then
H(x,0) = f(x)and H(x,1) = f(x) forall x € X. Hence, f = f. Thus = is reflexive.

Let fo: X = Y and f;: X — Y be two continuous maps, and let H: X X I — Y be a homotopy
between them. Then H: X x I — Y given by H(x,t) = H(x,1 — t) is a homotopy between f; and
fo- Hence, fy = f; implies f; = f;. Thus = is symmetric.

To show that = is transitive, we must show thatif f; = f; and f; = f,, then f, = f,. Let
Hi{: X X I — Y be a homotopy from f; to f;, and let Hy: X X I = Y be a homotopy from f; to f.
Then thereisamap Hy * Hy: X X I — Y given by

Hq(x,2t) 0L

t
HixH)0 D =0y 2e—1) 1/2<

It is continuous for allt € I = [0,1] by Lemma 7.3 since X X [0,1/2] and X X [1/2,1] are closed
subsets of X X I whose union is equal to X X I, and H;(x, 1) = H,(x,0) forall x € X. Hence, H; * H,
is a homotopy from f; to f,. Thus = is transitive. O

Definition 7.5 (Homotopy classes) Let X and Y be topological spaces, and let C(X,Y) be
the set of continuous maps from X to Y. The homotopy classes in C(X,Y) are the equivalence
classes under the relation =. We write [f] for the homotopy class of f € C(X,Y), i.e.,

fl={gecXY)If =g}

and we write [X,Y] for the set of homotopy classes of continuous maps from X to Y, i.e,,
[X,Y]=CX,Y)/=.

If we can connect two points x and y in a topological space X by a path, i.e., a continuous map
f:la,b] » X

suchthat f(a) = xand f(b) = y, cf. Definition 6.14, we say that they lie in the same path component.
Specifically, the relation ~, given by x ~, y if and only if there is a path from x to y in X, is an
equivalence relation on X. We say that an equivalence class in X under ~,, is a path component. We
write my(X) for the set of path components of X. Note that o (X) consists of only one element if
and only if X is path connected.

Example 7.6 LetX = {x,}and Y be topological spaces. Then the continuous maps f: X - Y
correspond to the points f(xy) = y € Y. Two continuous maps f;, f1: X = Y are homotopic
if and only if there is a path from y, = fy(xo) to y; = f1(x(). Hence, the homotopy classes of
continuous maps from X to Y correspond to the path components of Y, and [X, Y] corresponds
to y(Y).

We are particularly interested in the case where we have homotopies between paths in a topo-
logical space X. For simplicity, let all paths be continuous maps from I = [0, 1] to X.
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7.1. Homotopy of paths

Definition 7.7 (Path homotopy) Let X be a topological space, and let xy, x; € X. We say
that two paths f, g: I — X in X from x, to x; are path homotopic, written f =, g, if there is
a continuous map H: I X I = X such that

H(s,0) = f(s) and H(s,1) = g(s)
foralls € I, and
H(0,t) = x, and H(1,t) =x;

forall t € I. We call H a path homotopy from f to g.

Example 7.8 Lletf: ] — R"and g: I - R" be paths from p, to p; in R" where R"
is given the standard topology. Then they are path homotopic: the straight-line homotopy
H: I xI - R"given by

H(s,t) = (1 = t)f(s) + tg(s)

foralls € I and all t € I is a path homotopy from f to g. See Figure 7.3.

Po

P1

> X

Figure 7.3: The straight-line homotopy between two paths in R? is a path homotopy.
Example 7.9 Lletf: I — R2\{(0,0)},g:1 - R?\{(0,0)}and h: I - R?\ {(0,0)} be
paths from (1, 0) to (—1, 0) in R?, where R? is given the standard topology, given by

f(s) = (cos(ms), sin(ms))
1
g(s) = (cos(ns), > sin(ns)>

and
h(s) = (cos(ms), —sin(ms))

for all s € I. Then the straight-line homotopy from f to g is a path homotopy but there are no
path homotopies from either f or g to h. See Figure 7.4.
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y
1 _f
9
= O X
—1 h

Figure 7.4: There are no path homotopies between the path homotopic paths f and g, and h in

R?\ {(0,0)}.

Theorem 7.10 Let X be a topological space, and let xy,x, € X. Then the relation = is an
equivalence relation on the set of all paths from x, to x4 in X.

Proof. The result follows by proving that the homotopies constructed in the proof of Theorem 7.4
when applied to paths are path homotopies.
Let f: I = X be a path from x, to x4. Then the constant homotopy H: I X I — X given by

H(s, t) = f(s)

is path homotopy from fto f: H(s,0) = f(s)and H(s,1) = f(s)foralls € I,and H(0,t) = f(0) =
xpand H(1,t) = f(1) = x4 forallt € I.

Assume that H: I X I — X is a path homotopy between paths f: I = Xand g: I = X from x,
to x4. Then the homotopyﬁ: I X1 — X given by

H(s,t) = H(s,1—t)

is a path homotopy from g to f: H(s,0) = H(s,1) = g(s) and H(s,1) = H(s,0) = f(s) for all
s€l,and H(0,t) = H(0,1—t) = xgand H(1,t) = H(1,1 —t) = x; forall t € I.

Finally, assume that fy: I = X, fi: I —» X and f5,: I = X are paths from X, to x4, and that
H;: 1 X1 — Xisapath homotopy from f; to f; and that H,: [ X I — X is a path homotopy from f;
to f,. Then the homotopy Hy * H,: I X I = X given by

H,y (s, 20) 0<

t
i H)SD =0y car—1) 1/2<

is a path homotopy from fy to f5: (H1*H,)(s,0) = H1(s,0) = fy(s) and (H1*H3)(s,1) = H,(s,1) =
fo(s)foralls € I,and (Hy * Hy)(0,t) = xg and (Hy * H,)(1,t) = x4 forallt € I. O
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Definition 7.11 (Path homotopy classes) Let X be a topological space, and let xy, x; € X.
If f: I = Xis a path from x; to x;, we write [f] for its path homotopy class, i.e.,

[f1={g: 1> X | gisapath from x, to x; and f =, g}.

The fundamental group of a topological space X with base point X, is, as a set, the set of path
homotopy classes of paths from x, to x, i.e., the set of path homotopy classes of loops based at x.
The group structure of the fundamental group is derived from the following product.

Definition 7.12 (Product of paths) Let X be a topological space, and let x, x4, x, € X. If
f: 1 - Xisapathfromx, tox;,and g: I = X is a path from x4 to x,, we define the product
of f and g as the path f * g: I = X from x, to x, given by

_\f@2s) 0<s
(f*9)(s) = g2s—1) 1/2<

\. J

Note that the map f * g is well-defined and continuous by Lemma 7.3. Furthermore, as (f *
9)(0) = f(0) =xgand (f * g)(1) = g(1) = x5, f * g is a path from x, to x,. See Figure 7.5.

X

Figure 7.5: The product f * g.

Lemma 7.13 Let X be a topological space, and let x4, x1,%x, € X. If f: I = X is a path from
Xxo tox, and g: I — X is a path from x, to x,, then the product f * g induces a well-defined
operation on path homotopy classes given by

[f1*[g] = [f * g]-

Proof. Letf": I - X be apathfromx,tox,,andletg’: I - X be apath from x; to x,. Furthermore,
let Hy: I X I = X be a path homotopy from f to f', and let H,: [ X I = X be a path homotopy from
gtog'. Thenthe map H; * H,: I X I - X given by

H,(2s,t) 0

S
Hix )0 =y 05— 10 1/2<
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is a path homotopy from f * g to f' = g': it is well-defined since H;(1,t) = x; = H,(0,t) forallt € I
and it is continuous by Lemma 7.3, and

(Hy * H)(s,0) = (f * g)(s) and  (HyxHp)(s, 1) =(f"*g')(s) foralls €1,
(Hy * H»)(0,t) = H{(0,t) = x, and (Hy *Hy)(1,t) = H,(1,t) = x, forallt € 1.

Hence, f * g induces a well-defined operation on path homotopy classes given by [f] * [g] = [f *
gl-

Theorem 7.14 Let X be a topological space. Then the product of paths, *, has the following
properties on the set of path homotopy classes in X.

Associativity Let xqy, X1, X5 and x3 be points in X. If fo: I = X is a path from x, to
xq, fi: 1 = Xis a path from x{ to x,, and f,: I = X is a path from x,
to x3, then

([fol * [AD * [f2] = [fol * ([f1] * [f2D-

Left and right units Forx € X, letc,: I = X denote the constant path at x, given by c,.(s) =
xforalls € . If f: I - X is a path from x, to x, then

[exo] * [f] = [f] = [f] * [ex, ]-

Inverse Iff+1 = Xisapath from x, to x,, let }_‘: I — X be the reverse path
from x4 to x,, given by f(s) = f(1 —s) forall s € I. Then

F1#Uf] = [exo]  and  [f]*[f] = [ex,]-

\. J

Proof. We prove that * is an associative operation on the set of path homotopy classes in X. By
definition, we have

(o ) * B)S) {(fo fEs) 0<

S
f(2s—-1) 1/2<
fo(4s) 0<s
fitds—1) 1/4<
f(2s—-1) 1/2<

/2 (7.1)

and

o * (fi * E))(s) = {f‘)(z” 0<

s
(ixf)(2s—1) 1/2<
fo(2s) 0<sg1/2
fids—=2) 1/2 < 3/4 (7.2)
f>(4s—3) 3/4 <1l

We must show that there is a path homotopy H: [ X I = X from (fy * fi) * fo to fo *x (fy * ). If
there is such a path homotopy then [(f, * f1) * f2] = [fo * (f1 * f2)], and hence, by Lemma 7.13

([fol * [AD * [f2] = [fol * ([f1] * [f2D-

<SS
<SS
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We can construct a path homotopy H: I X1 = X from (fy * f1) * f5 to fo * (f1 * f>) as follows. Draw
the straight lines connecting the domain of f; in Equation 7.1 and the domain of f; in Equation 7.2 in

I X I. See Figure 7.6.

N | =
Dl w

f 1 £ f(’*(f*f”

o S Iz (fo * f1) * fo

1
2

1
4

Figure 7.6: The path homotopy H: I X I = X from (fy * f1) * f> to fo * (f1 * f2).
The equation for the straight line from (s,t) = (1/4,0) to (s,t) = (1/2,1) is
1+t

S=——

4

)

and the equation for the straight line from (s,t) = (1/2,0) to (s,t) = (3/4,1) is
2+t

S=—.

4

We may then define H: I X I — X by
fo(4s/(1+ 1)) 0<s<(A+t)/4

H(s,t) =< fi(4s—t—1) A+86)/4<s<2+)/4

Hls—t=-2/2-1) @+D/4<s<1

By Lemma 7.3, H is continuous. Since

folds)  0<s<1/4
H(s,0)=4fi(4s—=1) 1/4<s<1/2
f2s—1) 1/2<s<1
it follows that H(s, 0) = ((fo * f1) * f2)(s) for all s € I by Equation 7.1. Similarly, since
fo(25) 0<s<1/2
H(s,1)=1fi(4s—2) 1/2<s<3/4
fo(4s—=3) 3/4<s<1
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it follows that H(s,1) = (fy * (f1 * f2))(s) for all s € I by Equation 7.2. Finally, since H(0,t) =
f0(0) = xgand H(1,t) = f,(1) = x5 forallt € I, it follows that H is a path homotopy from

(fo * f1) * fato fo = (fr * f2)-

We prove that the constant path is a left unit under * for path homotopy classes. The proof for
the fact that the constant path is a right unit under * is similar. By definition, we have

Cx, (25) 0<s g 1/2
f(2s—1) 1/2<s<1

X, 0<s<1/2
“lfes -1 1/2 s< 1.

(Cxo * F)(5) =§

(7.3)

We must show that there is a path homotopy H': [ X I = X from ¢, * f to f. If there is such a path
homotopy then [cy, * f] = [f], and hence, by Lemma 7.13 [c, | * [f] = [f].

We can construct a path homotopy H': I X I — X from ¢, * f to f as follows. Draw the straight
line from (s,t) = (1/2,0) to (s,t) = (0, 1). See Figure 7.7.

f

f
AN
t
HI
Cxo f
1 CxO * f
2

Figure 7.7: The path homotopy H': I X I — X from ¢, * f to f.

The equation for the straight line from (s,t) = (1/2,0) to (s,t) = (0, 1) is given by
11—t
s=—

We may then define H': I X I - X by

<@- t)/2
f(@s+t—1)/(1+1) (1 — t)/2 <1

By Lemma 7.3, H' is continuous. Since

H(st)—{

0<

s<1/2
f(2s—1) 1/2<s

<1

H(SO)—{
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it follows by Equation 7.3 that H'(s,0) = (cx, * f)(s), and clearly, H'(s,1) = f(s), forall s € I.
Finally, since H'(0,t) = xo and H'(1,t) = x4 forall t € I, it follows that H' is a path homotopy from
Cxo * ftOf.

Finally, we prove that for each path homotopy class there is an inverse path homotopy class under
*, By definition, we have

- f(2s) 0<s
(f * () Fas—1) 1/2<

f(2s) 0
fA-(@2s-1)) 1/2
f(2s) 0<sg1

“lre-2s) 1/2<s<1. (7.4)

Hence, f_* f is a path from x, to x;. We must show that there is a path homotopy H": [ X I —» X
from f * f to ¢y, .
We can construct such a path homotopy as follows. Draw a straight line from (s,t) = (0,0) to
(s,t) = (1/2,1) and a straight line from (s,t) = (1,0) to (s,t) = (1/2,1). See Figure 7.8.
Cx

0 Cx

0

AN

HII

f 7 _
fef

1
2
Figure 7.8: The path homotopy H": I X I - X from f * fto Cxy-

The equation for the straight line from (s,t) = (0,0) to (s,t) = (1/2,1) is given by
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We may then define H": I X I - X by

X 0<sgt/2
2s —t t/2<s<1/2
H"(S,t): f( ) / x = /
f2-2s—t) 1/2<s<1—-t/2
X 1-t/2<s«1
By Lemma 7.3, H" is continuous. Since
2s 0<sgK1/2
H"(S,O): f( ) = = /
f(2-2s) 1/2<s<1

it follows by Equation 7.4 that H" (s, 0) = (f *f)(s),and H" (s, 1) = x, = Cx,(s) foralls € I. Finally,

since H"(0,t) = xg and H"(1,t) = x, forall t € I, it follows that H" is a path homotopy from f x f
to cy,. The construction of a path homotopy from f * f to ¢ is similar. ]

7.2 Definition and elementary properties of the fundamental group

The set of path homotopy classes of paths in a topological space X does not form a group under the
product of paths as the product of two path homotopy classes is not always defined. However, such
a product is defined if we restrict to paths that begin and end at some fixed point x,. This is the
fundamental group of X with basepoint x,. We say that the ordered pair (X, xy) is a based space
(sometimes also called a pointed space).

Definition 7.15 (The fundamental group) Let (X, xy) be a based space. Apath f: [ - X
from x, to x; is called a loop in X based at x,. Let

1 (X, x0) = {[f] | fisaloopin X based at x,}

be the set of path homotopy classes of loops in X based at x,. We say that (X, xg) is the
fundamental group of X based at x.

From the definition it is clear that ; (X, x,) depends only on the path component of X that contains x,.
The fundamental group does not provide us with any information about the rest of X.

As the notation suggests, the fundamental group is sometimes also referred to as the first homotopy group
of X. In fact, there are groups m,,(X, x,) for alln € Z,. These groups are part of a subject called homotopy
theory.

If we restrict Theorem 7.14 to the case where all paths are loops in X based at x;, we get the
following result.

Theorem 7.16 Let (X, xq) be a based space. Then the fundamental group 11 (X, xg) of X
based at x, is, in fact, a group with product of paths, *, as its binary operation. The identity
element e is equal to the path homotopy class of the constant path at x,, e = [cxo], and the

inverse of [f] is [f]~ = [f] where f is the reverse path of f.
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Example 7.17 Let R be the set of real numbers equipped with the standard topology. If
f:1 - Risaloopin R based at 0, by Example 7.2 we know that f is path homotopic to the
constant path at 0. Thus w1 (R, 0) is the trivial group, i.e., 1 (R, 0) = {e}. Ingeneral, 7{ (R™, 0)
is the trivial group, where R™ is given the standard topology. We will often denote the trivial
group as simply 0.

Example 7.18 Let (X, x,) be a based space where X is a discrete space. Then 1 (X, xy) = 0
for all x, € X as the path component containing x, consists of only one element, namely x,.

Theorem 7.19 Let X be a path connected space, and let xq,x, € X. Then m1(X,xg) is
isomorphic to 1 (X, x4).

Proof. Leta: I — X be a path from x5 to x;. If f: I = X isaloop in X based x(, thena * f * ¢ is a
loop in X based at x;. We define the map @: m; (X, xy) = m1(X, x1) by

where we have used the fact that [@] = [a]™!. Itis a well-defined map as * is well-defined, and
moreover, it only depends on the path homotopy class of a.

We will show that @: m1(X,xy) = m1(X,x1) is an isomorphism. We will first show that @ is a
homomorphism, and then show that it is bijective. Since

a([f1+[gD = [a]™* = [f]* [g] * [a]
= ([a]™* * [f] * [a]) * ([a] " * [g] * [a])
=a(lfD *a(gD,
for all [f],[g] € m1(X,xg), it follows that & is a homomorphism. To show that @ is bijective, and

hence, an isomorphism, we show that & has an inverse. Let § = @, i.e., B is the reverse path of a.
Since

B([h]) = [B17" * [A] * [B] = [a] * [A] * [a] "
a(B([hD) = [a]™* = ([B17* * [h] * [B]) * [a] = [A]

forall [h] € m{(X, x,), and

a([fD = [al™ « [f] * [a] = [B] = [f] = [B]™*
B@(fD) = [B17" * ([a] ™" * [f] = [a])  [B] = [f]

for all [f] € m1(X, xo), it follows that B = (@)L O

In light of Theorem 7.19 it might be tempting to simply speak of the fundamental group of a path connected
space X, and thus leave out any mention of the basepoint. However, while , (X, xy) = m,(X, x,) for any two
points x, and x; in X, the isomorphism may depend on the path from x, to x,. It can be shown that the
isomorphism of 7, (X, x,) with , (X, x,) for a path connected space X is independent of path if and only if the
fundamental group is abelian.
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Definition 7.20 (Simply connected spaces) Let X be a path connected space. We say that X
is simply connected if w1 (X, x,) is the trivial group for some x, € X, and hence, for all x, € X.

By Example 7.17, we get that R" is simply connected where R" is given the standard topology.
We shall later see that the circle S and the torus T? = S* x S are two examples of non-simply
connected spaces.

Definition 7.21 (Based maps) Let (X,x,) and (Y,y,) be based spaces. A based map
h: (X,x9) = (Y,y,) is a continuous map h: X — Y such that h(xy) = .

Let (X, xo) and (Y, ) be based spaces, and let h: (X,x) = (Y,yy) beabased map. If f: [ - X
isaloop in X based at x, the composition ho f: [ = Yisaloopin Y based at y,. This leads to a map
from 1 (X, xq) to w1 (Y, ¥5)-

Definition 7.22 (Homomorphisms induced by based maps) Let (X, x;) and (Y, ;) be based
spaces, and let h: (X,xq) = (Y, yp) be a based map. The map

h*: 7T1(X; xo) v 7'[1(Y, yO)

given by
h ([f]) = [h e f]

is called the homomorphism induced by h.

Lemma 7.23 Let (X,x) and (Y,y,) be based spaces, and let h: (X,xy) — (Y,¥,) be a
based map. The map
h,: 7T1(X; Xo) - 7T1(Y, yO)

given by
ho([f]) = [h e f]

is a homomorphism.

Proof. We need to show that for two loops f: I = Xand g: I = X in X based at x,, the identity

ho([f1* [9]) = h.([fD * h.([g])

holds in (Y, yy). The left-hand side is the path homotopy class of h o (f * g) and the right-hand
side is the path homotopy class of (h o f) * (h o g). By definition, we have

_J(he f)(2s) 0<s<1/2
((hof)*(hog))(s)—{(hog)@s_l) 2 csed
and so
_ o Y x (h o _ h(f(2s)) 0<sg1)/2
(he(fxg))(s) =((hef)x*(h g))(S)—{h(g(ZS D) 12<s<l.

Hence, ho (f x g) = (hof)* (heg). Thus h.([f1*[g]) = h.([f]) * h.([g]) holds in 7, (Y, o). [
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Theorem 7.24 (Functoriality) Let (X, x), (Y,vo) and (Z,z,) be based spaces, and let
hi: (X,x9) = (Y,y9) and hy: (Y,yy) = (Z,zy) be based maps. Then

(hz © hy). = (h2)s © (R1).

Ifidy: X = X is the identity map, then (idy), is the identity automorphism of m, (X, x,).

The rule sending a based space (X, x,) to its fundamental group 7, (X, x,) and a based map h: (X, x,) —
(Y, yo) toitsinduced homomorphism h, : m, (X, xy) = 7, (Y, y,) is a functor from the category of based spaces
and based maps to the category of groups and (group) homomorphisms.

Proof. Assume that f: I = X is aloop in X based at x,. Then
(hz o hy).([fD) = [(hz e hy) © f]

and

(h2).((h0).([fD) = [hz © (hy © )]
Since composition of continuous maps is associative, i.e., (hy © hy) o f = h, o (hq © f), these path
homotopy classes must be equal. Hence, (hy © hy), = (hy), © (h1)..
Ifidy: X — X is the identity map, thenidy of = f, and so, (idy).([f]) = [idx of] = [f]. Hence,
(idy). is the identity automorphism of (X, xg). O

The following corollary of Theorem 7.24 tells us that the fundamental group is a topological in-
variant of based spaces.

Corollary 7.25 Let (X,x,) and (Y,y,) be based spaces. If h: X — Y is a homeomorphism
such that h(xy) = y,, then
h,: (X, x0) = w1 (Y, ¥o)

is an isomorphism.

The fundamental group thus allows us to distinguish between two based spaces provided that their fun-
damental groups are not isomorphic. By Example 7.17, we know that 7;(R,0) = 0 and ;(R?0) = 0.
However, by Example 6.16, we know that R and R? are not homeomorphic. Hence, it is possible for two non-
homeomorphic based spaces to have isomorphic fundamental groups.

Proof. We must show that h, is bijective. Let k: Y — X be the inverse homemorphism of h such that
k(yy) = x. Then, by Theorem 7.24, k, o h, = (k o h), = (idx),, and h, o k, = (h o k), = (idy),.
Hence, k, = (h,)™ L. O

To compute the fundamental group of a product space, we may use the following theorem.

Theorem 7.26 Let(X,xq)and (Y,y,) be based spaces. Then 11 (X XY, (xo, Vo)) is isomorphic
to the direct product 1 (X, x¢) X 71 (Y, ¥o)-




Chapter 7. The fundamental group 73

Proof. Letpr;: X XY — Xandpr,: X XY — Y be the projection maps onto the first and second
factor, respectively. Define the map ¢: m, (X X Y, (x4, ¥0)) = m1 (X, x0) X 1 (Y, ¥,) by

hD) = ((pry).([RD), (pr,).([R])) = ([pr, ohl, [pr, °h]).

Note that (X, xo) X m1(Y,y,) is a group with binary operation given by
(If1.1gD = {f'1. 1g'D = W1+ [f 'L [g] = [g'D

for [f1, [f'] € m1(X, xo) and [g], [9'] € w1 (Y, o).
We will show that ¢ is an isomorphism. It is a homomorphism since (pr,). and (pr,), are homo-
morphisms:

@([h] = [k]) = ((pry).([R] = [kD), (pry).([A] * [k]))
= ((pry)-([RD) * (pry).([KD), (prz) ([RD) * (pry).([KD))
= ((pry)-([RD), (pry)-([AD) * ((pr,). (KD, (pr,).([K]))
= @([h]) * o([k]D)

for [h], [k] € m (X X Y, (x0,¥))- Let f: I = X be aloop in X based at xy, andletg: I = Y be a
loop in Y based at y,. Definethe map h: [ - X X Y by

h(s) = (f(s),g(s)).

Then his aloopin X X Y based at (xg,yy), and

h]) = ((ery«([hD, (pry).([A])) = ([pry °h], [pr, °h]) = ([f], [9D)-
Hence, ¢ is surjective. To show that ¢ is injective, assume that @([h]) = @([k]) for [h], [k] €
(X XY, (X0, ¥)). Then there is a path homotopy Hy: [ X I — X from pr, oh to pr, ok and a path
homotopy H,: I X I = Y from pr, oh to pr, ok. Definethe map H: [ X I - X X Y by

H(S; t) = (Hl(S, t); Hz(S, t)) .

Then H is a path homotopy from h = (pr, oh, pr, oh) to k = (pr, ok, pr, ok). Hence, [h] = [k], and

S0, @ is injective. Thus ¢ is an isomorphism. O

7.3 Homotopy type

We will see in this section how we may obtain information about the fundamental group by way of ho-
motopy types. This allows us to compute the fundamental group of a topological space by computing
the fundamental group of some other topological space that is hopefully easier to work with.

Lemma 7.27 Let (X,xq) and (Y,y,) be based spaces, and let h: (X,xy) — (Y,y,) and
k: (X,x9) = (Y,yo) be based maps. If there is a homotopy H: X X I = Y from h to k such
that H(xq,t) = y, forall t € I, then the homomorphisms h,: m1(X,x,) = 1 (Y,y,) and
k.: m(X,xy) = m1(Y,y) induced by h and k, respectively, are equal.




74 7.3. Homotopy type

Proof. If f: I = Xisaloopin X based at xy, then H o (f X id): I X I = Y is a homotopy from h o f
to k o f whereid: I —= [ is the identity map of I. Since

(Ho (f xid)(5,0)=(hof)(s) and (Ho(fxid)(s,1)=(kof)(s) foralls€el,

(Ho(f xid))(0,t) =9 and (Ho(f xid))(1,t) =y forallt €1,
H o (f X id) is a path homotopy from h o f to k o f. Hence, h.([f]) = [h e f] = [k ° f] = k.([f])-
Thus h, = k,. O

Definition 7.28 (Retractions) Let X be a topological space, and let A be a subspace of X.
We say that a continuous map r: X — Ais a retraction of X onto Aif r(a) = aforeacha € A.
If there is a retraction of X onto A, we say that A is a retract of X.

Example 7.29 Thecircle, S1,is a retract of R? \ {0} where R? is given the standard topology.
Specifically, the continuous map r: R? \ {0} — S? given by

x
r(x) = —

Il

where ||x|| = /x2 + x3, is a retraction of R? \ {0} onto S1.

Ifi: A - X is the inclusion map, then we can express that r: X — A is a retraction of X onto A
by the following commutative diagram.

i

A— X

AN

A

Hence, for a retraction r, we have r o i = id4 where id4: A = A is the identity map of A.

Lemma 7.30 Let X be a topological space, and let A be a subspace of X. If xo € A and A
is a retract of X, then the homomorphism i, : w1(4,x) = ™1 (X, xo) induced by the inclusion
map i: A - X is a monomorphism.

Proof. Let r: X — A be a retraction of X onto A. Then, by Theorem 7.24 and the definition of
retraction, we have the following commutative diagram

i*
71 (4, x9) — m1(X, Xo)

A
(id )~
11 (4, xg)

where id4 is the identity map of A. By Theorem 7.24, we know that (id,). is an isomorphism. Thus
1, o I, is an isomorphism, and hence, also bijective. This implies that i, is injective. Hence, i, is a
monomorphism. ]

The homomorphism induced by the inclusion of A into X is an isomorphism if A is a deformation
retract.
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Definition 7.31 (Deformation retracts) Let X be atopological space, and let A be a subspace
of X. A homotopy
H: XXI->X

is called a deformation retraction of X onto A if H(x,0) = x and H(x,1) € Aforall x € X,
and H(a,t) = aforalla € Aand all t € I. We say that A is a deformation retract of X.

The mapr: X — A defined by r(x) = H(x, 1) is a retraction of X onto A. Thus H is a homotopy between
the identity map of X and the map i o r where i: A — X is the inclusion map. Note that some authors call
what we have defined as a deformation retract, a strong deformation retract. In this terminology a homotopy
H: XXI - Yisadeformation retract of X onto Aif H(x,0) = xand H(x,1) € Aforallx € X,andH(a,1) = a
forall a € A.

Every deformation retract is also a retract but the converse is not true in general.

Example 7.32 Let X be a topological space, and let a € X. Then A = {a} is retract of X with
retraction r: X — A given by r(x) = a. If A is a deformation retract of X, then X must be
path connected: the deformation retraction gives that there is a path from each x € X to a.
However, there are path connected spaces that do not deformation retract onto a point.

Theorem 7.33 Let X be a topological space, and let A be a subspace of X. If x, € Aand A
is a deformation retract of X, then the homomorphism i, : m1(4,xy) = 7m1(X, o) induced by
the inclusion map i: A — X is an isomorphism.

Proof. Let H: X X I = X be a deformation retraction of X onto A, and let a retractionr: X = A of
X onto A be given by r(x) = H(x,1). By Lemma 7.27 and Theorem 7.24, we have i, o 1, = (idy).
where idy is the identity map of X. Sinceroi = id,4, we have 1, o i, = (id4). where id, is the identity
map of A. Thus both r, o i, and i, o 7, are isomorphisms. Hence, i,: m{(4, %) = m1(X, %) is an
isomorphism with r; as its inverse. O

We may generalize the notion of deformation retraction. This leads us to the notion of homotopy
equivalence.

Definition 7.34 (Homotopy equivalences) Let X and Y be topological spaces. If f: X = Y
and g: Y — X are continuous maps such that g o f is homotopic to the identity map of X,
idy, and f o g is homotopic to the identity map of Y, idy, we say that f and g are homotopy
equivalences. We say that each of f and g is a homotopy inverse of the other.

Clearly, every homeomorphism is also a homotopy equivalence. The converse is not true in gen-
eral.

Example 7.35 Let R be the set of real numbers equipped with the standard topology. Then
forany p € R, the map f: R — {p} given by f(x) = p is a homotopy equivalence with
homotopy inverse g: {p} = R given by g(p) = p. Itis clear that f is not a homeomorphism.
In fact, there are no homeomorphisms between R and {p}.
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Definition 7.36 (Homotopy types) Let X and Y be topological spaces. We say that X and Y
have the same homotopy type if there is a homotopy equivalence f: X - Y.

It is common to also refer to topological spaces of the same homotopy type as homotopy equiv-
alent.

We end this section with a result showing that topological spaces of the same homotopy type
have isomorphic fundamental groups. To prove the result we will need the following lemma.

Lemma 7.37 Let X and Y be topological spaces, and let f: X — Y and g: X — Y be
continuous maps such that f (x¢) = y, and g(xg) = y;. If H: X X1 = Y is a homotopy from f
tog, thereisapatha: I = YinY from y, to y, given by a(t) = H(xq,t) such that g, = @of,.

fi
71 (X, x0) — 71(Y, o)

A

(Y, 1)

Proof. Leth: I = X be aloop in X based at xy,. We will show that

g-([h]) = a(f.([r])).

In other words, we will show that

[g o hl=a([f eh]) = [a]™ = [f o h] x [a] = [@x(f o h) * a].

Let H': I X I - Y be given by

a(4s) 0<s<t/4
H(s,)=4H(h(55) 1-t) t/4<s<1-t/2
a(2s—1) 1—-t/2<s<K 1.
See Figure 7.9.
1 1
4 2 _
ax(foh)*xa
t
HI
oh
g goh

Figure 7.9: The path homotopy H': [ X I » Yfromgohtoa * (f o h) * a.
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By Lemma 7.3, H' is continuous. Since

H'(s,0) = H(h(s), 1) = g(h(s))

and
a(4s) 0<s<g1/4
H'(s,1) =<H(h(4s—1),0) 1/4<s<1/2
a(2s—1) 1/2<s<1
a(4s) 0<s<K1/4
=<f(h(4s—1)) 1/4<s<1/2
a(2s—1) 1/2<s<1

foralls € I,and H'(0,t) = H(xo,1) = y; and H'(1,t) = H(x,, 1) = y,, it follows that H' is a path
homotopy from gohtoa* (f e h) *a. Thus [g o h] = [a* (f o h) * a]. This completes the proof. [

Theorem 7.38 Let X and Y be topological spaces, and let f: X — Y be a homotopy equiva-
lence such that f(xy) = y,. Then

for m (X, x0) = (Y, %)

is an isomorphism.

Proof. Let g: Y — X be a homotopy inverse of f, and let f(xq) = vy, g(¥o) = x4, and f(x1) = y;.
By assumption, we have g o f ~ idy and f o g =~ idy whereidy: X = X andidy: Y — Y are the
identity maps of X and Y, respectively. Thus, by Lemma 7.37, there is a path a: [ — X in X from x
to x; and a path f: I = Y from y, to y; such that

(g ° (fxg))s = gx o (fxp)x = Ao (idy). =@

and

P —~

((fx) © @) = () © g = B o (idy) = B

where we have specified the basepoint for the homomorphisms induced by f. In other words, the
following two diagrams commute.

(idx). I+«
w1 (X, x9) — w1 (X, x0) (Y, ¥0) — m1 (X, x1)
\ la x J(fxl)*
Gs © (fry)- B
1 (X, x1) m1(Y,y1)

Since & and Eare both isomorphisms, it follows by commutativity of the diagram on the left that g,
is an epimorphism, and by commutativity of the diagram on the right that g, is a monomorphism.
Hence, g, is an isomorphism. Since

(fe)s = (@)t

it follows that (fy,). is an isomorphism. O



78 7.4. Exercises

We can use Theorem 7.38 to help us determine the fundamental group of certain topological spaces, and
as a tool to determine that certain topological spaces are not of the same homotopy type, and hence, not
homeomorphic.

7.4 Exercises

Exercise 7.1 LetX, Y and Z be topological spaces. Show that if f: X — Y is homotopic to
f'*X > Yandg:Y — Zis homotopicto g': Y - Z, then g o f: X — Z is homotopic to
g eoftX-Z

Exercise 7.2 Let X be atopological space. Show that X is path connected if and only if every
two constant maps ¢;: X = X and ¢, X — X are homotopic.

Exercise 7.3 Let X be a topological space, and let xy, x4 and x5 be points in X. Show that if
a: 1 = Xisapathin X from x,to x4, f: [ = Xisapathin X fromx; tox, andy = a * f3,
theny = B o @.

Exercise 7.4 Let S? be the 2-sphere considered to be a subspace of R3 with the standard
topology. Show that 1 (52 \ {(0, 0, 1)}, s) is the trivial group where s = (0,0, —1).

Exercise 7.5 Let X be a Hausdorff space, and let A be a subspace of X. Show thatif A is a
retract of X, then A is a closed subset of X.

Exercise 7.6 Show that the relation of homotopy equivalence is an equivalence relation on
any set of topological spaces.

A topological space X is said to be contractible if the identity map of X, idy : X = X, is nullhomo-
topic.

Exercise 7.7 Show that atopological space X is contractible if and only if X has the homotopy
type of a point, i.e., a topological space consisting of one point.

Exercise 7.8 LetX be atopological space and let S* be the unit circle considered as a subspace
of R% where R? is given the standard topology. Show that if f: X — S is a continuous map
that is not surjective, then f is nullhomotopic.



8. The fundamental group of the circle

8.1 Covering spaces

The notion of a covering space is a helpful tool for determining fundamental groups. Specifically, we
will compute the fundamental group of the circle by first establishing that the map p: R — S?, given

by
p(t) = (cos(2mt), sin(2mt)),

is a covering map.

e w

Definition 8.1 (Covering spaces) Let B and E be topological spaces. We say that a surjective
continuous map p: E — B is a covering map if for each point b € B there is a neighborhood
U such that p~1(U) is a disjoint union of open subsets V; of E where 1 € A,

= |
AEA

and ply, : V3 = U is a homeomorphism for each 4 € A. We refer to E as a covering space of
B.

A covering map p: E = B is sometimes also referred to as a covering projection. Note that B is often
referred to as the base space of the covering map and that E is often referred to as the total space of the
covering map. An open subset U of B satisfying the condition that

p 1) = |_| 1, where 1, is an open subset of E,
AeA

such that p|y, : V3 = U is a homeomorphism for each 1 € A'is said to be evenly covered by p. See Figure 8.1.

For each b € B, we often refer to the preimage p~(b) of {b} under p as the fiber over b. Note also that
the fiber over b is a discrete subspace of E; each V3 is an open subset of E and intersects the fiber over b in a
single point, and so, this point is open in the fiber over b. Finally, we note that a covering map is a special case
of a fiber bundle with discrete fibers.

Example 8.2 Let B and E be topological spaces. If p: E = B is a homeomorphism, then p is
also a covering map.

Example 8.3 Let X be atopological space, and let D be a discrete space. Then the projection
map onto the first factor, pr;: X X D — X, where X X D is given the product topology, is a
covering map. In particular, X is evenly covered by pr,.

79
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p~'(U)

Figure 8.1: The open subset U of B is evenly covered by p: E — B.

Definition 8.4 (Local homeomorphisms) Let X and Y be topological spaces. A continuous
map f: X = Y is said to be a local homeomorphism if for each x € X there is a neighborhood
U such that f(U) isopeninY and f|y: U = f(U) is a homeomorphism where U and f(U)
are both given the subspace topology from X and Y, respectively.

Example 8.5 Let X and Y be topological spaces, and let f: X — Y be a homeomorphism.
Then f is also a local homeomorphism.

Local homeomorphisms preserve local topological properties such as local connectedness and local path
connectedness. In other words, if f: X — Y is a local homeomorphism and, say, X is locally connected then so
isY.

A topological space X is locally (path) connected at x € X if for each neighborhood U of x there is a (path)
connected neighborhood V' of x such that V € U. We say that X is locally (path) connected if X is locally (path)
connected at each x € X. Note that a (path) connected space need not be locally (path) connected.

Clearly, a covering map is also a local homeomorphism. Thus if p: E — B is a covering map, then the total
space and the base space are locally equivalent but they can differ globally.

The following theorem provides an important example of a covering space that we will use later
on to compute the fundamental group of the circle.

e 1

Theorem 8.6 Let R be the set of real numbers equipped with the standard topology, and
consider the circle S as a subspace of R? where R? is given the standard topology. Then the
map p: R - St given by

p(t) = (cos(2mt), sin(2mt))

is a covering map.
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Proof. Clearly, p is continuous and surjective. Let U = S\ {(—1,0)}and V = ST\ {(1,0)}. Then
both U and V are open in S, and their union is equal to S1. We want to show that they are evenly
covered by p.

The preimage of U under p is the disjoint union of subsets V; = (1—1/2,1+1/2) of Rfor A € Z;

p—l(U)=|_|la=|_|<A—%,a+%>.

AEZ AEZ

Similarly, the preimage of V under p is the disjoint union of subsets W) = (1,4 + 1) of Rfor 1 € Z;

p~(V) = |_| W, = |_|(/1,/1 +1).
AEZ AEZ

Since p is continuous and open, cf. [5, Lemma 14.33], and V; and W, are open subsets of R, it follows
that ply, : V) = U and ply: Wy — V are open maps for each 1 € Z. Moreover, they are both also
bijective for each A € Z. Hence, by Theorem 5.21 they are both homeomorphisms. Thus p: R - S?
is a covering map. ]

The covering map p from Theorem 8.6 is illustrated in Figure 8.2. Theorem 8.6 also provides an example of
a universal covering space since R is simply connected. It is universal in the following sense: for any covering
map q: E —» S where we assume that E is path connected, there is a covering map r: R — E such that

p=qeor.

Theorem 8.7 Let B4, By, E; and E, be topological spaces, and letp,: E; = Byandpy: E; —
B, be covering maps. Then
P1 X P2t E1 X E; = By X By

is a covering map where both By X B, and E{ X E, are given the product topology.

\. J

Proof. Let (b4, b;) € By X B, and let U; and U, be neighborhoods of b; and b,, respectively, that
are covered evenly by p; and p,, respectively. We want to show that U; X U, is evenly covered by
p1 X p2-
If
iy =] Ju ad  pren=| |m
AEA wWEQ
then, clearly,

(2 xp2) ™ (Ur X Up) = ' W) xp (W) = | | i xwiy.

AEA
wWEN

Furthermore, py X p2ly,xw, : Va X W, = Uy X Uy is a homeomorphism for each 4 € A and each
w € Q. Hence, U; X U, is a neighborhood of (b4, b,) that is evenly covered by p; X p,. Thus p; X p,
is a covering map. ]
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(1,0)

Figure 8.2: The coveringmap p: R — S given by p(t) = (cos(2mt), sin(2mt)).

Example 8.8 From Theorem 8.6 and Theorem 8.7, it follows that
pXp: RxR - Stxs?

where p is the covering map of Theorem 8.6, is a covering map. Hence, R? is a (universal)
covering space of the torus T2 = St x S1.

8.2 Computing the fundamental group of the circle

In this section we will see how we can use covering spaces as a tool to compute fundamental groups.
In particular, we will compute the fundamental group of the circle. By Theorem 8.6, we know that
the map p: R - S* given by p(t) = (cos(2mt), sin(2mt)) is a covering map.

In order to compute 1, (S1, so) we will show that the lifting correspondence
@: (ST, 50) = p (o) = Z,

where s, = (1, 0), is a bijection, and moreover, that it is an isomorphism of groups. This will involve
certain lifting theorems.

Let B, E and X be topological spaces, and let p: E — B be a continuous map. If we are given

a continuous map f: X — B, we are often interested in whether or not there is a continuous map
f: X > Esuchthatf =pof.
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_E

/|

p

X—B
f

This is often referred to as a lifting problem for f.

Definition 8.9 (Liftings) Let B, E and X be topological spaces, and let p: E — B be a
continuous map. A lifting of a continuous map f: X — Bis a continuous map f: X = E such

that f =pof.

We will focus on the case where p is assumed to be a covering map. We will need a theorem that
says that any path in the base space of a covering map can be lifted to a path in the total space. In
order to prove the theorem we will need the following lemma.

Lemma 8.10 (Lebesgue number lemma) Let (X,d) be a compact metric space, and let A
be an open cover of X. Then there is a real number A > 0 such that for every x € X there is a
U € A where B(x; A) € U.

The number A is called a Lebesgue number for the cover A. The lemma says that for a given open cover
of a compact metric space, there is a Lebesgue number such that every open ball with a radius less than the
Lebesgue number must lie in some set in the open cover.

Proof. If X € A, then every real number A > 0 will be a Lebesgue number for A. So assume that X
is not an element of A.

By compactness, there is a finite subcollection, say, {U;, Uy, ..., U,} of A that covers X. For each
i €{1,2,..,n}, letV, = X\ U;. Then each l} is non-empty as U; # X foralli € {1,2,...,n}. Let
R denote the set of real numbers equipped with the standard topology (and the standard Euclidean
metric), and let f: X — R be given by

1 n
FO0) = =) disty, ()
i=1

where disty, : X — Ris given by
disty, (x) = inf{d(x,v) | v € V}.

We claim that distVL. is continuous for each i € {1, 2, ..., n}. Let x; and x, be two points in X. Then by
M3, we have
distVi(xl) < d(xq,v) <d(xq,x3) +d(xy,v),

forallv € V;, and so,
disty, (1) — d(x1, x2) < disty, (x2).

Hence, | disty,(x1) — disty,(x2)| < d(x1,x2). Thus disty, is continuous for each i € {1,2,...,n}.
Hence, f is also continuous.
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We claim that f(x) > 0 for all x € X. Choose an x € X. Since {U;,U,, ..., U, } covers X, there
mustbeaj € {1,2,...,n}suchthatx € Uj. Since Uj € A, we know that Uj must be an open set. Thus
there is an € > 0 such that B(x; €) € Uj, and hence, distV].(x) > ¢. It follows that f(x) > €/n > 0.
Thus f(x) > 0 for all x € X as claimed.

Since f is continuous with a compact domain and f(x) > 0 for all x € X, it follows by Theo-
rem 6.43 that f must have a minimum value A where 1 > 0.

We need to show that A is a Lebesgue number for {U;, U,, ..., U, }, and hence, for A. Choose an
x € X. Suppose that there is no U; € {Uy, Uy, ..., Un} such that B(x; 1) € U;. Then disty,(x) < 4
foralli € {1,2,...,n}, and thus f(x) < A. This contradicts the fact that A is the minimum value of
f over X. Hence, there must be a U; € A such that B(x; 1) € U;. Thus A4 is a Lebesgue number as
claimed. O

Example 8.11 Let/ = [0,1] €S R where R is given the standard Euclidean metric. Then
A = 1/4is a Lebesgue number for the open cover A = {U;,U,} where U; = (—3,5/6) and
U,=(0,2):if0<x<<1/2thenB(x;A) =(x—Ax+4)=(x—1/4,x+1/4) € Uy, and if
1/2 < x < 1then B(x; 1) € U,.

Theorem 8.12 (Unique path lifting property) Let B and E be topological spaces, and let
p: E — B be a covering map such that p(ey) = by where ey € E. For any path f: 1 — B
where f(0) = by there is a unique path f: I = E lifting f such that f(0) = e,.

Proof. For each s € I, let U be a neighborhood of f(s) that is evenly covered by p. The collection
A = {f~1(Uy) | s € I} is then an open cover of I. Since I is a compact metric space, it follows from
Lemma 8.10 that there is a Lebesgue number A > 0 for A. Consider a subdivision of I consisting of
points
O=s5<51< "<, =1

such that s; — s;_1 < 2Afor 1 < i < n. Then each interval [s;_1, 5;] lies in one of the preimages
F7YUy). Thus f([si-1,si]) € U, for some s € I.

We must show that there is a lift f of f such that f(0) = e, and that this lift is unique. We prove
the existence of f first. Let U be a neighborhood of f(s) for some s € I that is evenly covered by p,

and let
) = | v

wWEN

Note that if ¢; € p~1(f(s;)) then e; € V,/ for a unique w’ € (. Since p|Vw,: V,r = Uis a homeo-
morphism, it follows that the map g;: [s;_1, ;] = E given by

5 = ((phy) @ Fltsnsa)

is continuous, and moreover, p o g; = fs;,_, s, @nd g;(Si—1) = €;_1. Thus there is a continuous map
g1t [S0,81] = Esuchthatp e g; = fl[s, 5,1 and G1(So) = €o. Similarly, there is a continuous map
G2: [s1,82] & Esuchthatp o g; = fls,5,1 and g2(s1) = G1(s1) = ey. Continuing this process,
we get for each i € {2,3,...,n} a continuous map g;: [s;_1,5;] = E suchthatp e g; = f|5,_, s, and
9i(si—1) = gi—1(s;—1) = e;_1. By Lemma 7.3, we can combine these maps into a continuous map

f:I—>E

given by f(s) = §;(s) for s € [s;_1, s;]. Then f is a lift of f such that £(0) = e,.
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We conclude the proof by showing the uniqueness of f. Assume that there are two continuous
maps fi: I = Eand f,: I - Esuchthatpo fi =pef, = fand f,(0) = f5(0) = e5. We want to
show that f; = f,. Let

A={sellfi(s) = f(s)}

and

D={s€llfis) % f(s)}

Thenclearly, I = AU Dand AN D = @. If we can show that both A are D are open, then because |
is connected we have A = Iand D = @ as e, € A, and hence, f; = f;.

Let s € A, and let U be a neighborhood of f(s) that is evenly covered by p. Assume that V,,
is the subset of p~1(U) that contains fl(s) = £(s). Let U = fi 1V, N f; 1(V,). Then U is
a neighborhood of s and both f; and f, map all points in U to V,. Thus forall t € U, we have
(p fl) ®O=f®)= (p fz) (t) implying that f; (t) = £,(t) asp|Vw V,, = Uisahomeomorphism.
Hence, t € Aand U € A. Thus A is open.

Finally, we need to show that D is open. Choose an s € D. Let U be a neighborhood of f(s)
that is evenly covered by p. Since f;(s) # f,(s), there are unique indexes w; and w, in Q such that
fi(s) €V, and fo(s) € V,,,. ThenU’ = f*(V,,) N f*(V,,) is a neighborhood of s. Since V,,, and
V,, are disjoint, it follows that fl(t) * fz(t) forallt € U'. Thus U’ € D. Hence, D is open. Thus
f=fo O

Theorem 8.13 (Homotopy lifting property) Let B and E be topological spaces, and let

p: E = B be a covering map such that p(ey) = by whereey € E. If H: I X1 — B is

a continuous map where H(0,0) = b,, then there is a unique lifting H: I x I — E with

H(0,0) = e,.

s

IXI—>

Furthermore, if H is a path homotopy then H is a path homotopy.

Proof. We prove the statement about path homotopies. The proof of the first part of the theorem is
similar to the proof of Theorem 8.12, where we make use of Lemma 8.10 to break I X I into smaller
squares [s;_1, S;] X [ti—1,t;] that are mapped by H into open sets of B that are evenly covered by p.
See [4, pp. 343—344] for details.

Assume that H is a path homotopy from the path fy: [ — B tothe path f;: I = B where f;(0) =
f1(0) = by and f,(1) = f1(1) = by. Then the map Hy: I = B given by

Hy(t) = H(O,¢t)
is the constant path in B at b,. Hence, the map ﬁoz I — E given by
Hy(t) = H(0,¢)

is a lift of Hy where Hy(0) = H(0, 0) = e,. Note that the constant path Ceot | = E ateg is also a lift
of Hy such that ¢, (0) = eo. Thus by uniqueness Hy, = Ce,- In other words, H(0,t) = e, forallt € 1.
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Similarly, let H;: I = B be the map given by
Hi(t) =H(,¢t).
Then Hj is the constant path ¢, in B at b;. Let H(1,0) = e;. Then the map H;: I - E given by
H () =H@,¢)

is a lift of H; where H;(0) = H(1,0) = e;. As the constant path Ce,t I = E atey isalso a lift of Hy
such that ¢, (0) = ey, it follows by uniqueness that H = Ce,- In other words, H(1,t) = e, forall
t € I. Thus H is a path homotopy from fo to fl ]

In order to compute the fundamental group of the circle we will use a map referred to as the
lifting correspondence that uses Theorem 8.13.

Definition 8.14 (Lifting correspondences) Let B and E be topological spaces, andletp: E —
B be a covering map such that p(ey) = by where e, € E. Furthermore, let f: I - Bbea
loop in B at by, and let f: I — E be the unique lift of f to a path in E such that £(0) = e,.
We say that the map

®: 11 (B, by) = p~'(bo)

given by ®([f]) = f(1), is the lifting correspondence derived from p.

Let fo: I = Band f;: [ = B betwo loops in B at b, that are path homotopic. Then, by Theorem 8.13, the
corresponding lifted paths fy: I = E and f;: I = E in E, where f;(0) = f;(0) = e,, are also path homotopic.
In particular, f;(1) = f;(1). Thus @ is a well-defined map. We also note that ® depends on the choice of e,
but we usually suppress this dependence in the notation, and hence, write @ instead of @, .

Theorem 8.15 Let B be a topological space and let E be a path connected space. Ifp: E — B
is a covering map such that p(ey) = by where e, € E, then the lifting correspondence

®: 1y (B, by) » P_l(bo)

is surjective. If we assume that E is simply connected, then ® is a bijection.

. J

Proof. Assume thatE is path connected. We want to show that ®: m; (B, by) = p~1(by) is surjective.
In other words, we want to show that for every point e € p~1(b,) thereisaloop f: I = B in B based
at by such that ®([f]) = e. Since E is path connected there isa path g: I = E in E from ey to e. Let
f=peog:1- B.Then f(0) =p(g(0)) =p(ey) = by and f(1) = p(g(1)) = p(e) = bo. Hence,
fis aloop in B based at by and, by Theorem 8.12, g is the unique lift of f to a path in E starting at
eg, i.e., g = f. Thus ®([f]) = f(1) = e. Hence, ® is surjective.

Now assume that E is simply connected. We want to show that in this case ® is also injective. In
other words, if f: I = Band g: [ = B are two loops in B based at b, where ®([f]) = ®([g]) = e,
then we want to show that [f] = [g]. Let f and § be the unique lifts of f and g, respectively,
such that £(0) = §(0) = e,. Since we have assumed that ®([f]) = ®([g]) = e, it follows that
f(1) = §(1) = e. By taking the product of f and the reverse of g, f * §, we get a loop in E based at
eg- Since E is simply connected there must be a path homotopy H from f*Eto the constant path ¢,
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in E at e,. It follows that the composition p o H is a path homotopy from f * g to the constant path
Cp, in B at by. Thus [f] * [g]"! = e where e denotes the identity element in the group m, (B, by),
and hence, [f] = [g]. Hence, @ is injective and thus bijective. O

We now have all the tools we need to compute the fundamental group of the circle.

Theorem 8.16 LetS! = {(x,y) € R? | x2+y? = 1} be the circle considered as a subspace of
R? where R? is given the standard topology. Then for any s, € S%, the lifiting correspondence

®: (St s0) 0 Z

is an isomorphism where Z is the additive group of integers.

Proof. Since S'ispath connected, it follows by Theorem 7.19 that we only need to compute 1, (S, s,)
for one base point (and hence, all) s, € S1. By Theorem 8.6, we know that the mapp: R — S given
by p(t) = (cos(2mt),sin(2mt)) is a covering map. Furthermore, since R is simply connected, it
follows by Theorem 8.15 that the lifting correspondence

@: (St 50) = P (So)

is a bijection. Let e, = 0 such that p(ey) = p(0) = (1,0) = s,. Clearly, p~1(s,) = Z.

We want to show that ® is a homomorphism. In other words, if [f], [g] € m1(S1, sg) we want to
show that ®([f] * [g]) = ®([f]) + ®([g]). Assume that f: [ - ST and g: I - S are two loops
in S* based at sp. By Theorem 8.12 there are unique lifts f and § of f and g, respectively, such that
£(0) = §(0) = 0. Let f(1) = x and §(1) = y such that, by definition of ®, we have ®([f]) = x
and ®([g]) = y. We will show that ®([f * g]) = x + .

To compute ®([f * g]) we must lift f * g to a path f * g in R such that (f * g)(0) = 0. Let
h: I - Rbeapathin R given by

h(s) = f(1) + g(s) = x + g(s).

Note that A is a lift of g starting at x. Letf’l< h: I - Rbea path in R given by

o~ f(2s) 0<s
(f x)(s) = 15

h(2s—-1) 1/2<
Since p(f * h) = f * g, it follows that f * /L is the unique lift of f * g such that (f * 2)(0) = 0. In other

words, f * g = f + h. Finally, since ®([f] * [g]) = ®([f * g]) = (F * g)(1) = h(1) = x + g(1) =
x + y, it follows that @([f] * [g]) = ©([f]) + P([g])- Thus ® is a homomorphism. O

As an application of Theorem 8.16, we can prove the Brouwer fixed point theorem in dimension
2, cf. Theorem 1.1.

Theorem 8.17 (Brouwer fixed point theorem in dimension 2) Let D? = {(x,y) € R? |
x% + y? < 1} be the disk considered as a subspace of R?> where R? is given the standard
topology. Then every continuous map f: D? — D? has a fixed point, i.e., there is an x € D?
such that f(x) = x.
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Sl

r(x)

Figure 8.3: The mapr: D? — S1.

Proof. Assume that f has no fixed points. Then there is a retraction r: D? — S given by having
r(x) be the point on the ray that originates at f(x) and passes through x that lies on the circle. See
Figure 8.3.

By Lemma 7.30, the homomorphism i, : m{(S1,sy) = m(D? s,) induced by the inclusion map
i: ST > D? must be a monomorphism. Since D? is simply connected (it has the homotopy type of
a point), it follows by Theorem 8.16 that the homomorphism i, cannot be a monomorphism. Hence,
there is no retraction r: D? —» S1. O

8.3 The fundamental theorem of algebra

The fundamental theorem of algebra, cf. Theorem 1.2, can be proved in many different ways. In fact,
there is a book, [2], that is entirely dedicated into proving the fundamental theorem of algebra and
that provides a total of twelve different ways (including a modern version of Gauss’s original proof
from 1799) of proving the theorem! These proofs use techniques from abstract algebra, complex
analysis and topology.

We will now present one proof (which is not identical with any of the ones given in [2]) that uses
what we know about the fundamental group of the circle. The proof we give here borrows freely
from the one found in [4, §56] and it will consist of four steps. Throughout this section we will think
of S as the unit circle in the complex numbers C. In other words, S is the set of points in C with
modulus 1, ST = {z € C | |z| = 1}. We consider S as a subspace of C where C = R? is given the
standard topology.

Step1: Llet f: S! — S! be the map given by f(z) = z" wheren € Z,. Then the induced homo-
morphism
formi(SL,1) » my (S 1)

is a monomorphism (note that 1 € C corresponds to s, = (1,0) € R?).

Step2: Letg: S! — C)\ {0} be the map given by g(z) = z". Then g is not nullhomotopic, i.e., g is
not homotopic to a constant map.

Step 3: Special case. Let
2"+ ap_ 12" 1+ +az+a;=0
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be a polynomial equation with coefficients in C where we assume that
|an-1] + lan—2| + - + a1 + |ao| < 1.
Then the polynomial equation has a root residingin D? = {z € C | |z| < 1}.

Step 4: General case. Let
2"+ ap_1z" 1+ +az+a;=0

be a polynomial equation with coefficients in C. Then the polynomial equation has at least
one complex root.

We will need the following lemma to aid us with the second and third step in the proof of Theo-
rem1.2.

Lemma 8.18 Let X be a topological space, and let h: S* — X be a continuous map such that
h(1) = x,. Then h is nullhomotopic if and only if the induced homomorphism h, : m,(S1,1) -
11 (X, xq) is the trivial homomorphism.

Proof. Assume that h is nullhomotopic. Specifically, let h = ¢ where c is the constant map c: S —» X
given by c(z) = x. Then by Lemma 7.37 there is a path a: I = X from x, to x such that ¢, =
@ o h,. Since @is an isomorphism (cf. the proof of Theorem 7.19), it follows that since c, is the trivial
homomorphism, then so is h,.
Now assume that h, is the trivial homomorphism. Let y: I — S be the loop in S! based at 1
given by
]/(S) = p2mis,

As the group of integers (with addition as its binary operation) is cyclic, i.e., Z = (1), cf. Example A.10,
and ;(S1,1) = Z, it follows that [y] is a generator for ; (S, 1). Since h, is the trivial homomor-
phism, it follows that h,([y]) = [h o Y] = e € m1(X, xy) where e is the identity element. Thus there
is a path homotopy F: [ X I — X from h o y to c,, where Cx, IS the constant path in X at xo. In
particular,

F(0,t) = F(1,t) = x,

for all t € I. We want to show that there is a homotopy H: S X I — X from h to the constant map
c: ST - X given by c(z) = x,. Since y: I > Sl is a surjective continuous map whose domain is
compact and whose codomain is Hausdorff, it follows that it is a quotient map. Thusy X id: I X [ =
S1 x I'is also a quotient map where id: I — I is the identity map. Then F induces a continuous map
H: S'xI - X,where F = Ho(y Xid), thatis a homotopy from h to c. Hence, his nullhomotopic. [

We now have everything we need to prove Theorem 1.2.

Proof of Theorem 1.2. Step 1: Let f: ST —» ST be the map given by f(z) = z", and lety: I — S be
the loop in S based at 1 given by
]/(S) — est.

Then theloop foy: I - S, given by
(f o)) = f()) = (e2m5)" = e?mims,
lifts to the path 8: I — R, given by 8(s) = ns, as
(2 0)(s) = p(8(s)) = p(ns) = e*™" = (f o y)(s)
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where p: R — S1 is the map given by p(t) = e?™it
rem 8.6.

Let ®: ,(St, 1) - Z be the lifting correspondence derived p, cf. Theorem 8.16. Then

O([feyD=6(1) =n

and as v lifts to the path ¥#: I — R given by y(s) = s, we have

(D) =71 =1.

By definition of the induced homomorphism f, : m;(51,1) - m,(5%, 1), we have

fAyD =1f e vl

Since ®([f o y]) = n this means that if [a], [8] € 71(S?, 1) where f.([a]) = [B], we have ®([B])
n®([a]) (here we use the fact that ,(S1, 1) is cyclic and generated by [y]), and so, ®(f.([a])) =
n®([a]). In this sense, we can speak of f, as “multiplication by n.”

We want to show that f, is injective. Let [a], [az] € m1(S1, 1) such that [a;] # [a3]. Since ®
is bijective, and hence, injective, it follows that ®([a1]) # ®([a;]). Furthermore, since n € Z, we
have

which we know to be a covering map, cf. Theo-

O (f.([a1]) = n®([a1]) # n®([az]) = ©(f.([a2])).

Thus [a4] # [@;] implies that ®(f.([a1])) # P(f.([@2])). In other words, f, is injective.

Step 2: Let g: ST — C \ {0} be the map given by g(z) = z". Thenifj: ST - C\ {0} is the
inclusion map, we have g = j o f. By Example 7.29 and Lemma 7.30, the induced homomorphism
jo: (S, 1) - m;(C\ {0}, 1) is a monomorphism, and by Theorem 7.24 so is g, as

g =(of)=jiofirm(SH1) > my(C\ {0}, 1)

i.e., g. is the composition of two monomorphisms. As 1, (51, 1) = Z, the monomorphism g, cannot
be the trivial homomorphism. Thus by Lemma 8.18 g is not nullhomotopic.
Step 3: Consider the polynomial equation given by

2"+ ap_1z" 1+ +a;z+a;=0
where we assume that the coefficients ag, a4, ... a,,_1 are complex numbers and that
|an-1| + [an—2| + - +|as| + |ao| < 1.

Assume that the polynomial equation has no rootin D?. We will show that this leads to a contradiction
to the fact that the map g defined in the previous step is not nullhomotopic.
By assumption that the polynomial equation has no root in D?, we may define a map k: D? —
C\ {0} given by
k(z) =z"+ ap_1z" 1+ - a,z + a,.

Then, clearly, k is continuous. Let h = k|¢1. Since h can be extended to k, i.e., we have h = k o {
where i: ST — D? is the inclusion map, it follows by Lemma 8.18 that h is nullhomotopic as h, =
(k o), = k, o i, must be the trivial homomorphism.

We now show that there is a homotopy from g to h, and so, g must be nullhomotopic as h is null-
homotopic. This contradicts our findings from the previous step, and hence, the polynomial equation

2"+ ap_ 12" 1+ +az+a;=0
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where we assume that the coefficients a,, a4, ..., a,_1 are complex numbers and that
|an-1] + |an—2| + -+ las| +|ao| <1
must have a root in D?.
Let F: ST x I - C\ {0} be the map given by
F(z,t) = 2" + t(an_12"" 1 + ap_22™" %2 + -« + a1z + ay).
Then Fis clearly continuous and F(z,0) = z" = g(z) and F(z,1) = zp+a,_1z" 1 ++a,z+a, =
h(z) for all z € S1. Note that since g(z) # 0 forall z € ST and h(z) # 0 for all z € S*. Since
|F(z,0)| = |z" + t(an_12"" 1 + ap_2z""2 + -+ a1z + ap)|
> 2" — |t(an-12"" + ap_z2" 2+ -+ a1z + ap)|
> |2 = t(|an-12""H + |@n—22" 2| + - + |asz| + |aol)
=1-t(lap-1| + [an-2| + -+ |as| + |aol)
where the two inequalities follow from the triangle inequality and the following equality follows from
the fact that |z| = 1 as z € S1, it follows from the assumption that
|an-1| + [an—2| + - +]as] + lao| <1

andthat 0 < t < 1that |F(zt)| > Oforallz € Standall 0 < t < 1. Hence, F is a homotopy from
g toh.

Step 4: For the final step we need to show that we can extend from the special case in the previous
step to the general case. Let

2"t a,_1z" 1+ taz+ay;=0

be a polynomial equation with complex coefficients.
In order to use the previous step we need to “scale” the coefficients such that we have a similar
assumption of the sum of the modulus of the coefficients as in the previous step. To do this, choose
a (real) number s > 0 large enough so that
ai
gn-1

Qo

Sn

an-2
g2

an-1
S
Let z = sw such that the polynomial equation

+o +|=f < 1.

2"t ap,_1z" 1+ taz+ay=0
now becomes
S"W + @y sTIW 4+ o+ agsw +ag = 0.
Dividing by s™ we get the polynomial equation

a Qo
—w+ ;=0
sn sn

An-1 n_
wh+ ——wm
S

which, by the previous step, must have a root, say, w, in D?. Hence, z, = sw is a root for the
polynomial equation
2"+ ap_1z" 1+ +az+a, =0.

This completes the proof. O]

The property that every complex non-constant polynomial has a complex root is often referred to as the
(field of) complex numbers being algebraically closed. The field of real numbers is, however, not algebraically
closed, as, e.g., the polynomial equation x? + 1 = 0 has no root in R.



92 8.4. Exercises

8.4 Exercises

Exercise 8.1 Let R be the set of real numbers equipped with the standard topology, and con-
sider ST as a subspace of R? where R? is given the standard topology. Show that the product
space R x S is a covering space of the torus T2 = S x ST,

Exercise 8.2 Let B be a simply connected space, and let E be a path connected space. Show
thatif p: E — Bis a covering map, then p is a homeomorphism.

Exercise 8.3 Let B and E be two topological spaces, and let e, € E. Show thatifp: E - B
is a covering map such that p(eg) = by, then the induced homomorphism p,: m{(E, ep) —
11 (B, by) is a monomorphism.

Exercise 8.4 Let B be a Hausdorff space, and let E be a topological space. Show that if
p: E — Bis a covering map, then E must be Hausdorff.

Exercise 8.5 Let S be the unit circle considered as a subspace of the complex numbers C
where C = R? is given the standard topology. Show that for every integer n greater than 1 the
map p: ST - ST given by

p(z) =z"

is a covering map.

Exercise 8.6 Let R denote the set of real numbers equipped with the standard topology, and
let Z denote the set of integers. Consider E = {(x,y) € R? | x — y € Z} as a subspace of R?
where R? is given the standard topology. Show that the map p: E - R given by p(x,y) = x
is a covering map.

Exercise 8.7 Letn be a positive integer that is greater than or equal to 2. Show that for any
Xo € RP™
1 (RP™, xo) = Z/2

where RP" is real projective n-space. (You may assume as a known fact that the n-sphere
S™ (considered as a subspace of R**! where R™*! is given the standard topology) is simply
connected forn > 2.)

Exercise 8.8 LetA,, = {(x1,%;) € R? | a < /xf + x < b} be considered as a subspace
of R? where R? is given the standard topology and a,b € Rwith 0 < a < 1 < b. Compute
1 (Agp, Xo) forany xo € Agp.



A. Elementary algebra

A.1  Groups

Groups are sets with a binary operation satisfying certain axioms, and frequently appear in relation
to symmetry.

Definition A.1 (Binary operations) LetSbeaset. AbinaryoperationonSisamap*: SXS —
S. We write a * b instead of *(a, b) fora,b € S.

The definition says that the set S is closed under the binary operation * in the sense that if a and
b are elements in S, then sois a * b.

Example A.2 LetZ be the set of integers. Addition (+) and multiplication (-) are two binary
operations on Z.

Definition A.3 (Groups) A group is a non-empty set G together with a binary operation *
such that the following properties hold.

Gl Foralla,b,c€G,(a*b)*xc=ax(bx*c).
G2 Thereisanelemente € Gsuchthataxe=a =exaforalla € G.
G3 Foreacha € G thereisanelementa’ € Gsuchthata*a' = e =a’ *a.

We say that a group is abelian if * is also commutative: a xb = b xaforalla,b € G.

A group is strictly speaking an ordered pair (G, *). We often omit specific mention of * if no confusion will
arise. The first axiom, G1, says that * is an associative operation. The second axiom, G2, says that there is a
neutral or identity element for . The third axiom, G3, says that for each element a € G there is an inverse
element a’ € G such thata’ is both a left and right inverse element, i.e.,a’ xa = eand axa’ = e, respectively.
The order of a group G is the number of elements in G, written |G|.

We say that a group is written multiplicatively if we write ab instead of a*b, 1 (sometimes) instead of e and
a~linstead of a’, and we say that a group is written additively if we write a + b instead of a * b, 0 (sometimes)
instead of e and —a instead of a’.

Example A.4 The set of real numbers, R, is an abelian group under addition: G1, G2 and G3
are all satisfied with e = 0 and the inverse element of a € R being —a. Furthermore, it is an
abelian groupasa+b =b +aforalla,b € R.

Note that R is not a group under multiplication: while G1 and G2 are satisfied (with e = 1),
G3 fails. There is no real number we can multiply with 0 to get 1.

93
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Example A.5 Forn € Z,, let
Z/n={0,1,2,..,n— 1}

Then Z/nis an abelian group with +,, (addition modulo n) as its binary operation, i.e., a+,b =
a+b mod nfora,b € Z/n. Note that some authors write Z,,, Z /(n) or Z/nZ for Z/n.

Example A.6 LetGL,(R) denote the set of invertible n X n-matrices with entries in R. Then
GL,(R) is a group with matrix multiplication as its binary operation. Note that it is not abelian,

T

Definition A.7 (Subgroups) Let G be a group with binary operation *. We say that a subset
H of G is a subgroup, written H < G, if * restricted to H X H is a binary operation on H such
that H with *|«py is a group. We say that a subgroup H of G is a proper subgroup of G, written
H < G, if H is a proper subset of G.

=
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==
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_ o o
=
[ RS
[ )

The set consisting of just the identity element is always a subgroup of a group. It is often called
the trivial subgroup.

Example A.8 Let G = Z with addition as its binary operation. For m € Z, \ {1}, let
H=mZ={mn|lneZ}={.,—2m —m,0,m,2m,..}.

Then H is a proper subgroup of G.

Theorem A.9 Let G be a group that is written multiplicatively, and let x € G. If H is a
subgroup of G containing x, then

(x)={x"In€eZ}

is a subgroup of H.

We say that (x) is the cyclic subgroup of G generated by x. Note that (x) is the smallest subgroup of G
containing x. If there is an x’ € G such that G = (x'), we say that G is cyclic, and that x’ is a generator for G.
Note that cyclic groups may have more than one generators and that all cyclic groups are abelian. If the group
is written additively, we interpret (x) as the set {nx | n € Z}.

Proof. Since H is a subgroup of G, it follows that x™* € H. Thusxx™! = x 'x = x* = 1 € H.
Furthermore, x™ € H for alln € Z where x ™ = (x~1)™. Thus (x) is a subgroup of H. O
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Example A.10 The set of integers, Z, is an infinite cyclic group with addition as its binary
operation generated by both —1 and 1, i.e., (—1) = (1) = Z.

Definition A.11 (Left and right cosets) Let G be a group, and let H be a subgroup of G. For
g € G, we say that the set
g*H={g+h|heH}

is the left coset of H containing g, and that the set
H+xg={h*g|he€H}

is the right coset of H containing g.

\. J

Clearly, if G is abelian, the left and right cosets are equal. However, the left and right cosets may
coincide even if G is not abelian.

Definition A.12 (Normal subgroups) Let G be a group. We say that a subgroup H of G is
normal if the left and right cosets coincide, i.e., g * H = H x g forall g € G.

An equivalent definition of a normal subgroup is to say that H is a normal subgroup of G if g * h *
gl € Hforeachg € Gandeachh € H.

Theorem A.13 Let G be a group written multiplicatively, and let H be a normal subgroup of
G. Then the set of cosets of H, denoted G /H, is a group with binary operation given by

(91H)(g2H) = (g192)H

for g4, 9, €G.

We refer to the group G/H as the factor group or quotient group of G by H. If G is a group, and H is a
subgroup of G the relation ~;, given by a ~; bifand only if a™b € H for a,b € G is an equivalence relation
on G. It can be shown that for a fixed g € G, theset {x € G | g ~; x}is equal to the left coset of H containing
g,ie., gH. ltisafactthatif g’ € gH, then g'H = gH.

Proof. We first show that the binary operation defined on G /H is well-defined. Let g; € g;H, and
let g5 € g,H. Then g;H = g1H and g,H = g3H. We must show that (g;H)(g,H) = (g91H)(g5H).
Choose an element (g1 92)h € (g192)H. Since g, € g1H = g1H and g, € g,H = g;H, there are
elements hy and h; in H such that g; = g1hy and g, = g3h,. Thus

(9192)h = (g1h1)(gzh2)h
= g1h192h2h
= 91(92(92) " Dh1gzhah
= 9192((92) " h1g3)hah
= g192h1hah € (9192)H
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where the last equality follows from the fact H is a normal subgroup of G; there is an h} € H such
that (g5)"th,g, = h). Hence, (9192)H S (g1g5)H. A similar argument shows that (g} g3)H S

(9192)H. Hence, (9192)H = (g192)H. Thus
(91H)(g2H) = (9192)H = (9192)H = (g1H)(g2H).

We now show that G/H is a group. Let g;H, g,H and g, H be elements in G/H. We must show
that [(g1H)(92H)](g93H) = (91H)[(92H)(g3H)]. By definition, we have

[(9:1H)(92H)](g3H) = (9192H)(g3H)
= (9192)93H
= 91(9293)H
= (91H)(9293H)
= (9:H)[(g2H)(g3H)].

Hence, G1 is satisfied. If e is the identity element in G, then
(gH)(eH) = (ge)H = gH = (eg)H = (eH)(gH)

forall g € G. Hence, G2 is satisfied with eH = H as the identity element in G/H. Finally, for each
g € G, we have

(gH)(g™'H) = (99~ 'H) = eH = (g7*9)H = (g~ H)(gH).
Hence, G3 is satisfied with (gH)™ = g~'H. Thus G /H is a group. O

The following theorem describes how we may construct a new group from two existing groups.

e D

Theorem A.14 Let G, and G, be groups with binary operations x4, and *,, respectively. Then
G, X G, is a group with binary operation given by

(91, 92) * (91, 92) = (91 *1 91, 92 *2 92)

for g1, 91 € Gy and g,, g; € G,.

We say that that the group G; X G, is the direct product of G, and G,.

Proof. Since G4 and G, are groups with binary operations *; and *,, respectively, it follows that
(91, 92) * (91, 92) = (g1 *1 91, 92 *2 92) € Gy X G,

for (91, 92), (91, 92) € G1 X G2.
Let (a4, ay), (by, by) and (cq, ;) be elements in Gy X G,. Then

[(a1, az) * (b1, b3)] * (c1,€2) = (@q *1 by, az *3 by) * (€1, ¢2)
= ((ay *1 b1) *1 ¢1,(az *2 bz) *2 ¢2)
= (ay *1 (b1 *1 €1),ap %3 (bz *2 €2))
= (a1, az) * (by *1 €1,b3 %3 C3)
= (ay,az) * [(by, b2) * (c1, c2)]-
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Thus G1 is satisfied.
If e, and e, are the identity elements in G; and G5, respectively, then

(91, 92) * (e1,€2) = (g1 *1 €1, 92 *2 €2)
= (91, 92)

and

(e1,€2) * (g1, 92) = (€1 *1 g1, €2 *2 g2)
= (91, 92)

forall (g1,92) € G1 X G,. Hence, G2 is satisfied.
Finally, if g7* and g5 ! denotes the inverse elements of elements g; € G; and g, € G,, respec-
tively, then

(91,92) * (915970 = (91 %1 915 92 %2 931)

= (e1, ;)
and
(974921 * (91, 92) = (91" *1 91,92 *2 92)
= (e, €2).
Thus G3 holds. Hence, G; X G, with * as its binary operation is a group. O

We can extend the theorem to hold for a finite collection of groups: if G4, G, ..., G, are groups, then

n
Haizclxazx-nxan
i=1

is a group with binary operation as defined above suitably expanded. Note also that the direct product is abelian
if and only if each of the factors are abelian.

A.2  Homomorphisms

Homomorphisms are structure preserving maps from one group to another.

Definition A.15 (Homomorphisms) Let G; and G, be groups with binary operations *; and
*,, respectively. Then a map ¢: G; = G, is a homomorphism if

Px*1y) = @x) * ()

forallx,y € G;.

Note that if e; and e, are the identity elements in G, and G,, respectively, then for any homomorphism
@: G, > Gy, we have p(e;) = e,. If x~1 denotes the inverse element of x € G,, and y~! denotes the inverse
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elementof y € G,, then @(x™1) = (%)t e, = @p(e;) = @(x *; x™1) = @(x) *, @(x~1), and similarly,
e; = @(x ) *; (x). Thus (x4 = p(x) ™.

Example A.16 Let G; and G, be groups. Then the map ¢: G; = G, given by

(p(X) = ey

where e, is the identity element in G,, is a homomorphism: @(x) *, @(y) = e; ¥, e, = e, =
@(x x1 y) forall x,y € G;. The map ¢ is often referred to as the trivial homomorphism.

The following theorem says that the composition of two homomorphisms is also a homomor-
phism.

Theorem A.17 Let G4, G, and G3 be groups. If ¢1: G, = G, and ¢,: G, = G3 are homo-
morphisms, then the composition @, o ¢1: G — G is also a homomorphism.

Proof. Assume that all three groups are written multiplicatively. Then

92 (91(x¥)) = @2 (@1(DP1(¥)) = @2 (91(x)) @2 (91 (1))
for all x,y € G;. Hence, ¢, © ¢4 is a homomorphism. O

The following theorem describes how homomorphisms provides two subgroups.

Theorem A.18 Let G, and G, be groups, and let ¢: G; — G, be a homomorphism. Then

(1) the kernel of @, ker = {x € G; | p(x) = e,}, where e, is the identity element in G,
is a normal subgroup of G4;

(2) theimageof @, im¢@ = {y € G, | thereis an x € G, such that ¢(x) = y}is a subgroup
of G,.

Proof. Assume that Gy and G, are both written multiplicatively. We prove part (1). If x and y are
elements in ker ¢, then, since ¢ is a homomorphism, we have

P(xy) = X)) = e,

where we have used the fact that e;e, = e,. Since @ is assumed to be a homomorphism, we have
@(e1) = e, where e; is the identity element in G;. Hence, e; € ker . Finally, since p(x™1) =
@(x)1 for each x € G;, we have for each x € ker ¢ that x™! € ker ¢. Thus ker ¢ is a group, and
moreover, a subgroup of G;. We now prove that ker ¢ is a normal subgroup of G;. Let x € ker ¢.
Then for each g € G4, we have

0(gxg™") = (@@ (@™ = 9(9)e:0(9) " = (g e(g) ™" = e,.

Hence, ker ¢ is a normal subgroup of G;. This proves part (1).
We now prove part (2). Let x; and x, be two elements in G;. Then, since ¢ is a homomorphism,
we have

P(x)p(x2) = p(x1x;) € ime.
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Since ¢ is a homomorphism, we have e, € im ¢@. To complete the proof of the fact that im ¢ is a
subgroup of G,, we use the fact that @(x~1) = @(x)~! for each x € G;. Thus @(x)~! € im ¢ for
each x € G;. Hence, for each y € im ¢, we have y~1 € im ¢. This proves that im ¢ is a group, and
moreover, that it is a subgroup of G,. Hence, we have proved part (2). L]

An injective homomorphism is said to be a monomorphism while a surjective homomorphism is
said to be an epimorphism.

Definition A.19 (Isomorphisms) Let G; and G, be groups. We say that a bijective homo-
morphism ¢: G; — G, is an isomorphism.

Thus a homomorphism which is both a monomorphism and an epimorphism is an isomorphism.

Example A.20 Let G be a group. The identity mapid: G — G is an isomorphism. In general,
we refer to an isomorphism from a group G to itself as an automorphism.

Theorem A.21 (Fundamental homomorphism theorem) Let G, and G, be groups, and let
@: Gy = G, be a homomorphism. Then the map ¢: G;/ ker ¢ — im @ given by

@(xkerp) = @(x)

is an isomorphism. Furthermore, if m: G, — G,/ ker @ is the map given by w(x) = xker ¢,
then 1 is a homomorphism and @(x) = (¢ o m)(x) for each x € G;.

Gy

| S

G/ kerg — im¢@
7]

Proof. We first show that @ is well-defined. Let x; and x, be two elements in G. If x; kerg =
X, ker ¢, we must show that ¢ (x; ker ¢) = @(x, ker ). In other words, we must show that ¢(x;) =
@(x,). Since x, € x4 ker @, thereis an element zin ker ¢ such that x, = x;z. Thusif e, is the identity
elementin G, we have

P(x2) = p(x12) = P(x1)@(2) = p(x1)ez = P(x1)

where we have used the fact that ¢ is a homomorphism. Hence, ¢ is a well-defined map.
We now show that ¢ is an isomorphism, where we first show that it is a homomorphism, and
then that it is bijective. By definition for x; ker ¢, x, ker ¢ € G/ ker ¢, we have

@((x1 ker @) (x; ker @) = @((x1x,) ker @)
= @(x1x3)
= @(x1)p(x2)
= @(x1 ker @)@ (x; ker @).
Thus @ is a homomorphism.

Now assume that @(x; ker ¢) = @(x, ker ¢). We must show that this implies that x; ker ¢ =
x, ker . If (x, ker ) = @(x, ker @), then by definition, we have @(x1) = @(x,). Thisimplies that
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@(x2) tp(x;1) = e,. Since ¢ is a homomorphism, we have @(x;1x;) = e,. Thus x;1x; € ker ¢,
and so, x5 1x; ker ¢ = ker . Hence, x; ker ¢ = x, ker ¢. Thus @ is injective. For any ¢(x) € im ¢,
we have, by definition, that ¢ (x ker ¢) = @(x). Hence, @ is surjective. Thus ¢ is bijective, and hence,
it is an isomorphism.

By definition, we have, for elements x; and x, in G, that

(x1%xy) = (x1x,) ker @ = (x4 ker @) (x, ker @).
Hence, i is a homomorphism. Furthermore,
(pom)(x) = p(m(x)) = p(xkerp) = @(x)

for each x € G;. This completes the proof. ]
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