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1. Introduction

These are lecture notes from the course TMA4190 Introduction to Topology given in the Spring

semester 2021 at NTNU. They are intended as a supplement to the lectures and may not be

entirely self-contained.

Please send me an email if you spot any errors!

What is topology?

Topology! The stratosphere of human thought! In the twenty-fourth century it might

possibly be of use to someone. . .

— Aleksandr Solzhenitsyn

Topology is a part of mathematics concerned with the study of spaces. In topology, we consider

two spaces to be equivalent if one can be continuously deformed into the other. Such a continuous

deformation is known as a homeomorphism, i.e., a continuous bijection with a continuous inverse.

See Figure 1.1 for an example of two homeomorphic spaces.

Figure 1.1: The surface of the (unit) cube and the (unit) sphere 𝑆2 are homeomorphic.

We might ask ourselves the following question.

Question Let 𝑋 and 𝑌 be two spaces. Does there exist a homeomorphism 𝜑∶ 𝑋 → 𝑌? In

other words, are 𝑋 and 𝑌 homeomorphic?

Showing that two spaces are homeomorphic involves the construction of a specific homeomor-

phism between them. Proving that two spaces are not homeomorphic is a problem of a different

nature. It is a hopeless exercise to check every possible map between the two spaces for whether

or not it is a homeomorphism. Instead we might check to see whether there is some “topological

invariant” of spaces (where this invariant is preserved under a homeomorphism) that allows us to

differentiate between the two spaces.
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Figure 1.2: The disc 𝐷2 and the annulus are not homeomorphic.

One instrument to help us detect topological information of a space is the fundamental group

associated to the space. It is reasonable to expect that the disc 𝐷2 and the annulus are not homeo-

morphic. The annulus has a hole through it while the disc does not, see Figure 1.2.

To detect the hole through the annulus we may use loops, i.e., continuous maps from the unit

interval to the annulus with the endpoints identified. See Figure 1.3.

𝛾
•

Figure 1.3: A loop.

It is then possible to construct a group involving such loops. This group is what is known as the

fundamental group.

Some applications

To help illustrate some of the power of topology, let us consider two theorems, both of which may be

proved using topology and more specifically, the fundamental group.

The first theorem is the Brouwer fixed point theorem.

Theorem 1.1 (Brouwer fixed point theorem) Let 𝑓∶ 𝐷𝑛 → 𝐷𝑛 be a continuous map from

the (unit) disk in ℝ𝑛 to itself. Then 𝑓 has a fixed point, i.e., there is some point 𝑥 ∈ 𝐷𝑛 such

that 𝑓(𝑥) = 𝑥.

For 𝑛 = 1 this is a well-known result from calculus: The graph of any continuous map 𝑓∶ [0, 1] →

[0, 1]must cross the diagonal 𝑦 = 𝑥 for some 𝑥∗ ∈ [0, 1]. Hence, 𝑓(𝑥∗) = 𝑥∗. See Figure 1.4.

The second theorem is the fundamental theorem of algebra.



6

𝑦

𝑥

𝑦 = 𝑓(𝑥)
𝑦 = 𝑥

•(1, 1)

𝑥∗

𝑥

Figure 1.4: The graph of any continuous map from [0, 1] to [0, 1]must cross the diagonal.

Theorem 1.2 (The fundamental theorem of algebra) A polynomial equation

𝑧𝑛 + 𝑎𝑛−1𝑧
𝑛−1 +⋯+ 𝑎1𝑧 + 𝑎0 = 0

of degree 𝑛 > 0 with complex coefficients has at least one complex root.

To prove it we will use the fact that the fundamental group of the circle is isomorphic to the group

of integers. The fundamental theorem of algebra may be proved in many different ways, including

using only algebraic techniques and analysis. However, the proof we will provide (based on [3]) is a

fairly simple corollary of the computation of the fundamental group of the circle.



2. Continuous maps

2.1 Metric spaces

From calculus we know what to mean by a continuous map from ℝ𝑛 to ℝ𝑚: a map 𝑓∶ ℝ𝑛 → ℝ𝑚

is continuous at 𝑝 ∈ ℝ𝑛 if for all 𝜖 > 0 there exists a 𝛿 > 0 such that if ‖𝑝 − 𝑞‖ℝ𝑛 < 𝛿, then

‖𝑓(𝑝) − 𝑓(𝑞)‖ℝ𝑚 < 𝜖. Here ‖ ⋅ ‖ℝ𝑛 denotes the Euclidean norm in ℝ𝑛. Similarly, ‖ ⋅ ‖ℝ𝑚 denotes

the Euclidean norm in ℝ𝑚.

Topological spaces provide the most general setting for which the concept of continuity makes

sense. Before we get to the concept of a topological space, let us consider metric spaces. Metric

spaces allow us to speak of distance between elements. Using the notion of distance between ele-

ments we can make sense of continuity of maps between metric spaces.

Definition 2.1 (Metric spaces) A metric space (𝑋, 𝑑) is a non-empty set 𝑋 together with a

map 𝑑∶ 𝑋 × 𝑋 → ℝ called ametric such that the following properties hold:

M1 𝑑(𝑥, 𝑦) ⩾ 0 for all 𝑥, 𝑦 ∈ 𝑋, and 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦;

M2 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋;

M3 𝑑(𝑥, 𝑧) ⩽ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋.

The first condition says that the distance between two elements is always positive, and equal to zero if

and only if the two elements are the same. The second condition says that distance is symmetric. The third

condition says that the triangle inequality holds. The metric 𝑑 is sometimes also referred to as a distance

function.

Example 2.2 (ℝ𝑛 seen as a metric space) Let𝑋 = ℝ and 𝑑 be themap defined by 𝑑(𝑥, 𝑦) =

|𝑥 − 𝑦|(= �(𝑥 − 𝑦)2). The first two requirements for 𝑑 are clearly satisfied, and the third

follows from the usual triangle inequality for real numbers,

𝑑(𝑥, 𝑧) = |𝑥 − 𝑧| = |(𝑥 − 𝑦) + (𝑦 − 𝑧)| ⩽ |𝑥 − 𝑦| + |𝑦 − 𝑧| = 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧).

For 𝑋 = ℝ𝑛 with 𝑛 > 0 an integer, let 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖ where ‖ ⋅ ‖ is the Euclidean

norm, e.g., for 𝑛 = 2, 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖ = �(𝑥1 − 𝑦1)
2 + (𝑥2 − 𝑦2)

2. Again, the first

two requirements for 𝑑 are clearly satisfied. The third requirement follows from the triangle

inequality for vectors in ℝ𝑛.

We may equip ℝ𝑛 with other metrics than the one described in Example 2.2. For instance, for

𝑋 = ℝ2, let

𝑑(𝑥, 𝑦) = |𝑥1 − 𝑦1| + |𝑥2 − 𝑦2|.
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This is known as the taxi cab metric.

We say that twometrics 𝑑1 and 𝑑2 on the same set 𝑋 are equivalent if there exist constants 𝐿 and

𝑀 such that

𝑑1(𝑥, 𝑦) ⩽ 𝐿𝑑2(𝑥, 𝑦) and 𝑑2(𝑥, 𝑦) ⩽ 𝑀𝑑1(𝑥, 𝑦)

for all 𝑥, 𝑦 ∈ 𝑋.

Example 2.3 (Discrete metric spaces) For any set 𝑋, let 𝑑∶ 𝑋 ×𝑋 → ℝ be the map given by

𝑑(𝑥, 𝑦) = �
1 𝑥 ≠ 𝑦,

0 𝑥 = 𝑦.

We call 𝑑 the discrete metric on 𝑋.

Example 2.4 (𝐶[𝑎, 𝑏]) Let 𝑋 = 𝐶[𝑎, 𝑏], i.e., the set of continuous maps from the interval

𝐼 = [𝑎, 𝑏] ⊆ ℝ to ℝ, and let

𝑑(𝑥, 𝑦) = max
𝑖∈𝐼

|𝑥(𝑖) − 𝑦(𝑖)|.

Example 2.5 If 𝑑 is a metric on a set 𝑋, and 𝐴 ⊆ 𝑋 is any subset of 𝑋, then 𝑑 is also a metric

on 𝐴.

2.2 Continuous maps between metric spaces

The definition of continuity of maps between metric spaces is completely analogous to the situation

that we have from calculus.

Definition 2.6 (Continuous maps between metric spaces) Let (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) be two

metric spaces. A map 𝑓∶ 𝑋 → 𝑌 is continuous at 𝑝 ∈ 𝑋 if for all 𝜖 > 0 there is a 𝛿 > 0 such

that if 𝑑𝑋(𝑝, 𝑞) < 𝛿 then 𝑑𝑌(𝑓(𝑝), 𝑓(𝑞)) < 𝜖.

If 𝑓 is continuous at every 𝑝 ∈ 𝑋, we say that 𝑓 is continuous.

To get us to the setting of topological spaces we will need the concept of open and closed sets.

Definition 2.7 (Open and closed balls) Let (𝑋, 𝑑) be a metric space, and let 𝑎 ∈ 𝑋 and

𝑟 > 0 be real number. The open ball centered at 𝑎 with radius 𝑟 is the subset

B(𝑎; 𝑟) = {𝑥 ∈ 𝑋 ∣ 𝑑(𝑥, 𝑎) < 𝑟}

of 𝑋. The closed ball centered at 𝑎 with radius 𝑟 is the subset

B(𝑎; 𝑟) = {𝑥 ∈ 𝑋 ∣ 𝑑(𝑥, 𝑎) ⩽ 𝑟}

of 𝑋.

In Euclidean space with the usual metric (induced from Euclidean norm), a ball (as defined above)

is precisely what we think of as a ball in everyday language. Open balls are sometimes referred to as
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simply balls, and closed balls are sometimes referred to as discs, e.g. Theorem 1.1.

Example 2.8 (Open balls in discrete metric spaces) Let (𝑋, 𝑑) be the metric space defined

in Example 2.3. Then

B(𝑥; 𝑟1) = {𝑥} and B(𝑥; 𝑟2) = 𝑋

for all 0 < 𝑟1 ⩽ 1 and all 𝑟2 > 1.

Definition 2.9 (Open and closed sets) Let (𝑋, 𝑑) be a metric space. A subset 𝐴 ⊆ 𝑋 is open

in 𝑋 if for every point 𝑎 ∈ 𝐴, there is an open ball B(𝑎; 𝑟) about 𝑎 contained in 𝐴. We say that

𝐴 is closed in 𝑋 if the complement 𝐴𝑐 = 𝑋 ⧵ 𝐴 = {𝑥 ∈ 𝑋 ∣ 𝑥 ∉ 𝐴} is open.

Most subsets are neither open nor closed. Subsets that are both open and closed are sometimes referred

to as clopen. In particular, both ∅ and 𝑋 are clopen in 𝑋.

Lemma 2.10 Let (𝑋, 𝑑) be a metric space, 𝑥 ∈ 𝑋 and 𝑟 > 0 a real number. Then the open

ball B(𝑥; 𝑟) ⊆ 𝑋 is open in 𝑋, and the closed ball B(𝑥; 𝑟) ⊆ 𝑋 is closed in 𝑋.

Proof. We prove the statement about open balls. The statement about closed balls follows from a

similar argument.

Assume that 𝑦 ∈ B(𝑥; 𝑟). We need to prove that there is an open ball B(𝑦; 𝜖) about 𝑦 that is

contained in B(𝑥; 𝑟). Let 𝜖 = 𝑟 − 𝑑(𝑥, 𝑦). By the triangle inequality of the metric 𝑑, M3, we have

that for 𝑧 ∈ B(𝑦; 𝜖),

𝑑(𝑥, 𝑧) ⩽ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) < 𝑑(𝑥, 𝑦) + 𝜖 = 𝑑(𝑥, 𝑦) + 𝑟 − 𝑑(𝑥, 𝑦) = 𝑟.

Hence, B(𝑦; 𝜖) ⊆ B(𝑥; 𝑟).

For a metric space (𝑋, 𝑑), a subset 𝐴 ⊆ 𝑋 and 𝑥 ∈ 𝑋, we say that: (i) 𝑥 is an interior point of 𝐴 if

there is an open ball B(𝑥; 𝑟) about 𝑥 which is contained in 𝐴, (ii) 𝑥 is an exterior point of 𝐴 if there is

an open ball B(𝑥; 𝑟) which is contained in 𝐴𝑐 and (iii) 𝑥 is a boundary point if all open balls about 𝑥

contains points in 𝐴 and in 𝐴𝑐. Hence, 𝐴 is open in 𝑋 if and only if 𝐴 only consists of its interior points.

An interior point will always belong to 𝐴. An exterior point will never belong to 𝐴. A boundary point

will some times belong to 𝐴, and some times to 𝐴𝑐.

Definition 2.11 (Neighborhoods) Let (𝑋, 𝑑) be a metric space, 𝐴 a subset of 𝑋 and 𝑥 ∈ 𝑋.

We say that 𝐴 is a neighborhood of 𝑥 if there is an open ball about 𝑥 that is contained in 𝐴. We

say that 𝐴 is an open neighborhood (of 𝑥) if 𝐴 itself is open.

Theorem 2.12 (Continuity at a point) Let (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) be two metric spaces, and

let 𝑝 ∈ 𝑋. A map 𝑓∶ 𝑋 → 𝑌 is continuous at 𝑝 if and only if for all neighborhoods 𝐵 of 𝑓(𝑝),

there is a neighborhood 𝐴 of 𝑝 such that 𝑓(𝐴) ⊆ 𝐵.

Proof. Assume that 𝑓 is continuous at 𝑝. If 𝐵 is a neighborhood of 𝑓(𝑝), then, by definition, there

is an open ball B𝑌(𝑓(𝑝); 𝜖) about 𝑓(𝑝) that is contained in 𝐵. Since 𝑓 is continuous at 𝑝, there is a
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𝛿 > 0 such that if 𝑑𝑋(𝑝, 𝑞) < 𝛿, then 𝑑𝑌(𝑓(𝑝), 𝑓(𝑞)) < 𝜖. Hence, 𝑓(B𝑋(𝑝; 𝛿)) ⊆ B𝑌(𝑓(𝑝); 𝜖) ⊆ 𝐵.

That is, if we let 𝐴 = B𝑋(𝑝, 𝛿), then for all neighborhoods 𝐵 of 𝑓(𝑝), we have that 𝑓(𝐴) ⊆ 𝐵 where

𝐴 is a neighborhood of 𝑝.

Assume that for all neighborhoods𝐵 of 𝑓(𝑝), there is a neighborhood 𝐴 of 𝑝 such that 𝑓(𝐴) ⊆ 𝐵.

We need to prove that for all 𝜖 > 0, there is a 𝛿 > 0 such that if 𝑑𝑋(𝑝, 𝑞) < 𝛿, then 𝑑𝑌(𝑓(𝑝), 𝑓(𝑞)) <

𝜖. By utilizing the fact that 𝐵 = B𝑌(𝑓(𝑝); 𝜖) is a neighborhood of 𝑓(𝑝), then, by assumption, there

must be a neighborhood 𝐴 of 𝑝 such that 𝑓(𝐴) ⊆ 𝐵. Since 𝐴 is a neighborhood of 𝑝, there is an open

ball B𝑋(𝑝; 𝛿) about 𝑝 that is contained in 𝐴. Now assume that 𝑑𝑋(𝑝, 𝑝
′) < 𝛿. Then 𝑝′ ∈ B𝑋(𝑝; 𝛿) ⊆

𝐴. Thus 𝑓(𝑝′) ∈ 𝐵 = B𝑌(𝑓(𝑝); 𝜖), and hence, 𝑑𝑌(𝑓(𝑝), 𝑓(𝑝
′)) < 𝜖. Thus 𝑓 is continuous at 𝑝.

The following theoremgives an alternativedescriptionof continuousmaps betweenmetric spaces.

Theorem 2.13 (Continuous maps between metric spaces) Let (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) be two

metric spaces. A map 𝑓∶ 𝑋 → 𝑌 is continuous if and only if for every subset 𝐵 ⊆ 𝑌 open in 𝑌,

the preimage of 𝐵 under 𝑓,

𝑓−1(𝐵) = {𝑥 ∈ 𝑋 ∣ 𝑓(𝑥) ∈ 𝐵} ⊆ 𝑋,

is open in 𝑋.

Proof. Assume that 𝑓 is continuous. For 𝐵 ⊆ 𝑌 open in 𝑌, we have to prove that 𝑓−1(𝐵) ⊆ 𝑋 is open

in 𝑋. Let 𝑎 ∈ 𝑓−1(𝐵). We want to prove that there is an open ball about 𝑎 in 𝑋 that is contained in

𝑓−1(𝐵). By assumption, 𝐵 ⊆ 𝑌 is open in 𝑌. Hence, there is an 𝜖 > 0 such that B𝑌(𝑓(𝑎); 𝜖) ⊆ 𝐵.

From the assumption that 𝑓 is continuous there is a 𝛿 > 0 such thatB𝑋(𝑎; 𝛿) ⊆ 𝑓−1(B𝑌(𝑓(𝑎); 𝜖)) ⊆

𝑓−1(𝐵).

We now prove the opposite implication. Assume that for every subset 𝐵 ⊆ 𝑌 open in 𝑌, the

preimage 𝑓−1(𝐵) of 𝐵 under 𝑓 is open in 𝑋. Let 𝑎 ∈ 𝑋 and 𝜖 > 0 be a real number. From the first

assumption it follows that 𝑓−1(B𝑌(𝑓(𝑎); 𝜖)) ⊆ 𝑋 is open in 𝑋. As 𝑓−1(B𝑌(𝑓(𝑎); 𝜖)) is open and

contains 𝑎, there is a 𝛿 > 0 such that B𝑋(𝑎; 𝛿) ⊆ 𝑓−1(B𝑌(𝑓(𝑎); 𝜖)). Thus 𝑥 ∈ B𝑋(𝑎; 𝛿) implies that

𝑓(𝑥) ∈ B𝑌(𝑓(𝑎); 𝜖). Hence, 𝑓∶ 𝑋 → 𝑌 is continuous.

Let 𝐴 and 𝐵 be sets, and let 𝑓∶ 𝐴 → 𝐵. Then 𝑓−1(𝐵) will always exist even if there is no inverse map. In

the cases where 𝑓 has an inverse there is no ambiguity. If 𝑈 and 𝑉 are both subsets of 𝐵 then

𝑓−1(𝑈 ∪ 𝑉) = 𝑓−1(𝑈) ∪ 𝑓−1(𝑉) and 𝑓−1(𝑈 ∩ 𝑉) = 𝑓−1(𝑈) ∩ 𝑓−1(𝑉),

and furthermore, if 𝑈 ⊆ 𝑉 then 𝑓−1(𝑈) ⊆ 𝑓−1(𝑉). Let 𝑈 ⊆ 𝐴 and 𝑉 ⊆ 𝐵, then

𝑈 ⊆ 𝑓−1(𝑓(𝑈)) and 𝑓 (𝑓−1(𝑉)) ⊆ 𝑉.

We also note that if 𝑈 is a subset of 𝐵 then

𝑓−1(𝐵 ⧵ 𝑈) = 𝑓−1(𝑈𝑐) = (𝑓−1(𝑈))𝑐 = 𝐴 ⧵ 𝑓−1(𝑈).
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2.3 Exercises

Exercise 2.1 Does 𝑑(𝑥, 𝑦) = (𝑥 − 𝑦)2 define a metric on 𝑋 = ℝ?

Exercise 2.2 Show that ℝ2 equipped with the taxi cab metric is a metric space.

Exercise 2.3 Let (𝑋, 𝑑) be a metric space. Show that the map 𝑑′ ∶ 𝑋 × 𝑋 → ℝ given by

𝑑′(𝑥, 𝑦) =
𝑑(𝑥, 𝑦)

1 + 𝑑(𝑥, 𝑦)

is also a metric on 𝑋.

Exercise 2.4 Draw a picture of the open ball B((0, 0); 1) in the metric space (ℝ2, 𝑑) with

(a) 𝑑(𝑥, 𝑦) = 𝑑1(𝑥, 𝑦) = |𝑥1 − 𝑦1| + |𝑥2 − 𝑦2|;

(b) 𝑑(𝑥, 𝑦) = 𝑑2(𝑥, 𝑦) = �(𝑥1 − 𝑦1)
2 + (𝑥2 − 𝑦2)

2;

(c) 𝑑(𝑥, 𝑦) = 𝑑∞(𝑥, 𝑦) = max{|𝑥1 − 𝑦1|, |𝑥2 − 𝑦2|}.

Exercise 2.5 Show that 𝑑1, 𝑑2 and 𝑑∞ (as defined in Exercise 2.4) are equivalent on 𝑋 = ℝ2.

Exercise 2.6 Show that in a discretemetric space (𝑋, 𝑑), cf. Example 2.3, every subset is both

open and closed in 𝑋.

Exercise 2.7 Show that for equivalent metrics 𝑑 and 𝑑′ on the set 𝑋, the open sets are the

same.

Exercise 2.8 Let (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) be metric spaces, and let 𝑓∶ 𝑋 → 𝑌 be a map. Show

that 𝑓 is continuous if and only if for every subset 𝐵 ⊆ 𝑌 closed in 𝑌, the preimage 𝑓−1(𝐵) is

closed in 𝑋.



3. Topological spaces

3.1 Definition and examples

Topological spaces are spaces constructed to support continuous maps. The definition is as follows.

Definition 3.1 (Topological spaces) A topological space is a set 𝑋 together with a collection

𝒯 of subsets of 𝑋 that are called open in 𝑋, such that the following properties hold.

T1 The subsets ∅ and 𝑋 are in 𝒯.

T2 The union of the elements of any subcollection of 𝒯 is in 𝒯.

T3 The intersection of the elements of any finite subcollection of 𝒯 is in 𝒯.

A topological space is strictly speaking an ordered pair (𝑋, 𝒯). We refer to 𝒯 as the topology on 𝑋. We will

often omit specific mention of 𝒯 if no confusion will arise.

The following theorem states that every metric space (𝑋, 𝑑) is a topological space with themetric

topology 𝒯𝑑 on 𝑋.

Theorem 3.2 (Metric spaces are topological spaces) Let (𝑋, 𝑑) be a metric space. Let 𝒯𝑑
be the collection of subsets 𝑈 ⊆ 𝑋 with the property that 𝑈 ∈ 𝒯𝑑 if and only if for each 𝑥 ∈ 𝑈

there is an 𝑟 > 0 such that B(𝑥; 𝑟) ⊆ 𝑈. Then 𝒯𝑑 defines a topology on 𝑋.

Proof. Clearly, ∅ ∈ 𝒯𝑑. To show that 𝑋 ∈ 𝒯𝑑, note that for any 𝑥 ∈ 𝑋, B(𝑥; 1) ⊆ 𝑋. Hence, 𝑋 ∈ 𝒯𝑑.

Thus T1 is satisfied.

Let {𝑈𝜆}𝜆∈Λ be any subcollection of 𝒯𝑑. We need to prove that 𝑉 = ⋃𝜆∈Λ 𝑈𝜆 ∈ 𝒯𝑑. Let 𝑥 ∈ 𝑉.

From 𝑉 = ⋃𝜆∈Λ 𝑈𝜆 there is 𝜆 ∈ Λ such that 𝑥 ∈ 𝑈𝜆. By the property of 𝑈𝜆 satisfied by the 𝑈𝜆 in 𝒯𝑑
there is an 𝑟 > 0 such that B(𝑥; 𝑟) ⊆ 𝑈𝜆. Hence, B(𝑥; 𝑟) ⊆ 𝑉. Thus 𝑉 ∈ 𝒯𝑑, and T2 is satisfied.

We prove that the intersection of two elements of 𝒯𝑑 is also an element of 𝒯𝑑. The general result

then follows by an induction argument. Let 𝑈1, 𝑈2 ∈ 𝒯𝑑. We need to prove that 𝑈1 ∩ 𝑈2 ∈ 𝒯𝑑. Let

𝑥 ∈ 𝑈1∩𝑈2. Since𝑈1∩𝑈2 ⊆ 𝑈𝑖, we have that 𝑥 ∈ 𝑈𝑖 for 𝑖 = 1, 2. By the defining property of𝒯𝑑 there

is an 𝑟𝑖 > 0 such that B(𝑥; 𝑟𝑖) ⊆ 𝑈𝑖 for 𝑖 = 1, 2. Let 𝑟 = min{𝑟1, 𝑟2}. Then B(𝑥; 𝑟) ⊆ B(𝑥; 𝑟𝑖) ⊆ 𝑈𝑖 for

𝑖 = 1, 2. Thus B(𝑥; 𝑟) ⊆ 𝑈1 ∩ 𝑈2, and so 𝑈1 ∩ 𝑈2 ∈ 𝒯𝑑. Hence, T3 is satisfied.

The following theorem relates the metric topologies for two equivalent metrics.

Theorem 3.3 Let 𝑋 be any set, and let 𝑑1 and 𝑑2 be two equivalent metrics on 𝑋. Then

𝒯𝑑1 = 𝒯𝑑2.

12
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This follows from Exercise 2.7.

Example 3.4 (Discrete topology) Let 𝑋 be any set. The collection 𝒯 of all subsets of 𝑋, i.e.

the power set𝒫(𝑋) of𝑋, is a topology on𝑋. We refer to this topology as the discrete topology.

A set 𝑋 equipped with the discrete topology is referred to as a discrete topological space.

The discrete topology is the unique topology where the singletons are open. We can think of a

discrete topological space as a space of separate, isolated points, with no close interaction between

different points.

For any set 𝑋, the discrete topology is the largest topology we may equip 𝑋 with. The smallest

topology is called the indiscrete topology.

Example 3.5 (Indiscrete topology) Let 𝑋 be any set. The collection 𝒯 consisting of ∅ and

𝑋 is a topology on 𝑋, referred to as the indiscrete topology on 𝑋. A set 𝑋 equipped with the

indiscrete topology is referred to as an indiscrete topological space.

Example 3.6 Let 𝑋 = {𝑎, 𝑏, 𝑐}. The following collections all define a topology on 𝑋.

(1) 𝒯1 = 𝒯ind = {∅, 𝑋}

(2) 𝒯2 = {∅, {𝑎}, 𝑋}

(3) 𝒯3 = {∅, {𝑎, 𝑏}, 𝑋}

(4) 𝒯4 = {∅, {𝑎}, {𝑎, 𝑏}, 𝑋}

(5) 𝒯5 = {∅, {𝑎, 𝑏}, {𝑏}, {𝑏, 𝑐}, 𝑋}

(6) 𝒯6 = 𝒯disc = 𝒫(𝑋) = {∅, {𝑎}, {𝑎, 𝑏}, {𝑎, 𝑐}, {𝑏}, {𝑏, 𝑐}, {𝑐}, 𝑋}

There are in total 29 topologies on 𝑋. However, there are also collections of subsets of 𝑋

which do not define topologies on 𝑋. None of the following collections of subsets of 𝑋 define

a topology on 𝑋.

(1) {∅, {𝑎}, {𝑏}, 𝑋}

(2) {∅, {𝑎}, {𝑐}, 𝑋}

(3) {∅, {𝑎, 𝑏}, {𝑏, 𝑐}, 𝑋}

Definition 3.7 (Comparable topologies) Let 𝑋 be any set and suppose that 𝒯1 and 𝒯2 are

two topologies on 𝑋. If 𝒯1 ⊆ 𝒯2, we say that 𝒯1 is coarser than 𝒯2 and that 𝒯2 is finer than 𝒯1.

We say that 𝒯1 and 𝒯2 are comparable if either 𝒯1 ⊆ 𝒯2 or 𝒯2 ⊆ 𝒯1.

Clearly, for any set 𝑋, the discrete topology 𝒯disc contains the indiscrete topology 𝒯ind: 𝒯disc ⊇

𝒯ind. Hence, the discrete topology is finer than the indiscrete topology and the indiscrete topology is

coarser than the discrete topology.
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Example 3.8 (Cofinite topology) Let𝑋 be any set. The collection𝒯 of subsets of𝑋 consisting

of subsets 𝑈 ⊆ 𝑋 such that 𝑈𝑐 = 𝑋 ⧵ 𝑈 is either finite or all of 𝑋 is a topology on 𝑋. We refer

to this topology as the cofinite topology on 𝑋.

If 𝑋 is a finite set, the cofinite topology is equal to the discrete topology. If 𝑋 is an infinite set, the

cofinite topology is strictly coarser than the discrete topology, in the sense that the cofinite topology

is properly contained in the discrete topology.

We end this section with a theorem that we can use to prove that some set is open. To state the

theorem we need the following definition.

Definition 3.9 (Neighborhoods) Let 𝑋 be a topological space, 𝑈 a subset of 𝑋 and 𝑥 ∈ 𝑋.

We say that 𝑈 is a neighborhood of 𝑥 if 𝑥 ∈ 𝑈 and 𝑈 is open in 𝑋.

A neighborhood in the sense of the previous definition is sometimes referred to as an open neigh-

borhood, cf. Definition 2.11.

Theorem 3.10 Let 𝑋 be a topological space. A subset 𝑈 of 𝑋 is open in 𝑋 if and only if for

every 𝑥 ∈ 𝑈 there is a neighborhood 𝑈𝑥 of 𝑥 such that 𝑈𝑥 ⊆ 𝑈.

Proof. Assume that 𝑈 is open in 𝑋. Then for every 𝑥 ∈ 𝑈, 𝑈 is a neighborhood of 𝑥 that is contained

in 𝑈.

We prove the other implication. Assume that for every 𝑥 ∈ 𝑈 there is a 𝑈𝑥 ∈ 𝒯 such that

𝑥 ∈ 𝑈𝑥 ⊆ 𝑈, i.e., that 𝑈𝑥 is a neighborhood of 𝑥 such that 𝑈𝑥 ⊆ 𝑈. To prove that 𝑈 ∈ 𝒯, we will

prove that 𝑈 = ⋃𝑥∈𝑈 𝑈𝑥. Assume that 𝑥′ ∈ 𝑈𝑥′. Then 𝑥
′ ∈ 𝑈𝑥′ ⊆ ⋃𝑥∈𝑈 𝑈𝑥. Furthermore, any point

in⋃𝑥∈𝑈 𝑈𝑥 is in𝑈𝑥 for some 𝑥 ∈ 𝑈 so by assumption,𝑈𝑥 ⊆ 𝑈 and 𝑥 ∈ 𝑈𝑥 ⊆ 𝑈. Hence,𝑈 = ⋃𝑥∈𝑈 𝑈𝑥.

As 𝑈 is the union of open sets it must be an open set as well by T2.

3.2 Continuous maps

We know from Theorem 2.13 that amap betweenmetric spaces is continuous if and only if the preim-

age of an open set is open. This motivates the following definition.

Definition 3.11 (Continuous maps between topological spaces) Let 𝑋 and 𝑌 be topological

spaces. A map 𝑓∶ 𝑋 → 𝑌 is said to be continuous if preimages of open sets are open, i.e., if 𝑉

is an open set in 𝑌 then the preimage 𝑓−1(𝑉) of 𝑉 under 𝑓 is open in 𝑋.

Hence, all continuous maps betweenmetric spaces (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) are also continuous maps

between the corresponding topological spaces 𝑋 and 𝑌 with the metric topologies 𝒯𝑑𝑋 and 𝒯𝑑𝑌, re-

spectively.

Example 3.12 Let 𝑋 and 𝑌 be topological spaces. Then all constant maps from 𝑋 to 𝑌 are

continuous: the preimages are either empty or the entire space, and these are always open,

cf. T1.
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Example 3.13 Let 𝑋 be a discrete topological space and 𝑌 a topological space. Then all maps

from 𝑋 to 𝑌 are continuous.

Example 3.14 Let 𝑋 be any topological space and 𝑌 be an indiscrete topological space. Then

all maps from 𝑋 to 𝑌 are continuous.

Example 3.15 Letℝdisc be the discrete topological space consisting of the real numbers with

the discrete topology, and let ℝ be the topological space consisting of the the real numbers

with the usual (Euclidean) metric topology. Then the identity map

ℝdisc

id
−→ ℝ

is continuous by Example 3.13, while the identity map

ℝ
id
−→ ℝdisc

is not continuous: singletons are open in the discrete topology but not in the (Euclidean)metric

topology.

The following theorem says that the composition of two continuous maps is a continuous map.

Theorem 3.16 (Composition of continuous maps) Let 𝑋, 𝑌 and 𝑍 be topological spaces. If

𝑓∶ 𝑋 → 𝑌 and 𝑔∶ 𝑌 → 𝑍 are continuous maps, then the composite 𝑔∘𝑓∶ 𝑋 → 𝑍 is continuous.

Proof. Let𝑊 ⊆ 𝑍 be open in 𝑍. We need to prove that (𝑔 ∘ 𝑓)−1(𝑊) is open in 𝑋. Since

(𝑔 ∘ 𝑓)−1(𝑊) = {𝑥 ∈ 𝑋 ∣ 𝑔(𝑓(𝑥)) ∈ 𝑊}

= {𝑥 ∈ 𝑋 ∣ 𝑓(𝑥) ∈ 𝑔−1(𝑊)}

= {𝑥 ∈ 𝑋 ∣ 𝑥 ∈ 𝑓−1(𝑔−1(𝑊))} = 𝑓−1(𝑔−1(𝑊))

and that 𝑔−1(𝑊) is open in 𝑌 and 𝑓−1(𝑔−1(𝑊)) is open in 𝑋 (by continuity of 𝑔 and 𝑓), it follows

that (𝑔 ∘ 𝑓)−1(𝑊) is open in 𝑋. Hence, 𝑔 ∘ 𝑓 is continuous.

We can express continuity at a point for maps between topological spaces using neighborhoods.

(See Theorem 2.12 for the case of metric spaces.)

Definition 3.17 (Continuity at a point) Let 𝑋 and 𝑌 be topological spaces, and let 𝑥 ∈ 𝑋. A

map 𝑓∶ 𝑋 → 𝑌 is continuous at 𝑥 if for all neighborhoods 𝑉 of 𝑓(𝑥) there is a neighborhood

𝑈 of 𝑥 such that 𝑓(𝑈) ⊆ 𝑉.

Theorem 3.18 Let 𝑋 and 𝑌 be topological spaces. A map 𝑓∶ 𝑋 → 𝑌 is continuous if and only

if it is continuous at each 𝑥 ∈ 𝑋.

Proof. Assume that 𝑓 is continuous, and let 𝑥 ∈ 𝑋 and 𝑉 be a neighborhood of 𝑓(𝑥). Then the set

𝑈 = 𝑓−1(𝑉) is a neighborhood of 𝑥 such that 𝑓(𝑈) ⊆ 𝑉.

Assume that 𝑓 is continuous at each 𝑥 ∈ 𝑋. Let 𝑉 ⊆ 𝑌 be open in 𝑌. Choose 𝑥 ∈ 𝑓−1(𝑉). Since

𝑓 is continuous at 𝑥 there is neighborhood 𝑈𝑥 of 𝑥 such that 𝑓(𝑈𝑥) ⊆ 𝑉. Hence, 𝑈𝑥 ⊆ 𝑓−1(𝑉). It
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follows that 𝑓−1(𝑉) can be written as the union of the open sets 𝑈𝑥, and hence, it is open in 𝑋. Thus

𝑓 is continuous.

3.3 Homeomorphisms

We now introduce the notion of topological equivalence, also known as homeomorphism.

Definition 3.19 (Homeomorphisms) Let 𝑋 and 𝑌 be topological spaces. A bijective map

𝑓∶ 𝑋 → 𝑌 with the property that both 𝑓 and 𝑓−1 ∶ 𝑌 → 𝑋 are continuous, is called a homeo-

morphism. If there exists a homeomorphism 𝑓∶ 𝑋 → 𝑌, we say that 𝑋 and 𝑌 are homeomor-

phic and write 𝑋 ≅ 𝑌.

A homeomorphism 𝑓∶ 𝑋 → 𝑌 gives a one-to-one correspondence between open sets in 𝑋 and 𝑌. As a

result, any property of a topological space that can be expressed in terms of its elements and its open subsets

is preserved by homeomorphisms. Such a property is called a topological property.

Example 3.20 Letℝ be the topological space of the real numbers with the (Euclidean) metric

topology. The map

𝑓∶ ℝ → ℝ

𝑥 ↦ 2𝑥 − 1

is a homeomorphism. Let

𝑔∶ ℝ → ℝ

𝑦 ↦
1

2
(𝑦 + 1)

then, clearly, 𝑔(𝑓(𝑥)) = 𝑥 and 𝑓(𝑔(𝑦)) = 𝑦 for all real numbers 𝑥 and 𝑦. Thus 𝑓 is a bijection

and 𝑓−1 = 𝑔. From calculus we know that 𝑓 and 𝑔 are continuous. Hence, 𝑓 is a homeomor-

phism.

Example 3.21 Let 𝑋 = {𝑎, 𝑏}, and let𝒯1 = {∅, {𝑎}, 𝑋} and𝒯2 = {∅, {𝑏}, 𝑋} be two topologies

on 𝑋. The map 𝑓∶ 𝑋 → 𝑋 given by 𝑓(𝑎) = 𝑏 and 𝑓(𝑏) = 𝑎 is clearly a continuous bijection

(with the domain given 𝒯1 as topology, and the codomain given 𝒯2 as topology). Also, 𝑓 is its

own inverse: 𝑓 = 𝑓−1. Hence, 𝑓 is a homeomorphism and (𝑋, 𝒯1) ≅ (𝑋, 𝒯2).

Homeomorphisms are continuous bijections, but the converse is not true.

Example 3.22 Let 𝑋 = {𝑎, 𝑏}. The identity map id ∶ 𝑋 → 𝑋 where the domain is given the

discrete topology and the codomain is given the indiscrete topology is a continuous bijection

but not a homeomorphism: the inverse map is not continuous.

The following theorem says that being homeomorphic is an equivalence relation on any set of

topological spaces.
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Theorem 3.23 Let 𝑋, 𝑌 and 𝑍 be topological spaces.

Reflexivity The identity map id ∶ 𝑋 → 𝑋 (where the domain and the codomain are equipped

with the same topology), given by id(𝑥) = 𝑥 for 𝑥 ∈ 𝑋, is a homeomorphism.

Symmetry If 𝑓∶ 𝑋 → 𝑌 is a homeomorphism, then 𝑓−1 ∶ 𝑌 → 𝑋 is also a homeomorphism.

Transitivity If 𝑓∶ 𝑋 → 𝑌 and 𝑔∶ 𝑌 → 𝑍 are homeomorphisms, then 𝑔 ∘ 𝑓∶ 𝑋 → 𝑍 is also a

homeomorphism.

Proof. The identity map id ∶ 𝑋 → 𝑋 (where the domain and the codomain are equipped with the

same topology) is clearly continuous and bijective. As the identity map is its own inverse, then it is

also a homeomorphism. Hence, 𝑋 ≅ 𝑋 and so≅ satisfies the reflexivity condition for an equivalence

relation.

If 𝑓∶ 𝑋 → 𝑌 is a homeomorphism, then 𝑓−1 ∶ 𝑌 → 𝑋 is also a homeomorphism: 𝑓−1 is a continu-

ous bijection with continuous inverse (𝑓−1)−1 = 𝑓∶ 𝑋 → 𝑌. Hence, 𝑋 ≅ 𝑌 if and only if 𝑌 ≅ 𝑋. Thus

≅ satisfies the symmetry condition for an equivalence relation.

Theorem 3.16 tells us that the composition of two homeomorphisms 𝑓∶ 𝑋 → 𝑌 and 𝑔∶ 𝑌 → 𝑍 is

continuous. The composition of two bijective maps is always bijective. Hence, 𝑔 ∘ 𝑓 is a continuous

bijection. We need to prove that its inverse, (𝑔 ∘ 𝑓)−1, is continuous. Since (𝑔 ∘ 𝑓)−1 = 𝑓−1 ∘

𝑔−1 is a composition of continuous maps, then by Theorem 3.16 so is (𝑔 ∘ 𝑓)−1. Thus 𝑔 ∘ 𝑓 is a

homeomorphism. Hence, if 𝑋 ≅ 𝑌 and 𝑌 ≅ 𝑍, then 𝑋 ≅ 𝑍. Thus≅ satisfies the transitivity condition

for an equivalence relation.

3.4 Closed sets

Recall that in a topological space 𝑋, a subset 𝐴 of 𝑋 is an open subset if and only if 𝐴 is an element of

the topology of 𝑋, i.e., 𝐴 ∈ 𝒯.

Definition 3.24 (Closed subsets) A subset 𝐾 of a topological space 𝑋 is closed in 𝑋 if and

only if the complement 𝐾𝑐 = 𝑋 ⧵ 𝐾 is open in 𝑋.

This is completely analogous to howwe defined closed subsets inmetric spaces, cf. Definition 2.9.

Example 3.25 Let 𝑋 be a discrete topological space. Since every subset of 𝑋 is open in 𝑋, it

follows that every subset of 𝑋 is also closed in 𝑋.

Example 3.26 Let 𝑋 be an indiscrete topological space. The only subsets of 𝑋 that are closed

in 𝑋 are ∅ and 𝑋 (which are also the only subsets that are open in 𝑋).

Recall that in a discrete topological space, all the singletons are open sets. This is usually not the

case.

Example 3.27 Letℝ be the topological space of the real numbers with the (Euclidean) metric

topology. Then every subset [𝑎, 𝑏] = {𝑥 ∈ ℝ ∣ 𝑎 ⩽ 𝑥 ⩽ 𝑏} ⊆ ℝ is closed inℝ: the complement

[𝑎, 𝑏]𝑐 = ℝ ⧵ [𝑎, 𝑏] = (−∞, 𝑎) ∪ (𝑏,∞) is a union of open sets in ℝ, and hence, is open in ℝ.

Furthermore, all the singletons are closed: the complement {𝑎}𝑐 = ℝ⧵{𝑎} = (−∞, 𝑎)∪(𝑎,∞)



18 3.4. Closed sets

is a union of open sets in ℝ, and hence, is open in ℝ.

By passing to complements we get the following theorem.

Theorem 3.28 Let 𝑋 be a topological space.

(1) Both ∅ and 𝑋 are closed (as subsets) in 𝑋.

(2) The intersection of any subcollection of closed sets in 𝑋 is closed in 𝑋.

(3) The union of any finite subcollection of closed sets in 𝑋 is closed in 𝑋.

It follows that we could have defined a topological space 𝑋 by specifying a collection of subsets

of 𝑋 satisfying the three statements in Theorem 3.28 where we would say that a subset of 𝑋 is open

in 𝑋 if its complement is closed in 𝑋.

We end this section with a theorem describing the connection between continuous maps and

closed sets. We will need the following definition.

Definition 3.29 (Closure) Let 𝑋 be a topological space, and let 𝐴 be a subset of 𝑋. The

closure of 𝐴, written 𝐴, is the intersection of all subsets of 𝑋 that contain 𝐴 and which are

closed in 𝑋.

From the definition it follows that𝐴 is the smallest subset of𝑋 that contains𝐴 andwhich is closed

in 𝑋. Furthermore, if 𝐴 is closed in 𝑋, then 𝐴 = 𝐴.

There is an analogous definition for open sets where we take union instead of intersection. We

can define the interior of 𝐴, written Int(𝐴), to be the union of all subsets of 𝑋 that are contained in

𝐴 and which are open in 𝑋. It follows that Int(𝐴) is the largest subset of 𝑋 that is contained in 𝐴 and

which is open in 𝑋. Furthermore, Int(𝐴) ⊆ 𝐴 ⊆ 𝐴.

Example 3.30 Let𝑋 be a topological space consisting of the set {𝑎, 𝑏, 𝑐} and the topology𝒯 =

{∅, {𝑎}, {𝑎, 𝑏}, 𝑋}. Then the closed subsets in𝑋 are ∅, {𝑏, 𝑐}, {𝑐} and𝑋. Thus the intersection of

all of the closed subsets that contain {𝑏} is simply {𝑏, 𝑐} ∩ 𝑋 = {𝑏, 𝑐}, and hence, {𝑏} = {𝑏, 𝑐}.

Example 3.31 Letℝ be the topological space of the real numbers with the (Euclidean) metric

topology. Assume that 𝑎 < 𝑏 are real numbers. Then (𝑎, 𝑏] = [𝑎, 𝑏] and Int((𝑎, 𝑏]) = (𝑎, 𝑏).

Let (𝑋, 𝑑) be a metric space. If we consider 𝑋 as a topological space with the metric topology 𝒯𝑑,

the closure B(𝑥; 𝑟) of an open ball B(𝑥; 𝑟) about 𝑥 ∈ 𝑋 is, in general, not the same as the closed

ball B(𝑥; 𝑟). If 𝑑 is the discrete metric and 𝑋 has at least two elements, then B(𝑥; 1) = {𝑥} while

B(𝑥; 1) = 𝑋. It is always the case that B(𝑥; 𝑟) ⊆ B(𝑥; 𝑟).

Definition 3.32 (Dense) Let 𝑋 be a topological space, and let 𝐴 be a subset of 𝑋. We say

that 𝐴 is dense in 𝑋 if 𝐴 = 𝑋.

From the definition it follows that 𝐴 is dense in 𝑋 if and only if 𝐴 ∩ 𝑈 ≠ ∅ for every nonempty

subset 𝑈 of 𝑋 which is open in 𝑋.
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Example 3.33 Letℝ be the topological space of the real numbers with the (Euclidean) metric

topology. Then the subsetℚ of rational numbers is dense in ℝ: ℚ = ℝ.

Example 3.34 For any topological space 𝑋, the subset 𝑋 is dense in 𝑋. If 𝑋 is a discrete

topological space, then the subset 𝑋 is the only dense subset in 𝑋.

Theorem 3.35 Let 𝑓∶ 𝑋 → 𝑌 be a map between topological spaces. Then the following are

equivalent:

(1) 𝑓 is continuous;

(2) for every subset 𝐴 of 𝑋, we have 𝑓(𝐴) ⊆ 𝑓(𝐴);

(3) for every closed subset 𝐵 of 𝑌, the preimage 𝑓−1(𝐵) of 𝐵 under 𝑓 is closed in 𝑋.

Proof. By passing to complements, it follows readily that (1) and (3) are equivalent. We will prove

that (2) is equivalent to (3).

Assume (2). Let 𝐵 be a subset of 𝑌 that is closed in 𝑌, and let 𝐴 = 𝑓−1(𝐵). We must show that 𝐴

is closed. We have 𝑓(𝐴) ⊆ 𝐵. If 𝑥 ∈ 𝐴, then 𝑓(𝑥) ∈ 𝑓(𝐴) ⊆ 𝑓(𝐴) ⊆ 𝐵. Hence, 𝑥 ∈ 𝑓−1(𝐵) = 𝐴. In

other words, 𝐴 ⊆ 𝐴. Thus 𝐴 = 𝐴, and hence, 𝑓−1(𝐵) is closed in 𝑋.

Now assume (3). Let 𝐴 be a subset of 𝑋. We must show that 𝑓(𝐴) ⊆ 𝑓(𝐴). Since 𝑓(𝐴) is

closed in 𝑌, it follows by assumption that 𝑓−1(𝑓(𝐴)) is closed in 𝑋. Furthermore, 𝐴 ⊆ 𝑓−1(𝑓(𝐴)) ⊆

𝑓−1(𝑓(𝐴)). Since 𝑓−1(𝑓(𝐴)) is closed in𝑋, it follows that𝐴 ⊆ 𝑓−1(𝑓(𝐴)). Hence, 𝑓(𝐴) ⊆ 𝑓(𝐴).

3.5 Exercises

Exercise 3.1 Let 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑}. Show that 𝒯 = {∅, {𝑎}, {𝑎, 𝑏}, {𝑎, 𝑏, 𝑐}, {𝑏, 𝑐, 𝑑}, 𝑋} is not a

topology on𝑋. Find a topology𝒯′ (different from the discrete topology) on𝑋 such that𝒯 ⊆ 𝒯′.

Exercise 3.2 Let 𝑋 be a non-empty set, and let 𝑥0 be an element of 𝑋. Show that

𝒯 = {𝑈 ⊆ 𝑋 ∣ 𝑥0 ∉ 𝑈 or 𝑋 ⧵ 𝑈 is finite}

is a topology on 𝑋.

Exercise 3.3 Let 𝑋 be a set, and let 𝐴 be a subset of 𝑋. Define the coarsest topology on 𝑋

such that 𝐴 is open in 𝑋.

Exercise 3.4 Show that the discrete topology 𝒯disc is finer than the cofinite topology 𝒯cof on

any set 𝑋.

Exercise 3.5 Let 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑}. Find two topologies 𝒯1 and 𝒯2 with 𝒯1 ≠ 𝒯2 such that a

bijection 𝑓∶ 𝑋 → 𝑋 is a homeomorphism (where the domain is given 𝒯1 as topology and the

codomain is given 𝒯2 as topology).
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Exercise 3.6 Let 𝑋 be a topological space, and let 𝐴 and 𝐵 be subsets of 𝑋.

(a) Assume that 𝐴 ⊆ 𝐵. Show that 𝐴 ⊆ 𝐵.

(b) Show that 𝐴 ∪ 𝐵 = 𝐴 ∪ 𝐵.

We say that a set 𝐴 intersects ormeets a set 𝐵 if 𝐴 ∩ 𝐵 ≠ ∅.

Exercise 3.7 Let 𝑋 be a topological space, and let 𝐴 be a subset of 𝑋. Show that 𝑥 ∈ 𝐴 if and

only if every neighborhood of 𝑥 intersects 𝐴.

Exercise 3.8 Let 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}, and let

𝒯 = {∅, {𝑎, 𝑏}, {𝑎, 𝑏, 𝑐}, {𝑎, 𝑏, 𝑑, 𝑒}, {𝑏}, {𝑏, 𝑐}, {𝑏, 𝑑, 𝑒}, {𝑏, 𝑐, 𝑑, 𝑒}, {𝑑, 𝑒}, 𝑋}

be a topology on 𝑋. Is the subset {𝑎, 𝑏} dense in 𝑋?



4. Generating topologies

4.1 Generating topologies from subsets

The following theorem tells us howwemay extract a third topology from two other topologies on the

same set.

Theorem 4.1 (The intersection of two topologies is a topology) Let 𝑋 be a set, and let 𝒯1
and 𝒯2 be two topologies on 𝑋. Then 𝒯1 ∩ 𝒯2 is also a topology on 𝑋.

Proof. Clearly, ∅ and 𝑋 are in 𝒯1 ∩ 𝒯2, so T1 is satisfied.

Let {𝑈𝜆}𝜆∈Λ be a collection of sets such that𝑈𝜆 ∈ 𝒯1∩𝒯2 for each 𝜆 ∈ ΛwhereΛ is some index set.

Then, for 𝑖 = 1, 2, 𝑈𝜆 ∈ 𝒯𝑖 for each 𝜆 ∈ Λ. Thus⋃𝜆∈Λ 𝑈𝜆 ∈ 𝒯𝑖 for 𝑖 = 1, 2. Hence,⋃𝜆∈Λ 𝑈𝜆 ∈ 𝒯1∩𝒯2,

and so, T2 is satisfied.

Finally, to prove that T3 is satisfied, let 𝑈, 𝑉 ∈ 𝒯1 ∩ 𝒯2. Thus, for 𝑖 = 1, 2, 𝑈, 𝑉 ∈ 𝒯𝑖 implies that

𝑈 ∩ 𝑉 ∈ 𝒯𝑖. Hence, 𝑈 ∩ 𝑉 ∈ 𝒯1 ∩ 𝒯2.

Theorem 4.1 may be extended to hold for a family of topologies: if {𝒯𝜆}𝜆∈Λ is a family of topologies on 𝑋,

then⋂𝜆∈Λ 𝒯𝜆 is also a topology on 𝑋. If we follow the convention that for subsets 𝑆 of a fixed (large) set 𝑈,

�

𝑆∈∅

𝑆 = 𝑈,

then the extended version of Theorem 4.1 may also include an empty family {𝒯𝜆}𝜆∈∅ of topologies with

�

𝜆∈∅

𝒯𝜆 = 𝒫(𝑋),

i.e., the discrete topology on 𝑋 (with our fixed (large) set𝑈 being equal to𝒫(𝑋)). However, not all mathemati-

cians follow this convention. Thus we will in general not define the intersection of an empty family.

The union of two topologies is not necessarily a topology.

Example 4.2 Let 𝑋 = {𝑎, 𝑏, 𝑐}, and let 𝒯1 = {∅, {𝑎}, {𝑎, 𝑏}, 𝑋} and 𝒯2 = {∅, {𝑐}, 𝑋} be two

topologies on 𝑋. Then

𝒯1 ∩ 𝒯2 = {∅, 𝑋}

is the indiscrete topology on 𝑋 while

𝒯1 ∪ 𝒯2 = {∅, {𝑎}, {𝑎, 𝑏}, {𝑐}, 𝑋}

is not a topology on 𝑋: 𝒯1 ∪ 𝒯2 does not satisfy T2.

21
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Recall from Section 3.1 that for any set 𝑋 the discrete topology 𝒯disc is the largest topology we

may equip𝑋with, and the indiscrete topology𝒯ind is the smallest topology wemay equip𝑋with. For

any topology 𝒯 on 𝑋 we have

𝒯ind ⊆ 𝒯 ⊆ 𝒯disc.

That is, we have partially ordered topologies on 𝑋 by inclusion.

Let 𝑋 be a set. We often want to have a collection of subsets 𝒮 of 𝑋 to be the open subsets of a

topology on 𝑋.

Definition 4.3 (Topology generated by a collection of subsets) Let 𝑋 be a set, and let 𝒮 be

a collection of subsets of 𝑋. The topology generated by 𝒮 is the topology

⟨𝒮⟩ = �

𝒯 topology
𝒮⊆𝒯

𝒯

on 𝑋.

In other words, ⟨𝒮⟩ contains 𝒮 and for any other topology 𝒯′ containing 𝒮, we have ⟨𝒮⟩ ⊆ 𝒯′.

Thus ⟨𝒮⟩ is unique.

Example 4.4 Let 𝑋 be a set, and let 𝒮 = ∅. Then ⟨𝒮⟩ is the same as the indiscrete topology

on 𝑋, i.e.,

⟨𝒮⟩ = 𝒯ind = {∅, 𝑋}.

Example 4.5 Let 𝑋 be a set, and let 𝒮 be the collection of all the singletons of 𝑋, i.e., 𝒮 =

{{𝑥} ∣ 𝑥 ∈ 𝑋}. Then ⟨𝒮⟩ is the same as the discrete topology on 𝑋, i.e.,

⟨𝒮⟩ = 𝒯disc = 𝒫(𝑋).

4.2 Basis for a topology

It is often convenient to define a topology 𝒯 on a set 𝑋 by only specifying a subcollection ℬ of 𝒯

satisfying certain properties. The open subsets of 𝑋 are then precisely the unions of subcollections

of ℬ. In this way, we say the basis determines, or generates, the topology.

Definition 4.6 (Basis) Let 𝑋 be a set. A basis for a topology on 𝑋 is a collection ℬ of subsets

of 𝑋 such that

B1 for each 𝑥 ∈ 𝑋, there is a 𝐵 ∈ ℬ such that 𝑥 ∈ 𝐵;

B2 if 𝐵1, 𝐵2 ∈ ℬ and 𝑥 ∈ 𝐵1 ∩ 𝐵2, then there is a 𝐵3 ∈ ℬ such that 𝑥 ∈ 𝐵3 ⊆ 𝐵1 ∩ 𝐵2.

The elements of ℬ are sometimes referred to as basis elements. Basis elements are subsets of 𝑋.

Example 4.7 Let 𝑋 be a set, and let ℬ be the collection of all the singletons of 𝑋. Then ℬ is a

basis for the discrete topology on 𝑋.
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Example 4.8 Let (𝑋, 𝑑) be a metric space. Then the collection of (open) 𝜖-balls

ℬ = {B(𝑥; 𝜖) ∣ 𝑥 ∈ 𝑋, 𝜖 > 0}

is a basis for the metric topology 𝒯𝑑, as defined in Theorem 3.2, on 𝑋.

The following theorem describes a topology generated by a basis.

Theorem 4.9 Let𝑋 be a set, and letℬ be basis for a topology on𝑋. The collection𝒯 generated

by ℬ of subsets 𝑈 of 𝑋 with the property that for each 𝑥 ∈ 𝑈 there is a basis element 𝐵 ∈ ℬ

with 𝑥 ∈ 𝐵 ⊆ 𝑈 is a topology on 𝑋.

Proof. Clearly, ∅ and 𝑋 are both in 𝒯. Hence, T1 is satisfied.

Let {𝑈𝜆}𝜆∈Λ be a subcollection of 𝒯. Let 𝑉 = ⋃𝜆∈Λ 𝑈𝜆. We need to prove that 𝑉 ∈ 𝒯. Let 𝑥 ∈ 𝑉.

Then there is a 𝜆 ∈ Λ such that 𝑥 ∈ 𝑈𝜆. Since 𝑈𝜆 ∈ 𝒯, there is a basis element 𝐵 ∈ ℬ such that

𝑥 ∈ 𝐵 ⊆ 𝑈𝜆. As 𝑈𝜆 ⊆ 𝑉, it follows that 𝑥 ∈ 𝐵 ⊆ 𝑉. Hence, 𝑉 ∈ 𝒯, and so, T2 is satisfied.

Let 𝑈1, 𝑈2 ∈ 𝒯. We need to prove that 𝑈1 ∩ 𝑈2 ∈ 𝒯. Let 𝑥 ∈ 𝑈1 ∩ 𝑈2. Since 𝑈1 ∩ 𝑈2 ⊆ 𝑈𝑖
we have 𝑥 ∈ 𝑈𝑖, and thus there is a basis element 𝐵𝑖 ∈ ℬ with 𝑥 ∈ 𝐵𝑖 ⊆ 𝑈𝑖 for 𝑖 = 1, 2. Hence,

𝑥 ∈ 𝐵1 ∩ 𝐵2 ⊆ 𝑈1 ∩ 𝑈2. By B2 there is a basis element 𝐵3 ∈ ℬ with 𝑥 ∈ 𝐵3 ⊆ 𝐵1 ∩ 𝐵2. Thus

𝑥 ∈ 𝐵3 ⊆ 𝑈1 ∩ 𝑈2, and hence, T3 is satisfied.

The topology generated by a basis may also be described using the following theorem.

Theorem 4.10 Let 𝑋 be a set, and let ℬ be a basis for a topology 𝒯 on 𝑋. Then 𝒯 is equal to

the collection of all unions of elements of ℬ.

Proof. Let 𝐵 ∈ ℬ be any basis element. Then for each 𝑥 ∈ 𝐵 we obviously have 𝑥 ∈ 𝐵 and 𝐵 ⊆ 𝐵.

Thus 𝐵 ∈ 𝒯. It follows that any union of basis elements is a union of elements of 𝒯, and hence, is in

𝒯.

Conversely, let 𝑈 ∈ 𝒯. For each 𝑥 ∈ 𝑈 there is a 𝐵𝑥 ∈ ℬ with 𝑥 ∈ 𝐵𝑥 and 𝐵𝑥 ⊆ 𝑈. Then

𝑈 = ⋃𝑥∈𝑈 𝐵𝑥, and thus, 𝑈 is the union of elements of ℬ.

We end this section with a theorem describing a criterion for whether one topology is finer than

another when both topologies are described using bases.

Theorem 4.11 Let 𝑋 be a set, and let ℬ1 and ℬ2 be bases for topologies 𝒯1 and 𝒯2, respec-

tively, on 𝑋. Then the following are equivalent:

(1) 𝒯2 is finer than 𝒯1, i.e., 𝒯1 ⊆ 𝒯2.

(2) For each 𝐵1 ∈ ℬ1 and each 𝑥 ∈ 𝐵1 there is a 𝐵2 ∈ ℬ2 such that 𝑥 ∈ 𝐵2 ⊆ 𝐵1.

Proof. Assume (1). Let 𝐵1 ∈ ℬ1 and 𝑥 ∈ 𝐵1. Since 𝐵1 ∈ 𝒯1 and 𝒯1 ⊆ 𝒯2 we have 𝐵1 ∈ 𝒯2. Further-

more, as 𝒯2 is the topology generated by ℬ2 there is a 𝐵2 ∈ ℬ2 such that 𝑥 ∈ 𝐵2 where 𝐵2 ⊆ 𝐵1.

Hence, (2) is satisfied.

Now assume (2). Let 𝑈 ∈ 𝒯1. We must prove that 𝑈 ∈ 𝒯2. Since ℬ1 generates 𝒯1, then for each

𝑥 ∈ 𝑈 there is a 𝐵1 ∈ ℬ1 such that 𝑥 ∈ 𝐵1 ⊆ 𝑈. By assumption there is a 𝐵2 ∈ ℬ2 such that

𝑥 ∈ 𝐵2 ⊆ 𝐵1. Hence, 𝐵2 ⊆ 𝑈, and so, 𝑈 ∈ 𝒯2. Thus (1) is satisfied.
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In order to have 𝒯1 ⊆ 𝒯2 it is not necessary to have ℬ1 ⊆ ℬ2, i.e., each basis element in ℬ1 need not be a

basis element in ℬ2. However, for each basis element 𝐵1 ∈ ℬ1 and each point 𝑥 ∈ 𝐵1 there should be some

(possibly) smaller basis element 𝐵2 ∈ ℬ2 such that 𝑥 ∈ 𝐵2 ⊆ 𝐵1.

4.3 Subbasis for a topology

Let𝑋 be a set, and let 𝒮 be a collection of subsets of𝑋. We can form a basisℬ for a topology by simply

taking all finite intersections

𝐵 =

𝑛

�

𝑖=1

𝑆𝑖

of elements of 𝒮. Thus the open sets in the topology generated by this basis are all unions of such

basis elements 𝐵, cf. Theorem 4.10. Thus the open sets are all unions of all finite intersections of

elements of 𝒮. The collection 𝒮 is then referred to as a subbasis.

Definition 4.12 (Subbasis) Let 𝑋 be a set. A subbasis for a topology on 𝑋 is a collection 𝒮 of

subsets of 𝑋 whose union equals 𝑋.

Lemma 4.13 Let 𝑋 be a set, and let 𝒮 be a subbasis for a topology on 𝑋. The collection ℬ

consisting of all finite intersections of elements of 𝒮 is a basis for a topology on 𝑋 and is called

the basis associated to 𝒮.

Proof. Each 𝑥 ∈ 𝑋must lie in some 𝑆 ∈ 𝒮. Hence, 𝑥 ∈ 𝑆. Thus 𝑥 is an element of the basis element

𝑆 in ℬ, and so, B1 is satisfied.

Let 𝐵1 = ⋂
𝑚
𝑖=1 𝑆𝑖 and 𝐵2 = ⋂

𝑛
𝑖=1 𝑆

′
𝑖 be two basis elements of ℬ, and let 𝑥 ∈ 𝐵1 ∩ 𝐵2. We must

prove that there is a basis element 𝐵3 ∈ ℬ such that 𝑥 ∈ 𝐵3 ⊆ 𝐵1 ∩ 𝐵2. Let

𝐵3 = �

𝑚

�

𝑖=1

𝑆𝑖� ∩ �

𝑛

�

𝑖=1

𝑆′𝑖� .

Then 𝐵3 is also a finite intersection of elements of 𝒮, and hence, 𝐵3 ∈ ℬ with 𝑥 ∈ 𝐵3. Thus B2 is

satisfied.

By combining the previous lemma with Theorem 4.10, we get the following lemma.

Lemma 4.14 Let 𝑋 be a set, and let 𝒮 be a subbasis for a topology on 𝑋. The collection

𝒯 generated by 𝒮 consisting of all unions of all basis elements of the associated basis ℬ is a

topology on 𝑋.

When referring to the topology 𝒯 generated by the subbasis 𝒮 we mean the topology generated

by the associated basis ℬ. We have 𝒮 ⊆ ℬ ⊆ 𝒯.

The following theorem provides an explicit description of the topology generated by a collection

of subsets 𝒮 of a set 𝑋.
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Theorem 4.15 Let 𝑋 be a set, and let 𝒮 be a subbasis for a topology on 𝑋. Then there is

a unique topology ⟨𝒮⟩ generated by 𝒮 which is coarser than any other topology containing 𝒮,

where

⟨𝒮⟩ = ��

𝜆∈Λ

𝑛𝜆

�

𝑖=1

𝑆𝜆,𝑖 � 𝑆𝜆,𝑖 ∈ 𝒮� .

In other words, ⟨𝒮⟩ is the topology for which 𝒮 is a subbasis.

Proof. Since the discrete topology 𝒯disc = 𝒫(𝑋), there is at least one topology on 𝑋 that contains

𝒮. We know from Theorem 4.1 that taking the intersection of all topologies that contain 𝒮 is again a

topology which clearly still contains 𝒮. By construction, ⟨𝒮⟩ is then contained in any other topology

containing 𝒮. Thus ⟨𝒮⟩ is the unique topology with this property.

Let

𝒯𝒮 = ��

𝜆∈Λ

𝑛𝜆

�

𝑖=1

𝑆𝜆,𝑖 � 𝑆𝜆,𝑖 ∈ 𝒮� .

Clearly, 𝒯𝒮 ⊆ ⟨𝒮⟩. We need to prove that they are equal. To do this we will prove that 𝒯𝒮 is a topology

on 𝑋 that contains 𝒮. Hence, by the first part ⟨𝒮⟩ = 𝒯𝒮. Since 𝒮 is a subbasis for a topology on 𝑋, by

Lemma 4.14 we know that the topology generated by 𝒮 is equal to the collection of all unions of basis

elements of the associated ℬ to 𝒮. Hence, 𝒯𝒮 is a topology on 𝑋.

We end this section with a theorem about continuity and (sub)basis.

Theorem 4.16 Let 𝑋 and 𝑌 be topological spaces, and let ℬ (resp., 𝒮) be a basis (resp.,

subbasis) for the topology on 𝑌. Then a map 𝑓∶ 𝑋 → 𝑌 is continuous if and only if for each

𝐵 ∈ ℬ (resp. 𝑆 ∈ 𝒮) the preimage 𝑓−1(𝐵) (resp., 𝑓−1(𝑆)) is open in 𝑋.

Proof. We prove the statement about basis.

Assume that 𝑓 is continuous. Since each basis element 𝐵 ∈ ℬ is open in 𝑌, then by continuity

𝑓−1(𝐵) is open in 𝑋.

Assume that for each 𝐵 ∈ ℬ the preimage 𝑓−1(𝐵) is open in 𝑋. Let 𝒯𝑌 be the topology on 𝑌.

Since every 𝑉 ∈ 𝒯𝑌 is a union 𝑉 = ⋃𝜆∈Λ 𝐵𝜆 of basis elements 𝐵𝜆 ∈ ℬ, we have

𝑓−1(𝑉) =�

𝜆∈Λ

𝑓−1(𝐵𝜆).

Thus if each 𝑓−1(𝐵𝜆) is open in 𝑋, so is 𝑓−1(𝑉).

4.4 Exercises

Exercise 4.1 Let 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}, and let

𝒯 = {∅, {𝑎, 𝑏}, {𝑎, 𝑏, 𝑑, 𝑒}, {𝑏}, {𝑏, 𝑑, 𝑒}, {𝑏, 𝑐, 𝑑, 𝑒}, {𝑐, 𝑑, 𝑒}, {𝑑, 𝑒}, 𝑋}

be a topology on 𝑋. Show that 𝒮 = {{𝑎, 𝑏}, {𝑏, 𝑑, 𝑒}, {𝑐, 𝑑, 𝑒}} is a subbasis for 𝒯. Is 𝒮′ =

{{𝑎, 𝑏}, {𝑏, 𝑐, 𝑑, 𝑒}, {𝑑, 𝑒}} a subbasis for 𝒯?
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Exercise 4.2 Let ℬ be the collection of all open intervals (𝑎, 𝑏) = {𝑥 ∈ ℝ ∣ 𝑎 < 𝑥 < 𝑏} inℝ.

(a) Show that ℬ is a basis for a topology on ℝ. The topology generated by ℬ is called the

standard topology on ℝ denoted by 𝒯std.

(b) Show that𝒯std = 𝒯𝑑 where𝒯𝑑 is themetric topology obtained from themetric 𝑑(𝑥, 𝑦) =

|𝑥 − 𝑦|.

Exercise 4.3 Show that

𝒮 = {(𝑎,∞) ∣ 𝑎 ∈ ℝ} ∪ {(−∞, 𝑏) ∣ 𝑏 ∈ ℝ}

is a subbasis for the standard topology on ℝ.

Exercise 4.4 Let ℚ deonte the set of rational numbers, and let ℝ denote the set of real

numbers. Show that

ℬ = {(𝑎, 𝑏) ∣ 𝑎 < 𝑏, 𝑎, 𝑏 ∈ ℚ}

is a basis for the standard topology on ℝ where (𝑎, 𝑏) = {𝑥 ∈ ℝ ∣ 𝑎 < 𝑥 < 𝑏}.

Exercise 4.5 Let ℬ be the collection of all half-open intervals of the form [𝑎, 𝑏) = {𝑥 ∈ ℝ ∣

𝑎 ⩽ 𝑥 < 𝑏} in ℝ.

(a) Show that ℬ is a basis for a topology on ℝ. The topology generated by ℬ is called the

lower limit topology on ℝ.

(b) Find the closure of the subset (0, 1) of ℝ given the lower limit topology.

Exercise 4.6 For each 𝑛 ∈ ℤ, let

𝐵(𝑛) = �
{𝑛} if 𝑛 is odd,

{𝑛 − 1, 𝑛, 𝑛 + 1} if 𝑛 is even.

Show that the collection ℬ = {𝐵(𝑛) ∣ 𝑛 ∈ ℤ} is a basis for a topology on ℤ. The topology gen-

erated byℬ is known as the digital line topology on ℤ. See [1, pp. 62–64] for some applications

of this topology.

Exercise 4.7 Let ℬ be the collection of all subsets of the form 𝐴𝑎,𝑏 = {𝑎𝑧 + 𝑏 ∣ 𝑧 ∈ ℤ} of ℤ,

where 𝑎, 𝑏 ∈ ℤ and 𝑎 ≠ 0. (The set 𝐴𝑎,𝑏 is known as an arithmetic progression.)

(a) Show that ℬ is a basis for a topology on ℤ.

(b) Show that there are infinitely many primes by using the topology generated by ℬ. (This

topology is known as the arithmetic progression topology on ℤ and it was used originally

by Furstenberg [2] to show that there are infinitely many primes.)
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Exercise 4.8 Let 𝑋 be a topological space, and let ℬ be a basis for the topology on 𝑋. Show

that a subset 𝐴 of 𝑋 is dense in 𝑋 if and only if every non-empty basis element in ℬ intersects

𝐴. (Recall that a set 𝑈 intersects a set 𝑉 if 𝑈 ∩ 𝑉 ≠ ∅.)



5. Constructing topological spaces

5.1 Subspaces

Let 𝐴 be a subset of a topological space 𝑋. There is a natural way to define a topology on 𝐴 that is

based on the topology on 𝑋.

Definition 5.1 (Subspace topology) Let 𝑋 be a topological space, and let 𝐴 be a subset of

𝑋. The collection

𝒯𝐴 = {𝐴 ∩ 𝑈 ∣ 𝑈 is open in 𝑋}

of subsets of 𝐴 is called the subspace topology on 𝐴.

The subspace topology is indeed a topology.

Lemma 5.2 Let 𝑋 be a topological space, and let 𝐴 be a subset of 𝑋. Then the collection

𝒯𝐴 = {𝐴 ∩ 𝑈 ∣ 𝑈 is open in 𝑋} is a topology on 𝐴.

Proof. Let 𝒯 denote the topology on 𝑋.

Since ∅, 𝑋 ∈ 𝒯, ∅ = 𝐴 ∩ ∅ and 𝐴 = 𝐴 ∩ 𝑋, then, clearly, ∅, 𝐴 ∈ 𝒯𝐴. Hence, T1 is satisfied.

Let {𝑉𝜆}𝜆∈Λ be a collection of subsets of 𝐴 who are open in 𝐴, i.e., 𝑉𝜆 ∈ 𝒯𝐴. We must show that

⋃𝜆∈Λ 𝑉𝜆 ∈ 𝒯𝐴. For each 𝜆 ∈ Λ there is a 𝑈𝜆 ∈ 𝒯 such that 𝑉𝜆 = 𝐴 ∩ 𝑈𝜆. Thus

�

𝜆∈Λ

𝑉𝜆 =�

𝜆∈Λ

(𝐴 ∩ 𝑈𝜆) = 𝐴 ∩�

𝜆∈Λ

𝑈𝜆.

Since⋃𝜆∈Λ 𝑈𝜆 ∈ 𝒯, it follows that⋃𝜆∈Λ 𝑉𝜆 ∈ 𝒯𝐴. Hence, T2 is satisfied.

Let 𝑉1, 𝑉2, … , 𝑉𝑛 be subsets of 𝐴 that are open in 𝐴, i.e., 𝑉𝑖 ∈ 𝒯𝐴 for 𝑖 = 1, 2, … , 𝑛. We must show

that⋂
𝑛
𝑖=1 𝑉𝑖 ∈ 𝒯𝐴. For each 𝑖 ∈ {1, 2, … , 𝑛} there is a 𝑈𝑖 ∈ 𝒯 such that 𝑉𝑖 = 𝐴 ∩ 𝑈𝑖. Thus

𝑛

�

𝑖=1

𝑉𝑖 =

𝑛

�

𝑖=1

(𝐴 ∩ 𝑈𝑖) = 𝐴 ∩

𝑛

�

𝑖=1

𝑈𝑖.

Since⋂
𝑛
𝑖=1 𝑈𝑖 ∈ 𝒯, it follows that⋂

𝑛
𝑖=1 𝑉𝑖 ∈ 𝒯𝐴. Hence, T3 is satisfied.

Let 𝑋 be a topological space (with topology 𝒯), and let 𝐴 be a subspace of 𝑋. If 𝑉 is a subset of 𝐴, there are

two possible meanings to the statement “𝑉 is open.” We can either take 𝑉 to be open in 𝑋, i.e., 𝑉 ∈ 𝒯, or we

can take 𝑉 to be open in 𝐴, i.e., 𝑉 ∈ 𝒯𝐴. In general, these do not mean the same thing.

The next example illustrates the fact that we may have subsets of a topological space 𝑋 that are

open in the subspace 𝐴 but which are not open in 𝑋.

28
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Example 5.3 Letℝ denote the set of real numbers equipped with the standard topology, cf.

Exercise 4.2, and let 𝐼 = [0, 1] be a subspace ofℝ. Then sets of the form [0, 𝑎) and (𝑎, 1]with

0 < 𝑎 < 1 are open in 𝐼 but not in ℝ.

The following theorem describes howwemay extract a basis for the subspace topology on𝐴 from

the basis of a topology on 𝑋.

Theorem 5.4 Let 𝑋 be a topological space, and let ℬ be a basis for the topology on 𝑋. If 𝐴 is

a subset of 𝑋, then the collection

ℬ𝐴 = {𝐴 ∩ 𝐵 ∣ 𝐵 ∈ ℬ}

is a basis for the subspace topology on 𝐴.

Proof. We need to prove thatℬ𝐴 is a basis for the subspace topology on 𝐴. We first prove thatℬ𝐴 is a

basis for a topology on 𝐴, and then that the topology generated by ℬ𝐴 equals the subspace topology

on 𝐴.

First note that each 𝐵 ∈ ℬ is open in 𝑋, and so, each 𝐴 ∩ 𝐵 ∈ ℬ𝐴 is open in 𝐴. For each 𝑥 ∈ 𝑋

there is a basis element 𝐵 ∈ ℬ such that 𝑥 ∈ 𝐵. Let 𝑥 ∈ 𝐴. Since 𝐴 = 𝐴 ∩ 𝑋, there must be a basis

element𝐵 ∈ ℬ such that 𝑥 ∈ 𝐴∩𝐵. Hence, B1 holds. Now let 𝑥 ∈ 𝐴∩(𝐵1∩𝐵2)where𝐵1 and𝐵2 are

basis elements of ℬ. Since ℬ is a basis for the topology on 𝑋, it follows that there is a basis element

𝐵3 of ℬ such that 𝐵3 ⊆ 𝐵1 ∩𝐵2 and 𝑥 ∈ 𝐴 ∩ 𝐵3 ⊆ 𝐴 ∩ (𝐵1 ∩𝐵2). Hence, B2 is satisfied. Thus ℬ𝐴 is a

basis for a topology on 𝐴.

Let 𝒯𝐴 be the subspace topology on 𝐴. We want to prove that the topology 𝒯′ generated by ℬ𝐴 is

equal to 𝒯𝐴. If 𝐴 ∩𝑈 ∈ 𝒯𝐴 and 𝑥 ∈ 𝐴 ∩𝑈, then, using the fact that ℬ is a basis for the topology on 𝑋,

we have 𝐵 ∈ ℬ such that 𝑥 ∈ 𝐴 ∩ 𝐵 ⊆ 𝐴 ∩ 𝑈. Thus 𝐴 ∩ 𝑈 ∈ 𝒯′, cf. Theorem 4.9. By Theorem 4.10

we know that 𝒯′ is equal to the collection of all unions of elements of ℬ𝐴. Hence, if𝑊 ∈ 𝒯′ then𝑊

equals a union of elements of ℬ𝐴. Since each element of ℬ𝐴 belongs to 𝒯𝐴 and 𝒯𝐴 is a topology, 𝑊

also belongs to 𝒯𝐴.

We end this section with an alternative description of the subspace topology. Let 𝑋 be a topolog-

ical space, and let 𝑇 be a set. There do exist topologies on 𝑇 that make 𝑓∶ 𝑇 → 𝑋 continuous, e.g.,

the discrete topology. If 𝒯𝑓 is the intersection of all topologies on 𝑇 such that 𝑓 is continuous, then 𝒯𝑓
is the coarsest topology for which 𝑓 is continuous and

𝒯𝑓 = {𝑓−1(𝑈) ∣ 𝑈 is open in 𝑋}.

From this we may define the subspace topology as follows: Let 𝑋 be a topological space, and let 𝐴 be

subset of 𝑋. The subspace topology on 𝐴 is then the coarsest topology on 𝐴 for which the inclusion

𝑖 ∶ 𝐴 → 𝑋, given by 𝑖(𝑥) = 𝑥 for 𝑥 ∈ 𝐴, is continuous. This coincides with our previous definition as

𝑖−1(𝑈) = 𝐴 ∩ 𝑈 for any subset 𝑈 of 𝑋. Thus

𝒯𝑖 = {𝑖−1(𝑈) ∣ 𝑈 is open in 𝑋} = {𝐴 ∩ 𝑈 ∣ 𝑈 is open in 𝑋},

and hence, 𝒯𝑖 = 𝒯𝐴.

The following theorem describes a universal property for the subspace topology.
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Theorem 5.5 Let 𝑋 be a topological space, and let 𝐴 be a subset of 𝑋. Then the subspace

topology on 𝐴 is the only topology on 𝐴 with the following universal property: for every topo-

logical space𝑌 and everymap𝑓∶ 𝑌 → 𝐴, 𝑓 is continuous if and only if 𝑖∘𝑓∶ 𝑌 → 𝑋 is continuous

where 𝑖 ∶ 𝐴 → 𝑋 is the inclusion map given by 𝑖(𝑥) = 𝑥 for 𝑥 ∈ 𝐴.

𝑋

𝑌 𝐴
𝑓

𝑖 ∘ 𝑓
𝑖

Proof. We will first prove that the subspace topology 𝒯𝐴 has the universal property that for every

topological space 𝑌 and every map 𝑓∶ 𝑌 → 𝐴, 𝑓 is continuous if and only if 𝑖 ∘𝑓∶ 𝑌 → 𝑋 is continuous.

Then we will prove that 𝒯𝐴 is the only topology on 𝐴 with this property.

Consider 𝐴 as a subspace of 𝑋. Assume that 𝑓 is continuous. Since the inclusion map 𝑖 is con-

tinuous (with 𝐴 given the subspace topology), and the composition of two continuous maps is again

continuous, cf. Theorem 3.16, it follows that 𝑖 ∘ 𝑓 is continuous. Now assume that 𝑖 ∘ 𝑓 is continuous.

Let 𝑉 be an open set in 𝐴, i.e., 𝑉 = 𝐴 ∩ 𝑈 for some open set 𝑈 in 𝑋. Since

𝑓−1(𝑉) = 𝑓−1(𝐴 ∩ 𝑈) = 𝑓−1(𝑖−1(𝑈)) = (𝑖 ∘ 𝑓)−1(𝑈)

is open in 𝑌 by continuity of 𝑖 ∘ 𝑓, it follows that 𝑓 is continuous. Thus the subspace topology 𝒯𝐴 has

the desired property.

Let𝒯′ be a topology on𝐴with the universal property that for every topological space 𝑌 and every

map 𝑓∶ 𝑌 → 𝐴, 𝑓 is continuous if and only if 𝑖 ∘ 𝑓∶ 𝑌 → 𝑋 is continuous. Wemust show that 𝒯𝐴 = 𝒯′.

Let 𝒯 be the topology on 𝑋, and let 𝐴 be given the topology 𝒯′. First let 𝑌 = 𝐴with the subspace

topology. Then for 𝑓 = id ∶ (𝐴, 𝒯𝐴) → (𝐴, 𝒯′), we have 𝑖 ∘ id = 𝑖∶ (𝐴, 𝒯𝐴) → (𝑋, 𝒯) which is

continuous. Hence, by the universal property id is continuous.

(𝑋, 𝒯)

(𝐴, 𝒯𝐴) (𝐴, 𝒯′)
id

𝑖 ∘ id
𝑖

Thus any 𝑉 ∈ 𝒯′ must also be an element of 𝒯𝐴, and so, 𝒯′ ⊆ 𝒯𝐴.

Secondly let 𝑌 = 𝐴with𝒯′ as its topology. Then, clearly, 𝑓 = id ∶ (𝐴, 𝒯′) → (𝐴, 𝒯′) is continuous.

Thus by the universal property it follows that 𝑖 ∘ id = 𝑖∶ (𝐴, 𝒯′) → (𝑋, 𝒯) is continuous.

(𝑋, 𝒯)

(𝐴, 𝒯′) (𝐴, 𝒯′)
id

𝑖 ∘ id
𝑖

Thus for any 𝑈 ∈ 𝒯, we have 𝑖−1(𝑈) = 𝐴 ∩ 𝑈 ∈ 𝒯′. That is, 𝒯𝐴 ⊆ 𝒯′. Hence, 𝒯𝐴 = 𝒯′.
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5.2 Products

Let 𝑋 and 𝑌 be topological spaces. If we want to give the product 𝑋 × 𝑌 a topology, a first approach

might be to take the collection

𝒞 = {𝑈 × 𝑉 ∣ 𝑈 is open in 𝑋 and 𝑉 is open in 𝑌}

as the topology on 𝑋 × 𝑌. However, 𝒞 is not a topology. The union of two elements of 𝒞 is not

necessarily of the form 𝑈 × 𝑉 for some 𝑈 open in 𝑋 and some 𝑉 open in 𝑌. See Figure 5.1.

𝑌

𝑋

𝑈1 × 𝑉1

𝑈2 × 𝑉2

𝑈1 𝑈2

𝑉1

𝑉2

Figure 5.1: The collection 𝒞 of all products of open sets in 𝑋 and in 𝑌 is not a topology on 𝑋 × 𝑌.

We can remedy the situation by taking 𝒞 as a basis instead. The topology generated from this

basis is what we will take to be the product topology on 𝑋 × 𝑌.

Definition 5.6 (Product topology) Let 𝑋 and 𝑌 be topological spaces. The product topology

on 𝑋 × 𝑌 is the topology generated by the basis

ℬ = {𝑈 × 𝑉 ∣ 𝑈 is open in 𝑋 and 𝑉 is open in 𝑌}.

Lemma 5.7 Let 𝑋 and 𝑌 be topological spaces. Then the collection

ℬ = {𝑈 × 𝑉 ∣ 𝑈 is open in 𝑋 and 𝑉 is open in 𝑌}

is a basis for a topology on 𝑋 × 𝑌.

Proof. Let (𝑥, 𝑦) ∈ 𝑋 × 𝑌. We need to show that there is a basis element 𝑈 × 𝑉 ∈ ℬ such that

(𝑥, 𝑦) ∈ 𝑈 × 𝑉 ⊆ 𝑋 × 𝑌. Since 𝑋 is open in 𝑋 and 𝑌 is open in 𝑌, we simply take 𝑈 = 𝑋 and 𝑉 = 𝑌.

Thus B1 is satisfied.

Now let (𝑥, 𝑦) ∈ (𝑈1 × 𝑉1) ∩ (𝑈2 × 𝑉2) where 𝑈1 × 𝑉1, 𝑈2 × 𝑉2 ∈ ℬ. Since

(𝑈1 × 𝑉1) ∩ (𝑈2 × 𝑉2) = (𝑈1 ∩ 𝑈2) × (𝑉1 ∩ 𝑉2),

and 𝑈1 ∩ 𝑈2 and 𝑉1 ∩ 𝑉2 are open in 𝑋 and 𝑌, respectively, it follows by letting 𝑈3 = 𝑈1 ∩ 𝑈2 and

𝑉3 = 𝑉1∩𝑉2 that there is a basis element𝑈3×𝑉3 ∈ ℬ such that (𝑥, 𝑦) ∈ 𝑈3×𝑉3 ⊆ (𝑈1×𝑉1)∩(𝑈2×𝑉2).

Hence, B2 holds. Thus ℬ is a basis for a topology on 𝑋 × 𝑌.
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The basis described in Lemma 5.7 is relatively large; it consists of pairs of every open set 𝑈 in 𝑋

and every open set 𝑉 in 𝑌. The following theorem describes a smaller basis for the product topology

based on bases rather than whole topologies.

Theorem 5.8 Let 𝑋 and 𝑌 be topological spaces. If ℬ𝑋 is a basis for the topology on 𝑋 and

ℬ𝑌 is a basis for the topology on 𝑌, then the collection

ℬ𝑋×𝑌 = {𝐵𝑋 × 𝐵𝑌 ∣ 𝐵𝑋 ∈ ℬ𝑋 and 𝐵𝑌 ∈ ℬ𝑌}

is a basis for the product topology on 𝑋 × 𝑌.

Proof. We follow the arguments for the proof of Theorem 5.4 and adapt them to our current setting.

First note that each 𝐵𝑋 × 𝐵𝑌 ∈ ℬ𝑋 × ℬ𝑌 is open in 𝑋 × 𝑌 as each 𝐵𝑋 is open in 𝑋 and each 𝐵𝑌 is

open in 𝑌. Let (𝑥, 𝑦) ∈ 𝑋 × 𝑌. Using the fact that ℬ𝑋 and ℬ𝑌 are bases for topologies on 𝑋 and 𝑌,

respectively, there are basis elements 𝐵𝑋 ∈ ℬ𝑋 and 𝐵𝑌 ∈ ℬ𝑌 such that (𝑥, 𝑦) ∈ 𝐵𝑋 × 𝐵𝑌 ⊆ 𝑋 × 𝑌.

Thus B1 is satisfied. Now let (𝑥, 𝑦) ∈ (𝐵𝑋,1 × 𝐵𝑌,1) ∩ (𝐵𝑋,2 × 𝐵𝑌,2) where 𝐵𝑋,1, 𝐵𝑋,2 ∈ ℬ𝑋 and

𝐵𝑌,1, 𝐵𝑌,2 ∈ ℬ𝑌. Since

(𝐵𝑋,1 × 𝐵𝑌,1) ∩ (𝐵𝑋,2 × 𝐵𝑌,2) = (𝐵𝑋,1 ∩ 𝐵𝑋,2) × (𝐵𝑌,1 ∩ 𝐵𝑌,2)

and ℬ𝑋 and ℬ𝑌 are bases for the topologies on 𝑋 and 𝑌, respectively, it follows that there are basis

elements 𝐵𝑋,3 ∈ ℬ𝑋 and 𝐵𝑌,3 ∈ ℬ𝑌 such that 𝑥 ∈ 𝐵𝑋,3 ⊆ 𝐵𝑋,1 ∩ 𝐵𝑋,2, 𝑦 ∈ 𝐵𝑌,3 ⊆ 𝐵𝑌,1 ∩ 𝐵𝑌,2 and

(𝑥, 𝑦) ∈ 𝐵𝑋,3 × 𝐵𝑌,3 ⊆ (𝐵𝑋,1 ∩ 𝐵𝑋,2) × (𝐵𝑌,1 ∩ 𝐵𝑌,2). Thus B2 holds. Hence, ℬ𝑋×𝑌 is a basis for a

topology on 𝑋 × 𝑌.

Let 𝒯𝑋×𝑌 be the product topology on 𝑋 × 𝑌. We want to prove that the topology 𝒯′ generated

by ℬ𝑋×𝑌 is equal to 𝒯𝑋×𝑌. Let𝑊 ∈ 𝒯𝑋×𝑌, and let (𝑥, 𝑦) ∈ 𝑊. Then there is an open set 𝑈 in 𝑋 and

an open set 𝑉 in 𝑌 such that (𝑥, 𝑦) ∈ 𝑈 × 𝑉 ⊆ 𝑊, cf. Theorem 4.9. Since 𝑈 is open in 𝑋 and ℬ𝑋 is a

basis for the topology on 𝑋, it follows that there is a basis element 𝐵𝑋 ∈ ℬ𝑋 such that 𝑥 ∈ 𝐵𝑥 ⊆ 𝑈.

Likewise, there is a basis element 𝐵𝑌 ∈ ℬ𝑌 such that 𝑦 ∈ 𝐵𝑌 ⊆ 𝑉. Thus (𝑥, 𝑦) ∈ 𝐵𝑋 × 𝐵𝑌 ⊆ 𝑊,

and so,𝑊 ∈ 𝒯′, cf. Theorem 4.9. By Theorem 4.10, we know that 𝒯′ is equal to the collection of all

unions of elements of ℬ𝑋×𝑌. Hence, if 𝑊 ∈ 𝒯′ then 𝑊 equals a union of elements of ℬ𝑋×𝑌. Since

each element of ℬ𝑋×𝑌 belongs to 𝒯𝑋×𝑌 and 𝒯𝑋×𝑌 is a topology,𝑊 also belongs to 𝒯𝑋×𝑌.

Example 5.9 Let 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} and 𝑌 = {1, 2, 3} with topologies 𝒯𝑋 =

{∅, {𝑎, 𝑏}, {𝑏}, {𝑏, 𝑐, 𝑑, 𝑒}, 𝑋} and 𝒯𝑌 = {∅, {1}, {1, 2}, 𝑌}, respectively. Then the collection

ℬ𝑋×𝑌 = �{𝑎, 𝑏} × {1}, {𝑏} × {1}, {𝑏, 𝑐, 𝑑, 𝑒} × {1},

{𝑎, 𝑏} × {1, 2}, {𝑏} × {1, 2}, {𝑏, 𝑐, 𝑑, 𝑒} × {1, 2},

{𝑎, 𝑏} × 𝑌, {𝑏} × 𝑌, {𝑏, 𝑐, 𝑑, 𝑒} × 𝑌�

is a basis for the product topology on 𝑋 × 𝑌.

Example 5.10 Let ℝ denote the set of real numbers equipped with the standard topology,

cf. Exercise 4.2. Then the collection

ℬℝ2 = {(𝑎, 𝑏) × (𝑐, 𝑑) ∣ 𝑎 < 𝑏, 𝑐 < 𝑑}

of open rectangular regions in ℝ2 is a basis for the product topology on ℝ2 = ℝ × ℝ, since a

basis for the standard topology ofℝ is the collection of open intervals of the form (𝑎, 𝑏)where

𝑎 < 𝑏.
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Example 5.11 Let 𝑆1 denote the circle {(𝑥, 𝑦) ∈ ℝ2 ∣ 𝑥2 + 𝑦2 = 1} seen as a subspace

of ℝ2 (with the standard topology), i.e., 𝑆1 is given the subspace topology. A basis element 𝐵

for the product topology on the torus 𝑇2 = 𝑆1 × 𝑆1 is illustrated in Figure 5.2. Note that the

surface depicted in Figure 5.2 is homeomorphic to 𝑇2; it is the surface of revolution generated

by revolving a circle, say of radius 1 in the 𝑥𝑧-plane with center (2, 0, 0), about an axis, e.g.,

the 𝑧-axis.

Figure 5.2: An illustration of a basis element 𝐵 for the product topology on 𝑇2 = 𝑆1 × 𝑆1.

We end this sectionwith an alternative description of the product topology. Themap𝜋1 ∶ 𝑋×𝑌 →

𝑋 given by

𝜋1(𝑥, 𝑦) = 𝑥

for (𝑥, 𝑦) ∈ 𝑋×𝑌 is called the projection of 𝑋×𝑌 onto 𝑋. Similarly, the map 𝜋2 ∶ 𝑋×𝑌 → 𝑌 given by

𝜋2(𝑥, 𝑦) = 𝑦

for (𝑥, 𝑦) ∈ 𝑋 × 𝑌 is called the projection of 𝑋 × 𝑌 onto 𝑌.

Theorem 5.12 Let 𝑋 and 𝑌 be topological spaces. Let 𝜋1 ∶ 𝑋×𝑌 → 𝑋 and 𝜋2 ∶ 𝑋×𝑌 → 𝑌 be

the projections of 𝑋 ×𝑌 onto its first and second factors, respectively. The product topology is

the only topology on 𝑋 × 𝑌 with the following universal property: for every topological space

𝑍 and every map 𝑓∶ 𝑍 → 𝑋×𝑌, 𝑓 is continuous if and only if 𝜋1 ∘𝑓∶ 𝑍 → 𝑋 and 𝜋2 ∘𝑓∶ 𝑍 → 𝑌

are continuous.

𝑋 × 𝑌

𝑍 𝑋
𝜋1 ∘ 𝑓

𝑓
𝜋1

𝑋 × 𝑌

𝑍 𝑌
𝜋2 ∘ 𝑓

𝑓
𝜋2

Proof. We follow the arguments for the proof of Theorem 5.5 and adapt them to our current setting.

Wefirst prove that the product topology𝒯𝑋×𝑌 has the universal property that for every topological

space 𝑍 and every map 𝑓∶ 𝑍 → 𝑋×𝑌, 𝑓 is continuous if and only if 𝜋1 ∘ 𝑓∶ 𝑍 → 𝑋 and 𝜋2 ∘ 𝑓∶ 𝑍 → 𝑌

are continuous.

Let 𝑋 × 𝑌 be given the product topology, and let 𝑓∶ 𝑍 → 𝑋 × 𝑌 be continuous. Since 𝜋−11 (𝑈) =

𝑈×𝑌 for an open set𝑈 in𝑋 and𝑌 is open in𝑌, it follows that𝜋1 is continuous. Likewise,𝜋2 ∶ 𝑋×𝑌 → 𝑌
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is continuous. Thus by Theorem 3.16 both 𝜋1 ∘ 𝑓 and 𝜋2 ∘ 𝑓 are continuous. Now assume that 𝜋1 ∘ 𝑓

and 𝜋2 ∘ 𝑓 are continuous. Let 𝑈 × 𝑉 be a subset of 𝑋 × 𝑌 where 𝑈 is an open set in 𝑋 and 𝑉 is an

open set in 𝑌. Since 𝑈 × 𝑉 = 𝜋−11 (𝑈) ∩ 𝜋−12 (𝑉) and

𝑓−1(𝑈 × 𝑉) = 𝑓−1(𝜋−11 (𝑈) ∩ 𝜋−12 (𝑉))

= 𝑓−1(𝜋−11 (𝑈)) ∩ 𝑓−1(𝜋−12 (𝑉))

= (𝜋1 ∘ 𝑓)
−1(𝑈) ∩ (𝜋2 ∘ 𝑓)

−1(𝑉)

is open in 𝑍 by continuity of 𝜋1 ∘ 𝑓 and 𝜋2 ∘ 𝑓, and subsets of the form 𝑈 × 𝑉 form a basis for the

product topology on 𝑋 × 𝑌, cf. Lemma 5.7, it follows that 𝑓 is continuous.

Let 𝒯 be a topology on 𝑋 × 𝑌 with the universal property that for every topological space 𝑍 and

every map 𝑓∶ 𝑍 → 𝑋 × 𝑌, 𝑓 is continuous if and only if 𝜋1 ∘ 𝑓∶ 𝑍 → 𝑋 and 𝜋2 ∘ 𝑓∶ 𝑍 → 𝑌 are

continuous. We must show that 𝒯𝑋×𝑌 = 𝒯.

Let 𝒯𝑋 be the topology on 𝑋 and 𝒯𝑌 be the topology on 𝑌, and let 𝑋 × 𝑌 be given the topology 𝒯.

First let 𝑍 = 𝑋×𝑌with the product topology. Then for 𝑓 = id ∶ (𝑋×𝑌, 𝒯𝑋×𝑌) → (𝑋×𝑌, 𝒯), we have

𝜋1 ∘ id = 𝜋1 ∶ (𝑋 × 𝑌, 𝒯𝑋×𝑌) → (𝑋, 𝒯𝑋) and 𝜋2 ∘ id = 𝜋2 ∶ (𝑋 × 𝑌, 𝒯𝑋×𝑌) → (𝑌, 𝒯𝑌) which are both

continuous. Thus by the universal property id is continuous.

(𝑋 × 𝑌, 𝒯)

(𝑋 × 𝑌, 𝒯𝑋×𝑌) (𝑋, 𝒯𝑋)
𝜋1 ∘ id

id
𝜋1

(𝑋 × 𝑌, 𝒯)

(𝑋 × 𝑌, 𝒯𝑋×𝑌) (𝑌, 𝒯𝑌)
𝜋2 ∘ id

id
𝜋2

Hence, any𝑊 ∈ 𝒯must also be an element of 𝒯𝑋×𝑌, and so, 𝒯 ⊆ 𝒯𝑋×𝑌.

Secondly let 𝑍 = 𝑋 × 𝑌 with 𝒯 as its topology. Then, clearly, 𝑓 = id ∶ (𝑋 × 𝑌, 𝒯) → (𝑋 × 𝑌, 𝒯) is

continuous. Thus by the universal property it follows that both 𝜋1 ∘ id = 𝜋1 ∶ (𝑋 × 𝑌, 𝒯) → (𝑋, 𝒯𝑋)

and 𝜋2 ∘ id = 𝜋2 ∶ (𝑋 × 𝑌, 𝒯) → (𝑌, 𝒯𝑌) are continuous.

(𝑋 × 𝑌, 𝒯)

(𝑋 × 𝑌, 𝒯) (𝑋, 𝒯𝑋)
𝜋1 ∘ id

id
𝜋1

(𝑋 × 𝑌, 𝒯)

(𝑋 × 𝑌, 𝒯) (𝑌, 𝒯𝑌)
𝜋2 ∘ id

id
𝜋2

Thus for each 𝑈 ∈ 𝒯𝑋 and 𝑉 ∈ 𝒯𝑌, we have

𝜋−11 (𝑈) = 𝑈 × 𝑌 ∈ 𝒯 and 𝜋−12 (𝑉) = 𝑋 × 𝑉 ∈ 𝒯,

and so, 𝑈 × 𝑉 = 𝜋−11 (𝑈) ∩ 𝜋−12 (𝑉) ∈ 𝒯. Hence, 𝒯𝑋×𝑌 ⊆ 𝒯. Thus 𝒯𝑋×𝑌 = 𝒯.

We can extend our discussion of the product topology from 𝑋 × 𝑌 to 𝑋1 × 𝑋2 × ⋯ × 𝑋𝑛 where each 𝑋𝑖

is a topological space. If we are to extend to the product ∏𝜆∈Λ 𝑋𝜆, which we can think of as the set of maps

𝑓∶ Λ → ⋃𝜆∈Λ 𝑋𝜆 where 𝑓(𝜆) ∈ 𝑋𝜆 for each 𝜆 ∈ Λ, of an indexed family {𝑋𝜆}𝜆∈Λ of topological spaces we may

proceed in two ways. We may equip ∏𝜆∈Λ 𝑋𝜆 with the topology generated by the basis ∏𝜆∈Λ 𝑈𝜆 where 𝑈𝜆 is

open in 𝑋𝜆 for each 𝜆 ∈ Λ. This is known as the box topology. We may also equip∏𝜆∈Λ 𝑋𝜆 with the topology

generated by the subbasis 𝒮 = ⋃𝜇∈Λ{𝜋
−1
𝜇 (𝑈𝜇) ∣ 𝑈𝜇 is open in 𝑋𝜇}. This is known as the product topology.

For finite products ∏
𝑛

𝑖=1 𝑋𝑖 the two topologies are the same. Also, the box topology is, in general, finer than

the product topology. Finally, several results regarding finite products may be extended to arbitrary products

when using the product topology but not the box topology.
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5.3 Quotient spaces

Let𝑋 be a topological space. In Section 5.1, we discussed how to define the coarsest possible topology

on a subset 𝐴 of 𝑋 such that the inclusion map 𝑖 ∶ 𝐴 → 𝑋 is continuous. This is known as the subspace

topology. If we let 𝐴 be a set which is not necessarily a subset of 𝑋 and we consider a surjective map

𝜋∶ 𝑋 → 𝐴, the quotient topology is the finest topology on 𝐴 such that 𝜋 is continuous.

The torus 𝑇2 = 𝑆1 × 𝑆1 (see Figure 5.2) can be constructed by taking a rectangle and “gluing”

its edges together in an appropriate way as shown in Figure 5.3. Such a construction involves the

concept of quotient topology.

𝑏𝑏

𝑎

𝑎 𝑎

𝑎 𝑏

Figure 5.3: Constructing the torus 𝑇2.

Definition 5.13 (Equivalence classes) Let 𝑋 be a set, and let ∼ be an equivalence relation

on 𝑋. The equivalence class of 𝑥 ∈ 𝑋 is the subset

[𝑥] = {𝑦 ∈ 𝑋 ∣ 𝑥 ∼ 𝑦}

of 𝑋. Let

𝑋/∼ = {[𝑥] ∣ 𝑥 ∈ 𝑋}

be the set of equivalence classes.

By definition, 𝑥 ∈ [𝑥] for each 𝑥 ∈ 𝑋 and [𝑥] = [𝑦] if and only if 𝑥 ∼ 𝑦. Moreover, two

equivalence classes [𝑥1] and [𝑥2] are either disjoint or equal. Finally, the union of all equivalence

classes equal 𝑋.

Lemma 5.14 Let 𝑋 and 𝐴 be sets, and let 𝜋∶ 𝑋 → 𝐴 be a surjective map. Then the map

𝜑∶ 𝑋/∼ → 𝐴

given by

𝜑([𝑥]) = 𝜋(𝑥),

where 𝑥1 ∼ 𝑥2 if and only if 𝜋(𝑥1) = 𝜋(𝑥2), is a bijection.

Proof. Themap is well-defined since [𝑥1] = [𝑥2] only if 𝑥1 ∼ 𝑥2, and so, 𝜋(𝑥1) = 𝜋(𝑥2) by definition

of the equivalence relation. It is injective since 𝜑([𝑥1]) = 𝜑([𝑥2]) implies 𝜋(𝑥1) = 𝜋(𝑥2), and

so, 𝑥1 ∼ 𝑥2, i.e., [𝑥1] = [𝑥2]. Finally, it is surjective since 𝜋 is; every element of 𝐴 is of the form

𝜋(𝑥) = 𝜑([𝑥]) for some 𝑥 ∈ 𝑋.

Thus by Lemma 5.14 we can, up to a bijection, go back and forth between equivalence relations

on 𝑋 and surjective maps 𝑋 → 𝐴.



36 5.3. Quotient spaces

Definition 5.15 (Quotient space) Let𝑋 be a topological space, let𝐴 be a set, and let 𝜋∶ 𝑋 →

𝐴 be a surjective map. The quotient topology on 𝐴 induced by 𝜋 is the collection of subsets 𝑈

of 𝐴 such that 𝜋−1(𝑈) is open in 𝑋. We say that 𝜋 is a quotient map if 𝐴 is given the quotient

topology, and we call 𝐴 the quotient space.

In other words, 𝜋∶ 𝑋 → 𝐴 is quotient map if it is surjective and a subset 𝑈 of 𝐴 is open in 𝐴 if and

only if 𝜋−1(𝑈) is open in 𝑋. Equivalently, 𝜋 is a quotient map if it is surjective and 𝑈 is closed in 𝐴 if

and only if 𝜋−1(𝑈) is closed in 𝑋. Clearly, a quotient map is continuous.

Lemma 5.16 Let 𝑋 be a topological space, let 𝐴 be a set, and let 𝜋∶ 𝑋 → 𝐴 be a surjective

map. Then the quotient topology on 𝐴 induced by 𝜋 is a topology and it is the finest topology

on 𝐴 such that 𝜋 is continuous.

Proof. Since 𝜋−1(∅) = ∅ and 𝜋−1(𝐴) = 𝑋, and both ∅ and 𝑋 are open in 𝑋, it follows that ∅ and 𝐴

are open in 𝐴. Thus T1 holds.

Let {𝑈𝜆}𝜆∈Λ be a collection of subsets of 𝐴 that are open in 𝐴. Then 𝜋−1(𝑈𝜆) is open in𝑋 for each

𝜆 ∈ Λ. Since

𝜋−1 ��

𝜆∈Λ

𝑈𝜆� =�

𝜆∈Λ

𝜋−1(𝑈𝜆)

is a union of open sets in 𝑋, it must be open in 𝑋. Hence,⋃𝜆∈Λ 𝑈𝜆 is open in 𝐴. Thus T2 is satisfied.

Let 𝑈1 and 𝑈2 be subsets of 𝐴 that are open in 𝐴. Then both 𝜋−1(𝑈1) and 𝜋
−1(𝑈2) are open in

𝑋. Since

𝜋−1(𝑈1 ∩ 𝑈2) = 𝜋−1(𝑈1) ∩ 𝜋−1(𝑈2)

is a (finite) intersection of open sets in 𝑋, it must be open in 𝑋. Hence, 𝑈1 ∩ 𝑈2 is open in 𝐴, and so,

T3 is satisfied. Thus the quotient topology is a topology.

Let 𝒯 be a topology on 𝐴 such that 𝜋 is continuous. We must show that 𝒯 is coarser than the

quotient topology. Since 𝜋 is continuous when 𝐴 is given 𝒯 as its topology, we have for each 𝑉 ∈ 𝒯

that 𝜋−1(𝑉) is open in 𝑋, and so, 𝑉 is in the quotient topology. Hence, 𝒯 is coarser than the quotient

topology.

Example 5.17 Let ℝ be the set of real numbers equipped with the standard topology, let

𝐴 = {𝑎, 𝑏, 𝑐}, and let

𝜋∶ ℝ → 𝐴

be the map given by

𝜋(𝑥) = �

𝑎 𝑥 = 0,

𝑏 𝑥 < 0,

𝑐 𝑥 > 0.

Then the quotient topology on 𝐴 induced by 𝜋 is the collection {∅, {𝑏}, {𝑏, 𝑐}, {𝑐}, 𝐴} of subsets

of 𝐴.

Definition 5.18 (Open and closed maps) Let𝑋 and𝑌be topological spaces, and let𝑓∶ 𝑋 → 𝑌

be a continuous map. We say that 𝑓 is an open map if for each subset 𝑈 of 𝑋 that is open in 𝑋

the image 𝑓(𝑈) is open in 𝑌. Likewise, we say that 𝑓 is a closed map if for each subset 𝑉 of 𝑋

that is closed in 𝑋 the image 𝑓(𝑉) is closed in 𝑌.



Chapter 5. Constructing topological spaces 37

Example 5.19 Any homeomorphism is both open and closed. However, the converse is, in

general, not true. Let ℝ be the set of real numbers equipped with the standard topology, and

let ∗ be the space consisting of a single element. Thenℝ → ∗ is both an open and a closedmap

but it is clearly not a homeomorphism.

Lemma 5.20 Let 𝑋 and 𝑌 be topological spaces, and let 𝜋∶ 𝑋 → 𝑌 be a surjective continuous

map.

(1) If 𝜋 is in addition open then it is a quotient map.

(2) If 𝜋 is in addition closed then it is a quotient map.

Proof. Assume that 𝜋 is in addition open. Let 𝑉 be a subset of 𝑌. If 𝑉 is open in 𝑌 then 𝜋−1(𝑉) is

open in 𝑋 by assumption of continuity of 𝜋. If 𝜋−1(𝑉) is open in 𝑋 then since 𝜋 is surjective, we have

𝜋(𝜋−1(𝑉)) = 𝑉

which is open in 𝑌 since we have assumed that 𝜋 is an open map. Hence, (1) holds.

Now assume that 𝜋 is also closed in addition to being a surjective continuous map. Let 𝑊 be

a subset of 𝑌. If 𝑊 is closed in 𝑌 then 𝜋−1(𝑊) is closed in 𝑋 by assumption of continuity of 𝜋. If

𝜋−1(𝑊) is closed in 𝑋 then since 𝜋 is surjective, we have

𝜋(𝜋−1(𝑊)) = 𝑊

which is closed in 𝑌 since we have assumed that 𝜋 is a closed map. Hence, (2) holds.

Example 5.21 Let ℝ be the set of real numbers equipped with the standard topology. Con-

sider [0, 1] as a subspace ofℝ and 𝑆1 as a subspace ofℝ2 whereℝ2 is also given the standard

topology. Let

𝜋∶ [0, 1] → 𝑆1

be the map given by

𝜋(𝑡) = (cos(2𝜋𝑡), sin(2𝜋𝑡)).

Then, clearly, 𝜋 is a surjective continuous map. We can show that 𝜋 is also closed (to do this it

helps to have defined compactness). Thus by Lemma 5.20 𝜋 is a quotient map. Note that 𝜋 is

not open as 𝜋([0, 𝑡)) is not open for 0 < 𝑡 < 1 (where we are using the fact that [0, 𝑡) is open

in [0, 1] for 0 < 𝑡 < 1).

Let∼ be the equivalence relation on [0, 1] given by 𝑠 ∼ 𝑡 if and only if 𝜋(𝑠) = 𝜋(𝑡), and let

𝑝∶ [0, 1] → [0, 1]/∼

be the map given by

𝑝(𝑡) = [𝑡].

Then, clearly, 𝑝 is a surjective continuous map. The induced bijective map

𝜑∶ [0, 1]/∼ → 𝑆1

given by 𝜑([𝑡]) = 𝜋(𝑡) is then a homeomorphism from [0, 1]/∼ with the quotient topology

induced by 𝑝 to 𝑆1 with the quotient topology induced by 𝜋. See Figure 5.4.
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0 1
[0] = [1]

Figure 5.4: Constructing the circle 𝑆1.

Example 5.22 Consider [0, 1] × [0, 1] as a subspace of ℝ × ℝ = ℝ2 where ℝ2 is given the

standard topology, and 𝑇2 = 𝑆1 × 𝑆1 as a subspace of ℝ2 × ℝ2 = ℝ4 where ℝ4 is also given

the standard topology. Let

𝜋∶ [0, 1] × [0, 1] → 𝑆1 × 𝑆1

be the map given by

𝜋(𝑠, 𝑡) = (cos(2𝜋𝑠), sin(2𝜋𝑠), cos(2𝜋𝑡), sin(2𝜋𝑡)).

Clearly, 𝜋 is a surjective continuous function. As in the previous example, we can show that 𝜋

is closed, and so, by Lemma 5.20 it is a quotient map.

Let ∼ be the equivalence relation on [0, 1] × [0, 1] given by (𝑠, 0) ∼ (𝑠, 1) and (0, 𝑡) ∼

(1, 𝑡), and let

𝑝∶ [0, 1] × [0, 1] → ([0, 1] × [0, 1])/∼

be the map given by

𝑝(𝑠, 𝑡) = [𝑠, 𝑡].

Then, clearly, 𝑝 is a surjective continuous map. The induced bijective map

𝜑∶ ([0, 1] × [0, 1])/∼ → 𝑆1 × 𝑆1

given by 𝜑([𝑠, 𝑡]) = 𝜋(𝑠, 𝑡) is then a homeomorphism from ([0, 1] × [0, 1])/∼ with the quo-

tient topology induced by 𝑝 to 𝑆1 × 𝑆1 with the quotient topology induced by 𝜋. The equiv-

alence classes are then the sets {(0, 0), (0, 1), (1, 0), (1, 1)} (the four vertices of the square

are identified), {(𝑠, 0), (𝑠, 1)}, {(0, 𝑡), (1, 𝑡)} (opposing edges of the square are identified), and

{(𝑠, 𝑡)} for 𝑠, 𝑡 ∈ (0, 1). See Figure 5.3.

Example 5.23 The real projective space is the quotient space

ℝP𝑛 = 𝑆𝑛/∼

where 𝑆𝑛 is the 𝑛-sphere and∼ is the equivalence relation given by 𝑥 ∼ 𝑦 if and only if 𝑥 = ±𝑦,

i.e., [𝑥] = {𝑥, −𝑥}. We say that 𝑥 and−𝑥 are antipodal points. The topology onℝP𝑛 is defined

by the quotient map

𝜋∶ 𝑆𝑛 → ℝP𝑛

given by 𝜋(𝑥) = [𝑥].

We end this section with an alternative description of the quotient topology.
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Theorem 5.24 Let 𝑋 be a topological space, let 𝐴 be a set, and let 𝜋∶ 𝑋 → 𝐴 be a surjective

map. The quotient topology is the only topology on𝐴with the following universal property: for

every topological space 𝑌 and every map 𝑓∶ 𝐴 → 𝑌, 𝑓 is continuous if and only if 𝑓 ∘𝜋∶ 𝑋 → 𝑌

is continuous.

𝑋

𝐴 𝑌

𝜋
𝑓 ∘ 𝜋

𝑓

Proof. We follow the arguments for the proofs of Theorem 5.5 and Theorem 5.12 and adapt them to

our current setting.

We first prove that the quotient topology𝒯𝜋 has the universal property that for every topological

space 𝑌 and every map 𝑓∶ 𝐴 → 𝑌, 𝑓 is continuous if and only if 𝑓 ∘ 𝜋∶ 𝑋 → 𝑌 is continuous.

Let 𝐴 be given the quotient topology induced by 𝜋, and assume that 𝑓∶ 𝐴 → 𝑌 is continuous.

By definition of the quotient topology 𝜋−1(𝑈) is open in 𝑋 if and only if 𝑈 is open in 𝐴. Hence, 𝜋 is

continuous. Thus by Theorem 3.16 𝑓 ∘ 𝜋∶ 𝑋 → 𝑌 is continuous. Now assume that 𝑓 ∘ 𝜋∶ 𝑋 → 𝑌 is

continuous. Let 𝑉 be an open set in 𝑌. Since 𝜋 is a quotient map and (𝑓 ∘ 𝜋)−1(𝑉) = 𝜋−1(𝑓−1(𝑉))

is open in 𝑋 by assumption of continuity of 𝑓 ∘ 𝜋, it follows that 𝑓−1(𝑉) is open in 𝐴. Thus 𝑓 is

continuous.

Let𝒯′ be a topology on𝐴with the universal property that for every topological space 𝑌 and every

map 𝑓∶ 𝐴 → 𝑌, 𝑓 is continuous if and only if 𝑓∘𝜋∶ 𝑋 → 𝑌 is continuous. Wemust show that𝒯′ = 𝒯𝜋.

Let 𝒯 be the topology on 𝑋, and let 𝐴 be given the topology 𝒯′. First let 𝑌 = 𝐴 with the quotient

topology induced by 𝑓∘𝜋. Then for 𝑓 = id ∶ (𝐴, 𝒯′) → (𝐴, 𝒯𝜋), we have id ∘𝜋 = 𝜋∶ (𝑋, 𝒯) → (𝐴, 𝒯𝜋)

which is continuous. Hence, by the universal property id is continuous.

(𝑋, 𝒯)

(𝐴, 𝒯′) (𝐴, 𝒯𝜋)

𝜋
id ∘𝜋

id

Thus any 𝑉 ∈ 𝒯𝜋 must also be an element of 𝒯′, and so, 𝒯𝜋 ⊆ 𝒯′.

Secondly let 𝑌 = 𝐴with𝒯′ as its topology. Then, clearly, 𝑓 = id ∶ (𝐴, 𝒯′) → (𝐴, 𝒯′) is continuous.

Thus by the universal property it follows that id ∘𝜋 = 𝜋∶ (𝑋, 𝒯) → (𝐴, 𝒯′) is continuous.

(𝑋, 𝒯)

(𝐴, 𝒯′) (𝐴, 𝒯′)

𝜋
id ∘𝜋

id

Since the quotient topology induced by 𝜋 is the finest topology on 𝐴 such that 𝜋 is a continuous map,

cf. Lemma 5.16, it follows that 𝒯′ ⊆ 𝒯𝜋. Hence, 𝒯′ = 𝒯𝜋.
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5.4 Exercises

Exercise 5.1 Let ℝ be the set of real numbers equipped with the standard topology. Show

that any subspace of the form (𝑎, 𝑏), i.e., an open interval, is homeomorphic to ℝ.

Exercise 5.2 Let 𝑋 be a topological space and let 𝑌 be a subspace of 𝑋. If 𝐴 is a subset of 𝑌,

show that the subspace topology on 𝐴 inherited from 𝑌 is equal to the subspace topology on

𝐴 inherited from 𝑋.

Exercise 5.3 Let ℝ be the set of real numbers equipped with the standard topology, and

consider the set of rational numbersℚ as a subspace of ℝ. Show that the subset

𝐴 = �𝑥 ∈ ℚ � −√5 < 𝑥 < √5�

ofℚ is both open and closed inℚ.

Exercise 5.4 Let 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑} be given the topology 𝒯𝑋 = {∅, {𝑎}, {𝑎, 𝑐, 𝑑}, {𝑐, 𝑑}, 𝑋}, and

let 𝑌 = {1, 2, 3} be given the topology 𝒯𝑌 = {∅, {1}, {1, 3}, 𝑌}. Find a basis for the product

topology on 𝑋 × 𝑌.

Exercise 5.5 Let 𝑋 and 𝑌 be topological spaces, and let 𝐴 and 𝐵 be subsets of 𝑋 and 𝑌,

respectively. Show that the topology on 𝐴 × 𝐵 as a subspace of the product 𝑋 × 𝑌 is equal to

the product topology on 𝐴×𝐵where 𝐴 and 𝐵 are given the subspace topology inherited from

𝑋 and 𝑌, respectively.

Exercise 5.6 Let 𝑋 and 𝑌 be topological spaces. Show that the product topology is the coars-

est topology on𝑋×𝑌 for which both of the projectionmaps 𝜋1 ∶ 𝑋×𝑌 → 𝑋 and 𝜋2 ∶ 𝑋×𝑌 → 𝑌

are continuous.

Exercise 5.7 Let 𝑋 and 𝑌 be two topological spaces, and let 𝑋 × 𝑌 be given the product

topology. Show that if 𝑓∶ 𝑋 → 𝑌 is a continuous map, the subspace

𝐺 = {(𝑥, 𝑦) ∈ 𝑋 × 𝑌 ∣ 𝑦 = 𝑓(𝑥)}

of 𝑋 × 𝑌, is homeomorphic to 𝑋.

Exercise 5.8 Let ℝ be the set of real numbers equipped with the standard topology. Let

𝜋∶ ℝ → ℤ

be the map given by

𝜋(𝑥) = �
𝑥 𝑥 ∈ ℤ

𝑛 𝑥 ∈ (𝑛 − 1, 𝑛 + 1), and 𝑛 is an odd integer.

Show that the quotient topology on ℤ induced by 𝜋 is equal to the digital line topology, cf.

Exercise 4.6.



6. Topological properties

6.1 Connected spaces

One of the fundamental results of calculus is the intermediate value theorem. The theorem says that

for a continuous map 𝑓∶ [𝑎, 𝑏] → ℝ and for a real number 𝑟 between 𝑓(𝑎) and 𝑓(𝑏) there is a real

number 𝑐 ∈ [𝑎, 𝑏] such that 𝑓(𝑐) = 𝑟. See Figure 6.1. From this result we can deduce that the graph

of a continuous map (in this setting) is connected.

𝑦

𝑥

𝑟

𝑐

𝑓(𝑎)

𝑓(𝑏)

𝑎 𝑏

𝑦 = 𝑓(𝑥)

Figure 6.1: The intermediate value theorem.

Definition 6.1 (Connected space) Let 𝑋 be a topological space. A separation of 𝑋 is a pair

of non-empty subsets 𝑈 and 𝑉 that are open in 𝑋, disjoint and whose union equal 𝑋. We say

that 𝑋 is connected if there are no separations of 𝑋. Otherwise it is disconnected.

The property of being connected is a topological property as it is formulated entirely in terms of the col-

lection of open sets. In other words, if 𝑋 and 𝑌 are homeomorphic topological spaces and 𝑋 is connected then

so is 𝑌.

Example 6.2 Let 𝑋 be the set {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}. If we equip 𝑋 with the topology 𝒯1 =

{∅, {𝑎, 𝑏}, {𝑎, 𝑏, 𝑐}, {𝑎, 𝑏, 𝑑, 𝑒}, {𝑑, 𝑒}, 𝑋} then it is disconnected; the pair 𝑈 = {𝑎, 𝑏, 𝑐} and

𝑉 = {𝑑, 𝑒} is a separation of 𝑋 in this topology.

However, if we equip 𝑋 with the topology 𝒯2 = {∅, {𝑎, 𝑏, 𝑐}, {𝑐}, {𝑐, 𝑑, 𝑒}, 𝑋} then it is con-

nected; there are no separations of 𝑋 in this topology.

41
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Example 6.3 Let 𝑋 be an indiscrete space. Then 𝑋 is connected as there are no separations

of 𝑋, i.e., there are no non-empty open subsets of 𝑋 who are disjoint and whose union equal

𝑋.

Example 6.4 Let𝑋 be a discrete space containing twoormore points. Then𝑋 is disconnected.

Let 𝑝 ∈ 𝑋 and let 𝑈 = {𝑝} and 𝑉 = 𝑈𝑐 = 𝑋 ⧵ {𝑝}. Then the pair 𝑈 and 𝑉 is a separation of 𝑋.

Example 6.5 Let ℝ be the set of real numbers equipped with the standard topology, and

let 𝑋 = [0, 1) ∪ (1, 2) be a subspace of ℝ. Since 𝑈 = [0, 1) is open in 𝑋 (but not in ℝ) and

𝑉 = (1, 2) is open 𝑋, 𝑈 ∩ 𝑉 = ∅ and 𝑈 ∪ 𝑉 = 𝑋, they form a separation of 𝑋. Thus 𝑋 is

disconnected.

In the above examples the spaces that are connected all share the property that the only subsets

that are both open and closed in 𝑋 are ∅ and 𝑋. Likewise, the disconnected spaces all share the

property that there are non-empty proper subsets of 𝑋 that are both open and closed in 𝑋.

Theorem 6.6 Let 𝑋 be a topological space. Then 𝑋 is connected if and only if the are no

non-empty proper subsets of 𝑋 that are both open and closed in 𝑋.

Proof. We prove the equivalent statement that 𝑋 is disconnected if and only if there are non-empty

proper subsets of 𝑋 that are both open and closed in 𝑋.

Assume 𝑋 is disconnected, i.e., that there is a separation of 𝑋. Let 𝑈 and 𝑉 be a separation of 𝑋.

Thus 𝑈 is open in 𝑋. Since 𝑈 ∩ 𝑉 = ∅ and 𝑈 ∪ 𝑉 = 𝑋, we have 𝑈𝑐 = 𝑋 ⧵ 𝑈 = 𝑉. Thus 𝑈𝑐 is open

in 𝑋, and so, 𝑈 is closed in 𝑋. Hence, 𝑈 is both open and closed in 𝑋. Likewise, 𝑉 is both open and

closed in 𝑋.

Assume that the non-empty proper subset 𝑈 of 𝑋 is both open and closed in 𝑋. Let 𝑉 = 𝑈𝑐 =

𝑋 ⧵ 𝑈. Then 𝑉 is open in 𝑋, 𝑈 ∩ 𝑉 = ∅ and 𝑈 ∪ 𝑉 = 𝑋. Hence, the pair 𝑈 and 𝑉 is a separation of 𝑋.

Thus 𝑋 is disconnected.

Theorem 6.7 Let 𝑋 be a connected space, 𝑌 be a topological space, and let 𝑓∶ 𝑋 → 𝑌 be a

surjective continuous map. Then 𝑌 is connected.

Proof. We prove the equivalent statement that if 𝑓∶ 𝑋 → 𝑌 is a surjective continuous map and 𝑌 is

disconnected then 𝑋 is disconnected.

Assume that𝑌 is disconnected, i.e., there is a separation of𝑌. Let the pair𝑈 and𝑉 be a separation

of 𝑌. Then 𝑓−1(𝑈) and 𝑓−1(𝑉) are non-empty subsets of 𝑋 which are open in 𝑋 as 𝑓 is a surjective

continuous map. Furthermore,

𝑓−1(𝑈) ∩ 𝑓−1(𝑉) = 𝑓−1(𝑈 ∩ 𝑉) = ∅ and 𝑓−1(𝑈) ∪ 𝑓−1(𝑉) = 𝑓−1(𝑈 ∪ 𝑉) = 𝑋.

Hence, the pair 𝑓−1(𝑈) and 𝑓−1(𝑉) is a separation of 𝑋. Thus 𝑋 is disconnected.

A subset 𝐴 of a topological space 𝑍 is connected in 𝑍 if 𝐴 is connected in the subspace topology. Thus the

theorem can be extended to saying that the continuous image of a connected space is connected, i.e., assuming

𝑋 is a connected space and 𝑓∶ 𝑋 → 𝑌 is a continuous map then 𝑓(𝑋) is connected in 𝑌.
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We will prove that the (finite) product of connected spaces is again connected. To prove this we

will need the following two results.

Lemma 6.8 Let𝑋 be a disconnected space with separation𝑈 and𝑉, and let𝐴 be a connected

subspace of 𝑋. Then 𝐴 ⊆ 𝑈 or 𝐴 ⊆ 𝑉.

Proof. Since 𝑈 and 𝑉 are open in 𝑋, the intersections 𝐴 ∩ 𝑈 and 𝐴 ∩ 𝑉 are both open in 𝐴 (in the

subspace topology). Furthermore, the complement of𝐴∩𝑈 in𝐴 is equal to𝐴∩𝑉 as𝑈𝑐 = 𝑋⧵𝑈 = 𝑉.

Hence,𝐴∩𝑈 is also closed in𝐴. Thus by Theorem6.6𝐴∩𝑈 is either empty or all of𝐴 as𝐴 is connected.

If 𝐴 ∩ 𝑈 = ∅ then 𝐴 ⊆ 𝑉. If 𝐴 ∩ 𝑈 = 𝐴 then 𝐴 ⊆ 𝑈.

Theorem 6.9 Let 𝑋 be a topological space, and let {𝐴𝜆}𝜆∈Λ be a collection of connected

subspaces of 𝑋 such that⋂𝜆∈Λ 𝐴𝜆 is non-empty. Then⋃𝜆∈Λ 𝐴𝜆 is connected.

Proof. Let 𝑌 = ⋃𝜆∈Λ 𝐴𝜆. Suppose that 𝑌 is disconnected, i.e., that there is a separation of 𝑌. Let

𝑈 and 𝑉 be a separation of 𝑌. We will show that this leads to a contradiction, and so, 𝑌 must be

connected.

Let 𝑝 ∈ ⋂𝜆∈Λ 𝐴𝜆. Then either 𝑝 ∈ 𝑈 or 𝑝 ∈ 𝑉. Assume without loss of generality that 𝑝 ∈ 𝑈.

By Lemma 6.8 it follows that for each 𝜆 ∈ Λ either 𝐴𝜆 ⊆ 𝑈 or 𝐴𝜆 ⊆ 𝑉. Since we have assumed that

𝑝 ∈ 𝑈 we must have 𝐴𝜆 ⊆ 𝑈 for all 𝜆 ∈ Λ. Thus 𝑌 ⊆ 𝑈. But this implies that 𝑉 is empty, and hence,

contradicts that 𝑈 and 𝑉 is a separation of 𝑌. Thus 𝑌 is connected.

We can prove that the (finite) product of connected spaces is again connected.

Theorem 6.10 Let 𝑋1, 𝑋2, … , 𝑋𝑛 be connected spaces. Then the product space 𝑋1 × 𝑋2 ×

⋯× 𝑋𝑛 is connected.

Proof. We prove the statement for the product of two connected spaces. The general result then

follows by an induction argument.

Let 𝑋 and 𝑌 be two connected spaces. We must prove that 𝑋 × 𝑌 is connected. Since for each

𝑥 ∈ 𝑋 the subspace {𝑥} × 𝑌 of 𝑋 × 𝑌 is homeomorphic to 𝑌, it follows that {𝑥} × 𝑌 is connected.

Similarly, for each 𝑦 ∈ 𝑌 the subspace𝑋×{𝑦} is homeomorphic to𝑋, and hence,𝑋×{𝑦} is connected.

Thus by Theorem 6.9 it follows that for each 𝑥 ∈ 𝑋 and each 𝑦 ∈ 𝑌 the subspace ({𝑥}×𝑌)∪(𝑋×{𝑦})

is connected as it is the union of two connected spaces whose intersection is ({𝑥}×𝑌)∩(𝑋×{𝑦}) =

{(𝑥, 𝑦)} ≠ ∅.

Fix 𝑥0 ∈ 𝑋 and let 𝐴𝑦 = ({𝑥0} × 𝑌)∪ (𝑋 × {𝑦}). Then for each 𝑦 ∈ 𝑌 the subspace 𝐴𝑦 of 𝑋×𝑌 is

connected as it is the union of two connected spaces whose intersection is equal to {(𝑥0, 𝑦)}. Hence,

by Theorem 6.9 it follows that ⋃𝑦∈𝑌 𝐴𝑦 is connected as it is the union of connected spaces whose

intersection in non-empty. Since

�

𝑦∈𝑌

𝐴𝑦 = 𝑋 × 𝑌,

it follows that 𝑋 × 𝑌 is connected.

The theorem can be extended to hold for arbitrary products, ∏𝜆∈Λ 𝑋𝜆, if we equip the product with the

product topology. If we equip∏𝜆∈Λ 𝑋𝜆 with the box topology the statement is no longer true.
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An important example of a connected space is the set of real numbers equippedwith the standard

topology.

Theorem 6.11 (The real numbers are connected) Letℝ be the set of real numbers equipped

with the standard topology. Then ℝ is connected.

We will use the fact that the real numbers satisfy the following two properties.

(1) Every subset of ℝ that is bounded above has a least upper bound. This is known as the least

upper bound property.

(2) If 𝑥, 𝑦 ∈ ℝ with 𝑥 < 𝑦 then there is a real number 𝑧 such that 𝑥 < 𝑧 < 𝑦.

Proof. Assume thatℝ is disconnected, i.e., that there is a separation ofℝ. Let𝑈 and𝑉 be a separation

of ℝ, and choose 𝑎 ∈ 𝑈 and 𝑏 ∈ 𝑉. We may assume without loss of generality that 𝑎 < 𝑏.

Let 𝐴 = [𝑎, 𝑏] ∩𝑈 and 𝐵 = [𝑎, 𝑏] ∩ 𝑉. Then the pair 𝐴 and 𝐵 is a separation of [𝑎, 𝑏], with 𝑎 ∈ 𝐴

and 𝑏 ∈ 𝐵. Also note that 𝐴 is bounded above by 𝑏. Hence, by the least upper bound property 𝐴 has

a least upper bound; 𝑐 = sup𝐴. Thus 𝑎 ⩽ 𝑐 ⩽ 𝑏. We will show that 𝑐 belongs neither to 𝐴 nor to 𝐵

thus contradicting the fact that 𝐴 and 𝐵 is a separation of [𝑎, 𝑏].

Assume that 𝑐 ∈ 𝐵. Since 𝑎 ∉ 𝐵 and 𝐵 is open in [𝑎, 𝑏], it follows that there is a real number 𝑑

such that 𝑎 < 𝑑 < 𝑐 and (𝑑, 𝑐] ⊆ 𝐵. This implies that 𝑑 is an upper bound of 𝐴 and that 𝑑 is less than

the least upper bound 𝑐. That is a contradiction, and so, 𝑐 ∉ 𝐵.

Now assume that 𝑐 ∈ 𝐴. Since 𝐴 is open in [𝑎, 𝑏] and 𝑏 ∉ 𝐴, there is a real number 𝑑 such that

[𝑐, 𝑑) ⊆ 𝐴. For any 𝑒 ∈ (𝑐, 𝑑) it follows that 𝑒 ∈ 𝐴 and 𝑒 > 𝑐. That is a contradiction to the fact that

𝑐 is an upper bound of 𝐴. Thus 𝑐 ∉ 𝐴.

Hence, 𝑐 ∉ 𝐴 and 𝑐 ∉ 𝐵. This is a contradiction to the fact that 𝑐 ∈ [𝑎, 𝑏] and that 𝐴 and 𝐵 is a

separation of [𝑎, 𝑏]. Thus ℝmust be connected.

As an immediate consequence of Theorem 6.11, we get that open intervals of the form (𝑎, 𝑏),

(−∞, 𝑏) and (𝑎,∞) are all connected as they are all homeomorphic toℝ (with the standard topology).

We can also show that every closed interval [𝑎, 𝑏] is connected. Furthermore, by Theorem 6.10 and

Theorem 6.11 ℝ𝑛 is a connected space.

We can now prove a generalized version of the intermediate value theorem.

Theorem 6.12 (Generalized intermediate value theorem) Let 𝑋 be a connected space, and

let 𝑓∶ 𝑋 → ℝ be a continuous map where ℝ is given the standard topology. If 𝑎, 𝑏 ∈ 𝑋 and if

𝑟 is a real number that lies between 𝑓(𝑎) and 𝑓(𝑏), there is a 𝑐 ∈ 𝑋 such that 𝑓(𝑐) = 𝑟.

Proof. Assume that 𝑟 ∉ 𝑓(𝑋). Wewill show that this contradicts the assumption that𝑋 is connected.

By assumption that 𝑟 ∉ 𝑓(𝑋),

𝑈 = 𝑓−1((−∞, 𝑟)) and 𝑉 = 𝑓−1((𝑟,∞))

are disjoint non-empty open subsets of 𝑋 whose union equals 𝑋. Thus they are a separation of 𝑋.

This contradicts the assumption that 𝑋 is connected. Hence, 𝑟 ∈ 𝑓(𝑋). In other words, there is a

𝑐 ∈ 𝑋 such that 𝑓(𝑐) = 𝑟.

We end this section with a discussion of path connectivity.
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Definition 6.13 (Path connected space) Let 𝑋 be a topological space, and let 𝑥, 𝑦 ∈ 𝑋. A

path from 𝑥 to 𝑦 is a continuous map 𝑓∶ [𝑎, 𝑏] → 𝑋 such that 𝑓(𝑎) = 𝑥 and 𝑓(𝑏) = 𝑦 where

[𝑎, 𝑏] is a subspace ofℝ with the standard topology. We say that 𝑋 is path connected if every

pair of points of 𝑋 can be joined by a path in 𝑋.

Example 6.14 Let ℝ be the set of real numbers equipped with the standard topology. Then

ℝ is path connected as for any two points, 𝑝, 𝑞 ∈ ℝ, there is a path from 𝑝 to 𝑞 in ℝ, e.g., the

path given by 𝑓(𝑡) = (1 − 𝑡)𝑝 + 𝑡𝑞 where 𝑡 ∈ [0, 1].

Example 6.15 For all 𝑛 ⩾ 2, ℝ𝑛 with the standard topology is path connected, and so is

ℝ𝑛 ⧵ {𝑝} for each 𝑝 ∈ ℝ𝑛. For 𝑛 = 1, ℝ ⧵ {𝑝} is not (path) connected.

The next theorem states that path connectedness implies connectedness. While the converse

is not true in general, it can be shown that open subsets of ℝ𝑛 that are connected are also path

connected.

Theorem 6.16 (Path connectedness implies connectedness) Let 𝑋 be a path connected

space. Then 𝑋 is connected.

Proof. Assume that 𝑋 is path connected but that 𝑋 is disconnected, i.e., there is a separation of 𝑋.

Let 𝑈 and 𝑉 be a separation of 𝑋. Let 𝑓∶ [𝑎, 𝑏] → 𝑋 be a path from 𝑥 ∈ 𝑈 to 𝑦 ∈ 𝑉. Then 𝑓−1(𝑈)

and 𝑓−1(𝑉) are disjoint non-empty open subsets of [𝑎, 𝑏] whose union is equal to [𝑎, 𝑏]. Thus they

are a separation of [𝑎, 𝑏]. This is a contradiction to the fact that [𝑎, 𝑏] is a connected space.

Example 6.17 (The topologist’s sine curve) The topologist’s sine curve is the subspace

𝑆 = ��𝑥, sin�
1

𝑥
�� � 0 < 𝑥 ⩽ 1� ∪ {(0, 𝑦) ∣ −1 ⩽ 𝑦 ⩽ 1}

ofℝ2 with the standard topology. It can be shown that 𝑆 is connected but not path connected.

See Figure 6.2.

𝑦

𝑥

1

1

−1

𝑆

Figure 6.2: The topologist’s sine curve.
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6.2 Hausdorff spaces

A common feature that we typically want a topological space to have is the ability to separate the

individual points. This is commonly referred to as separation axioms. We will in this section focus on

the most common separation axiom.

Definition 6.18 Let 𝑋 be a topological space. We say that 𝑋 is Hausdorff if for each pair of

points 𝑥, 𝑦 ∈ 𝑋, with 𝑥 ≠ 𝑦, there are disjoint neighborhoods𝑈 and 𝑉 of 𝑥 and 𝑦, respectively.

In other words, for each pair of distinct points 𝑥, 𝑦 ∈ 𝑋 there are open subsets 𝑈 and 𝑉 of 𝑋

with 𝑥 ∈ 𝑈 and 𝑦 ∈ 𝑉 where 𝑈 ∩ 𝑉 = ∅.

The property to be a Hausdorff space is completely described using the elements of 𝑋 and its open sets,

and so, it is a topological property. In other words, if 𝑋 and 𝑌 are homeomorphic topological spaces and 𝑋 is

Hausdorff then so is 𝑌.

Example 6.19 Let 𝑋 be the set {𝑎, 𝑏, 𝑐}. If we equip 𝑋 with the discrete topology then 𝑋

is Hausdorff since for all pairs of distinct points 𝑥, 𝑦 ∈ 𝑋, the open subsets {𝑥} and {𝑦} are

neighborhoods of 𝑥 and 𝑦, respectively, and {𝑥} ∩ {𝑦} = ∅.

However, if we equip 𝑋 with the topology {∅, {𝑎, 𝑏}, {𝑏}, 𝑋} it is not Hausdorff; the only

neighborhood of 𝑐 is 𝑈 = 𝑋, and no neighborhood 𝑉 of either 𝑎 or 𝑏 can be disjoint from 𝑋.

Example 6.20 Let 𝑋 be a set, and let 𝒯1 and 𝒯2 be two topologies on 𝑋. If 𝒯2 is finer than 𝒯1
and 𝑋 equipped with 𝒯1 as its topology is Hausdorff then 𝑋 equipped with 𝒯2 as its topology is

also Hausdorff.

Theorem 6.21 Every metric space is Hausdorff.

Proof. Let (𝑋, 𝑑) be a metric space, and let 𝑥 and 𝑦 be two distinct points in 𝑋. We must show that

there are disjoint neighborhoods 𝑈 and 𝑉 of 𝑥 and 𝑦, respectively.

Let 𝛿 = 𝑑(𝑥, 𝑦). Then 𝛿 > 0. Let 𝑈 = B(𝑥; 𝛿/2) and 𝑉 = B(𝑦; 𝛿/2) be neighborhoods of 𝑥 and

𝑦, respectively. Then by M3, 𝑈 ∩ 𝑉 = ∅.

Example 6.22 For all integers 𝑛 ⩾ 1, the metric space (ℝ𝑛, 𝑑) is Hausdorff. In particular,ℝ𝑛

with the standard topology is Hausdorff.

All Hausdorff spaces share the property that finite subsets are closed which is an immediate con-

sequence of the following theorem.

Theorem 6.23 Let 𝑋 be a Hausdorff space. Then for each 𝑥 ∈ 𝑋 the subset {𝑥} of 𝑋 is closed

in 𝑋.

Proof. Let 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≠ 𝑦. Since 𝑋 is Hausdorff, we have neighborhoods 𝑈 and 𝑉 of 𝑥 and 𝑦,

respectively, such that 𝑈 ∩ 𝑉 = ∅. Then 𝑥 ∉ 𝑉. In other words, 𝑥 ∈ 𝑉𝑐 = 𝑋 ⧵ 𝑉. Since 𝑉 is open, 𝑉𝑐

is closed in 𝑋. Thus {𝑥} ⊆ 𝑉𝑐, and hence, 𝑦 ∉ {𝑥}. Hence, {𝑥} = {𝑥}. Thus {𝑥} is closed in 𝑋.
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There are examples of topological spaces who are not Hausdorff but have the property that finite

subsets are closed. One such example is the set of real numbers equipped with the cofinite topology.

We have seen that the (finite) product of connected spaces is connected, cf. Theorem 6.10. The

same statement holds for Hausdorff spaces, i.e., the (finite) product of Hausdorff spaces is Hausdorff.

Theorem 6.24 Let𝑋1, 𝑋2, … , 𝑋𝑛 beHausdorff spaces. Then the product space𝑋1×𝑋2×⋯×𝑋𝑛
is Hausdorff.

Proof. We prove the statement for two Hausdorff spaces. The general result then follows from an

induction argument.

Let (𝑥1, 𝑦1) and (𝑥2, 𝑦2) be two distinct points in 𝑋 × 𝑌, i.e., 𝑥1 ≠ 𝑥2 or 𝑦1 ≠ 𝑦2. If 𝑥1 ≠ 𝑥2
there must be neighborhoods 𝑈𝑋 and 𝑉𝑋 in 𝑋 of 𝑥1 and 𝑥2, respectively, such that 𝑈𝑋 ∩ 𝑉𝑋 = ∅ as

𝑋 is assumed to be Hausdorff. Then 𝑈𝑋 × 𝑌 and 𝑉𝑋 × 𝑌 are neighborhoods of (𝑥1, 𝑦1) and (𝑥2, 𝑦2),

respectively, where (𝑈𝑋×𝑌)∩(𝑉𝑋×𝑌) = ∅. Similarly, if𝑦1 ≠ 𝑦2 theremust be neighborhoods𝑈𝑌 and

𝑉𝑌 in 𝑌 of 𝑦1 and 𝑦2, respectively, such that𝑈𝑌∩𝑉𝑌 = ∅ as 𝑌 is assumed to be Hausdorff. Then 𝑋×𝑈𝑌
and 𝑋×𝑉𝑌 are neighborhoods of (𝑥1, 𝑦1) and (𝑥2, 𝑦2), respectively, where (𝑋 ×𝑈𝑌) ∩ (𝑋 ×𝑉𝑌) = ∅.

Hence, 𝑋 × 𝑌 is Hausdorff.

The theorem be extended to hold for arbitrary products,∏𝜆∈Λ 𝑋𝜆, if we equip the product with either the

product topology or the box topology.

We end this section with a result that helps us decide whether or not a topological space is Haus-

dorff.

Theorem 6.25 Let 𝑋 be a topological space. Then 𝑋 is Hausdorff if and only if the diagonal

Δ = {(𝑥, 𝑥) ∣ 𝑥 ∈ 𝑋} is closed in the product space 𝑋 × 𝑋.

Proof. Assume that 𝑋 is a Hausdorff space. Thus for any two distinct points 𝑥 and 𝑦 in 𝑋 there are

neighborhoods 𝑈 and 𝑉 of 𝑥 and 𝑦, respectively, such that 𝑈 ∩ 𝑉 = ∅. Thus 𝑈 × 𝑉 is open in 𝑋 × 𝑋

and (𝑥, 𝑦) ∈ 𝑈 × 𝑉, and so, (𝑈 × 𝑉) ∩ Δ = ∅. Hence, there is a neighborhood 𝑁(𝑥,𝑦) of (𝑥, 𝑦) such

that 𝑁(𝑥,𝑦) ⊆ Δ𝑐 = (𝑋 × 𝑋) ⧵ Δ. Thus by Theorem 3.10, it follows that Δ𝑐 is open in 𝑋 × 𝑋, and so, Δ

is closed in 𝑋 × 𝑋.

Now assume that Δ is closed in the product space 𝑋 × 𝑋. Then for any point (𝑥, 𝑦) ∈ 𝑋 × 𝑋 with

𝑥 ≠ 𝑦, i.e., (𝑥, 𝑦) ∈ Δ𝑐, there is a basis element 𝑈 × 𝑉 for the product topology on 𝑋 × 𝑋 such that

(𝑥, 𝑦) ∈ 𝑈 × 𝑉 ⊆ Δ𝑐. Since 𝑈 × 𝑉 ⊆ Δ𝑐, we have 𝑈 ∩ 𝑉 = ∅. Thus 𝑈 and 𝑉 are neighborhoods of 𝑥

and 𝑦, respectively, such that 𝑈 ∩ 𝑉 = ∅. Hence, 𝑋 is Hausdorff.

6.3 Compact spaces

In Section 6.1we saw how the intermediate value theoremmight be generalized to connected spaces.

In this sectionwewill see how the extreme value theoremmay be generalized to compact spaces. The

extreme value theorem says that for a continuous map 𝑓∶ [𝑎, 𝑏] → ℝ there are points𝑚,𝑀 ∈ [𝑎, 𝑏]

such that 𝑓(𝑚) ⩽ 𝑓(𝑥) ⩽ 𝑓(𝑀) for all 𝑥 ∈ [𝑎, 𝑏]. See Figure 6.3.
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𝑦

𝑥
𝑓(𝑚)

𝑓(𝑀)

𝑎 𝑏𝑚𝑀

𝑦 = 𝑓(𝑥)

Figure 6.3: The extreme value theorem.

Definition 6.26 (Cover of a space) Let 𝑋 be a topological space, and let𝒜 be a collection

of subsets of 𝑋. We say that 𝒜 is a cover of 𝑋, or covering of 𝑋 if 𝑋 = ⋃𝐴∈𝒜 𝐴. If 𝐴 is also

open in 𝑋 for each 𝐴 ∈ 𝒜, we say that𝒜 is an open cover of 𝑋, or open covering of 𝑋. We say

that𝒜′ is a subcover of𝒜 if𝒜′ is another cover of 𝑋 that satisfies𝒜′ ⊆ 𝒜.

Example 6.27 Let 𝑋 be a topological space, and let ℬ be a basis for the topology on 𝑋. Then

ℬ is an open cover of 𝑋. Similarly, if 𝒮 is a subbasis for the topology on 𝑋, then 𝒮 is an open

cover of 𝑋.

Definition 6.28 (Compact spaces) Let 𝑋 be a topological space. We say that 𝑋 is compact

if every open cover𝒜 of 𝑋 contains a finite subcover.

Similarly to connectedness, the property of being compact is a topological property as it is formulated

entirely in terms of the collection of open sets. In other words, if 𝑋 and 𝑌 are homeomorphic topological

spaces and 𝑋 is compact then so is 𝑌.

Example 6.29 Let𝑋 be a finite topological space. Then𝑋 is compact as there are only finitely

many different open subsets𝐴 of𝑋, and so, any collection covering𝑋must necessarily be finite.

Example 6.30 Let 𝑋 be an indiscrete space. Then 𝑋 is compact as the only open covers are

the collections {𝑋} and {∅, 𝑋} which are finite.

Example 6.31 Let ℝ be the set of real numbers equipped with the standard topology. Since

the open cover

𝒜 = {(𝑛 − 1, 𝑛 + 1) ∣ 𝑛 ∈ ℤ},

does not admit a finite subcover, ℝ is not compact.
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Definition 6.32 (Compact subspaces) Let 𝑋 be a topological space, and let 𝐴 be a subset of

𝑋. We say that 𝐴 is compact if 𝐴 is compact in the subspace topology.

If 𝐴 is a subspace of 𝑋, a collection𝒜 of subsets of 𝑋 is a cover of 𝐴 if the union of elements of𝒜

contains 𝐴.

Lemma 6.33 Let 𝑋 be a topological space, and let 𝐴 be a subspace of 𝑋. Then 𝐴 is compact

if and only if every cover of 𝐴 by open subsets of 𝑋 contains a finite subcollection that covers

𝐴.

Proof. Assume that 𝐴 is compact. Let 𝒞 be a cover of 𝐴 by open subsets of 𝑋. Then the collection

𝒞′ = {𝐴 ∩ 𝑈 ∣ 𝑈 ∈ 𝒞}

is an open cover of 𝐴. Since 𝐴 is compact there must be a finite subcover {𝐴∩𝑈1, 𝐴 ∩𝑈2, … , 𝐴∩𝑈𝑛}

of 𝒞′. Hence, {𝑈1, 𝑈2, … , 𝑈𝑛} is a finite subcollection of 𝒞 that covers 𝐴.

Now assume that every cover of𝐴 by open subsets of𝑋 contains a finite subcollection that covers

𝐴. Let 𝒞 = {𝑉𝜆}𝜆∈Λ be a cover of 𝐴 by open subsets of 𝐴. Hence, by definition of the subspace

topology, cf. Definition 5.1, we have for each 𝜆 ∈ Λ that 𝑉𝜆 = 𝐴 ∩ 𝑈𝜆 where 𝑈𝜆 is an open subset

of 𝑋. Thus the collection 𝒞′ = {𝑈𝜆}𝜆∈Λ is a cover of 𝐴 by open subsets of 𝑋. Then, by assumption,

there must be a finite subcollection {𝑈𝜆1 , 𝑈𝜆2 , … , 𝑈𝜆𝑛} that covers 𝐴. Hence, {𝑉𝜆1 , 𝑉𝜆2 , … , 𝑉𝜆𝑛} is a

finite subcover of 𝒞. Thus every cover of 𝐴 by open subsets of 𝐴 has a finite subcover, and so, 𝐴 is

compact.

The following two theorems indicates that being compact and being closed are closely related

properties.

Theorem 6.34 Let𝑋 be a compact space, and let𝐴 be a closed subset of𝑋. Then𝐴 is compact.

Proof. Let 𝒞 be a cover of 𝐴, i.e., 𝐴 ⊆ ⋃𝐶∈𝒞 𝐶, by open subets of 𝑋. Since 𝐴 is closed in 𝑋, 𝐴𝑐 = 𝑋⧵𝐴

is open in 𝑋. Thus

𝒜 = 𝒞 ∪ {𝐴𝑐}

is an open cover of𝑋. Since𝑋 is compact theremust be a finite subcover𝒜′ ⊆ 𝒜 of𝑋. If𝒜′ contains

𝐴𝑐, let𝒜″ = 𝒜′ ⧵ {𝐴𝑐}. Then𝒜″ is a finite subcover of 𝒞 that covers 𝐴. If𝒜′ does not contain 𝐴𝑐

then𝒜′ is a finite subcover of 𝒞 that covers 𝐴. Either way there is a finite subcover of 𝒞 that covers

𝐴. Thus 𝐴 is compact.

Theorem 6.35 Let𝑋 be a Hausdorff space, and let𝐾 be a subset of𝑋which is compact. Then

𝐾 is closed in 𝑋.

Proof. We show that 𝐾𝑐 = 𝑋 ⧵ 𝐾 is open in 𝑋. Let 𝑥 ∈ 𝐾𝑐. Then for each 𝑦 ∈ 𝐾 there are neighbor-

hoods 𝑈𝑦 and 𝑉𝑦 of 𝑥 and 𝑦, respectively, such that 𝑈𝑦 ∩ 𝑉𝑦 = ∅, since 𝑋 is assumed to be Hausdorff

and 𝑥 ≠ 𝑦.

The collection 𝒞 = {𝑉𝑦 ∣ 𝑦 ∈ 𝐾} of open subsets of 𝑋 covers 𝐾 since

𝐾 ⊆ �

𝑦∈𝐾

𝑉𝑦.



50 6.3. Compact spaces

Since 𝐾 is assumed to be compact there must be a finite subcollection {𝑉𝑦1 , 𝑉𝑦2 , … , 𝑉𝑦𝑛} that covers

𝐾. Let 𝑉 = 𝑉𝑦1 ∪ 𝑉𝑦2 ∪⋯ ∪ 𝑉𝑦𝑛, and let 𝑈 = 𝑈𝑦1 ∩ 𝑈𝑦2 ∩⋯ ∩ 𝑈𝑦𝑛. Then 𝑈 is open in 𝑋, 𝑥 ∈ 𝑈 and

𝑈 ∩ 𝑉 = ∅. Furthermore, 𝑈 ⊆ 𝑋 ⧵ 𝑉 ⊆ 𝑋 ⧵ 𝐾 = 𝐾𝑐. Hence, 𝐾𝑐 is open in 𝑋.

Theorem 6.36 Let 𝑋 be a compact space, 𝑌 a topological space and let 𝑓∶ 𝑋 → 𝑌 be a

surjective continuous map. Then 𝑌 is compact.

Proof. Let 𝒞 = {𝑈𝜆}𝜆∈Λ be an open cover of 𝑌. Then𝒜 = {𝑓−1(𝑈𝜆)}𝜆∈Λ is an open cover of 𝑋. Since

𝑋 is compact there must be a finite subcover𝒜′ = {𝑓−1(𝑈𝜆1), 𝑓
−1(𝑈𝜆2), … , 𝑓−1(𝑈𝜆𝑛)} of𝒜. Then

𝒞′ = {𝑈𝜆1 , 𝑈𝜆2 , … , 𝑈𝜆𝑛} is a finite subcover of 𝒞. Hence, 𝑌 is compact.

The theorem can be extended to saying that the continuous image of a compact space is compact, i.e.,

assuming 𝑋 is a compact space and 𝑓∶ 𝑋 → 𝑌 is a continuous map then 𝑓(𝑋) is compact.

We will prove that the (finite) product of compact spaces is compact. To prove this we need the

following result.

Lemma 6.37 (Tube lemma) Let 𝑋 be a topological space, and let 𝑌 be a compact space.

If 𝑥 ∈ 𝑋 and 𝑈 is an open set in the product space 𝑋 × 𝑌 containing {𝑥} × 𝑌, then there is a

neighborhood𝑊 of 𝑥 in 𝑋 such that𝑊 × 𝑌 ⊆ 𝑈.

The set𝑊 × 𝑌 is often called a tube about {𝑥} × 𝑌. See Figure 6.4.

𝑋 × 𝑌

𝑋

𝑌
𝑈

𝑊
𝑥

Figure 6.4: A tube about {𝑥} × 𝑌.

Proof. As𝑈 is open in𝑋×𝑌 and (𝑥, 𝑦) ∈ {𝑥}×𝑌 ⊆ 𝑈 for all𝑦 ∈ 𝑌, there is a basis element𝑊𝑦×𝑉𝑦 ⊆ 𝑈

for the product topology on 𝑋×𝑌 such that (𝑥, 𝑦) ∈ 𝑊𝑦×𝑉𝑦. The collection {𝑉𝑦}𝑦∈𝑌 is an open cover

of 𝑌. Since 𝑌 is compact there must be a finite subcover of {𝑉𝑦}𝑦∈𝑌, say, {𝑉𝑦1 , 𝑉𝑦2 , … , 𝑉𝑦𝑛}.

Let

𝑊 =

𝑛

�

𝑖=1

𝑊𝑦𝑖
.
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Then𝑊 is open in 𝑋, and it must contain 𝑥. Clearly,

𝑊 × 𝑌 ⊆

𝑛

�

𝑖=1

�𝑊𝑦𝑖
× 𝑉𝑦𝑖� ⊆ 𝑈.

Thus {𝑥} × 𝑌 ⊆ 𝑊 × 𝑌 and𝑊 × 𝑌 ⊆ 𝑈.

The lemma is not true if we remove the assumption that 𝑌 is compact; the open set

𝑈 = {(𝑥, 𝑦) ∈ ℝ × ℝ ∣ |𝑥𝑦| < 1} ⊆ ℝ × ℝ

does contain {0}×ℝ but does not contain any tube𝑊×ℝ containing {0}×ℝ. (Herewe have assumed

that ℝ is given the standard topology, and hence, it is not compact, cf. Example 6.31.)

Theorem 6.38 Let𝑋1, 𝑋2, … , 𝑋𝑛 be compact spaces. Then the product space𝑋1×𝑋2×⋯×𝑋𝑛
is compact.

Proof. We prove the statement for the product of two compact spaces. The general result then fol-

lows by an inductive argument.

Let 𝑋 and 𝑌 be compact spaces. Let𝒜 be an open cover of 𝑋 × 𝑌. We must show that there is

a finite subcover𝒜′ of𝒜. For each 𝑥 ∈ 𝑋, {𝑥} × 𝑌 is compact in 𝑋 × 𝑌 as it is homeomorphic to 𝑌

which is assumed to be compact. Thus there is a finite subcollection 𝒜𝑥 of 𝒜 that covers {𝑥} × 𝑌.

Let 𝑈𝑥 = ⋃𝐴𝑥∈𝒜𝑥
𝐴𝑥. Then 𝑈𝑥 is open in 𝑋 × 𝑌 and contains {𝑥} × 𝑌. Thus by Lemma 6.37 for each

𝑥 ∈ 𝑋 there is a neighborhood𝑊𝑥 ⊆ 𝑋 such that 𝑥 ∈ 𝑊𝑥 and𝑊𝑥 ×𝑌 ⊆ 𝑈𝑥. Furthermore,𝒜𝑥 covers

𝑊𝑥 × 𝑌.

Now let 𝑥 ∈ 𝑋 vary. The collection {𝑊𝑥}𝑥∈𝑋 is then an open cover of 𝑋. Since 𝑋 is compact, there

must be a finite subcover {𝑊𝑥1
,𝑊𝑥2

, … ,𝑊𝑥𝑛
} of {𝑊𝑥}𝑥∈𝑋. For each 1 ⩽ 𝑖 ⩽ 𝑛 the subspace𝑊𝑥𝑖

× 𝑌

is covered by the finite subcollection𝒜𝑥𝑖
of𝒜. Hence,

𝑋 × 𝑌 =

𝑛

�

𝑖=1

𝑊𝑥𝑖
× 𝑌

is covered by the subcollection𝒜′ = ⋃
𝑛
𝑖=1𝒜𝑥𝑖

of𝒜. Thus 𝑋 × 𝑌 is compact.

The theorem can be extended to hold for arbitrary products of compact spaces if we equip the product

with the product topology. This is known as Tychonoff’s theorem. It is a deep result whose proof uses several

original ideas. If we equip the product with the box topology the statement is no longer true.

We have already seen that the real line (with the standard topology) is not compact, cf. Exam-

ple 6.31. The next theorem states that all closed intervals of the real line are compact.

Theorem 6.39 Letℝ be the set of real numbers equipped with the standard topology. Then

every closed interval [𝑎, 𝑏] in ℝ is compact.

Proof. Let𝒜 = {𝑈𝜆}𝜆∈Λ be a cover of [𝑎, 𝑏] by open subsets of ℝ, and let

𝑆 = {𝑥 ∈ [𝑎, 𝑏] ∣ [𝑎, 𝑥] is covered by a finite subcollection of𝒜}.



52 6.3. Compact spaces

Note that 𝑆 is bounded above by 𝑏. Since 𝑎 ∈ 𝑈𝜆 for some 𝜆 ∈ Λ, the singleton {𝑈𝜆} is a finite

subcollection of𝒜 that covers [𝑎, 𝑎] = {𝑎}. Hence, 𝑆 is non-empty and it is bounded above. Thus 𝑆

has a least upper bound; 𝑐 = sup 𝑆. Clearly, 𝑎 ⩽ 𝑐 ⩽ 𝑏.

We will show that 𝑐 ∈ 𝑆. The result follows if we can also show that 𝑐 = 𝑏. Choose 𝜆′ ∈ Λ with

𝑐 ∈ 𝑈𝜆′. Since𝑈𝜆′ is open inℝ there is a real number 𝜖 > 0 such that (𝑐−𝜖, 𝑐+𝜖) ⊆ 𝑈𝜆′. Hence, there

is an 𝑥 ∈ 𝑆 such that 𝑐 − 𝜖 < 𝑥. So by definition of 𝑆 there is a finite subcollection {𝑈𝜆1 , 𝑈𝜆2 , … , 𝑈𝜆𝑛}

of𝒜 such that [𝑎, 𝑥] ⊆ ⋃
𝑛
𝑖=1 𝑈𝜆𝑖. Furthermore, [𝑥, 𝑐] ⊆ 𝑈𝜆′. Thus [𝑎, 𝑐] = [𝑎, 𝑥] ∪ [𝑥, 𝑐] is covered

by the finite subcollection {𝑈𝜆1 , 𝑈𝜆2 , … , 𝑈𝜆𝑛 , 𝑈𝜆′} of𝒜. Hence, 𝑐 ∈ 𝑆.

We now show that 𝑐 = 𝑏. Assume that 𝑐 < 𝑏. Then there must be a 𝑦 ∈ [𝑎, 𝑏] such that

𝑐 < 𝑦 < 𝑐 + 𝜖. Thus [𝑎, 𝑦] is covered by the subcollection {𝑈𝜆1 , 𝑈𝜆2 , … , 𝑈𝜆𝑛 , 𝑈𝜆′} of 𝒜 such that

𝑦 ∈ 𝑆. This is a contradiction of the fact that 𝑐 is an upper bound. Hence, 𝑐 = 𝑏.

In order to state and prove the Heine–Borel theorem we need the following definition.

Definition 6.40 (Bounded subsets) Let (𝑋, 𝑑) be a metric space, and let 𝐴 be a subset of 𝑋.

We say that 𝐴 is bounded if there is an𝑀 ∈ ℝ such that 𝑑(𝑎1, 𝑎2) ⩽ 𝑀 for all 𝑎1, 𝑎2 ∈ 𝐴.

Equivalently, we may say that a subset 𝐴 of a metric space (𝑋, 𝑑) is bounded if there is a 𝐾 ∈ ℝ

and 𝑥 ∈ 𝑋 such that 𝑑(𝑎, 𝑥) ⩽ 𝐾 for all 𝑎 ∈ 𝐴. In particular, this means that a subset ofℝ𝑛 equipped

with the Euclidean metric is bounded if it is contained in some closed ball of finite radius centered at

the origin.

Theorem 6.41 (Heine–Borel) Let ℝ𝑛 be given the (Euclidean) metric topology and the Eu-

clidean metric. A subset 𝐴 of ℝ𝑛 is compact if and only if it is closed and bounded.

Proof. Assume that 𝐴 is compact. By Theorem 6.21, ℝ𝑛 is Hausdorff, and so, by Theorem 6.35 𝐴 is

closed in ℝ𝑛. We must show that 𝐴 is also bounded. Let𝒜 = {B(0; 𝑛) ∣ 𝑛 ∈ ℤ+}, i.e., a collection

of open balls centered at the origin in ℝ𝑛. Then𝒜 is a cover of 𝐴 by open subsets of ℝ𝑛. Since 𝐴 is

compact there must be a finite subcollection of𝒜 that covers 𝐴. Thus there is an 𝑁 ∈ ℤ+ such that

𝐴 ⊆ B(0; 𝑁). Hence, for all 𝑎1, 𝑎2 ∈ 𝐴 we have 𝑑(𝑎1, 𝑎2) < 2𝑁. Thus 𝐴 is bounded.

Now assume that𝐴 is bounded and closed inℝ𝑛. Let 𝑝 = (𝑝1, 𝑝2, … , 𝑝𝑛) ∈ 𝐴. Since𝐴 is bounded

there is an 𝑀 ∈ ℝ such that 𝑑(𝑎1, 𝑎2) ⩽ 𝑀 for all 𝑎1, 𝑎2 ∈ 𝐴. Then 𝐴 is contained in the product

space

𝑃 = [𝑝1 −𝑀, 𝑝1 +𝑀] × [𝑝2 −𝑀, 𝑝2 +𝑀] ×⋯ × [𝑝𝑛 −𝑀, 𝑝𝑛 +𝑀]

which by Theorem 6.39 and Theorem 6.38 is compact. Since 𝐴 is closed in ℝ𝑛 and a subset of 𝑃, it

follows by extending Theorem 6.34 to our setting that 𝐴 is compact. Specifically, let 𝒞 be a cover of

𝐴 by open subsets of ℝ𝑛. Since 𝐴 is closed in ℝ𝑛, 𝐴𝑐 = ℝ𝑛 ⧵ 𝐴 is open in ℝ𝑛. Thus

𝒜 = 𝒞 ∪ {𝐴𝑐}

is an open cover of ℝ𝑛, and thus it is also an open cover of 𝑃 in the subspace topology. Since 𝑃 is

compact theremust be a finite subcover of𝒜 that covers𝑃. This implies that there is a finite subcover

of 𝒞 that covers 𝐴. Thus 𝐴 is compact.

An immediate consequence of Theorem 6.41 is that 𝑆𝑛 considered as a subspace ofℝ𝑛+1 is com-

pact, and hence, that the torus 𝑇2 = 𝑆1 × 𝑆1 is compact.

We end this section with a proof of the generalized extreme value theorem.



Chapter 6. Topological properties 53

Theorem 6.42 (Generalized extreme value theorem) Let 𝑋 be a compact space, and let

𝑓∶ 𝑋 → ℝ be a continuous map where ℝ is given the standard topology. Then there are

𝑚,𝑀 ∈ 𝑋 such that

𝑓(𝑚) ⩽ 𝑓(𝑥) ⩽ 𝑓(𝑀)

for all 𝑥 ∈ 𝑋.

Proof. By Theorem 6.36, 𝑓(𝑋) is compact. We must show that 𝑓(𝑋) contains its supremum and its

infimum. If it does, then by setting 𝑓(𝑚) = inf 𝑓(𝑋) and 𝑓(𝑀) = sup 𝑓(𝑋) the theorem follows.

We prove that 𝑓(𝑋) contains its supremum. The proof for the infimum is similar. Since 𝑓(𝑋) is

compact, it is closed and bounded by Theorem 6.41. In particular, 𝑓(𝑋) is bounded above. Hence,

the set 𝑓(𝑋) has a least upper bound; 𝑠 = sup 𝑓(𝑋). Thus 𝑝 ⩽ 𝑠 for all 𝑝 ∈ 𝑓(𝑋).

Wemust show that 𝑠 ∈ 𝑓(𝑋). Assume that 𝑠 ∉ 𝑓(𝑋). Since 𝑓(𝑋) is closed, i.e., 𝑓(𝑋)𝑐 = ℝ⧵𝑓(𝑋)

is open, it follows that there is a real number 𝜖 > 0 such that

(𝑠 − 𝜖, 𝑠 + 𝜖) ∩ 𝑓(𝑋) = ∅.

Hence, there is a real number 𝑦 such that 𝑦 is an upper bound of 𝑓(𝑋) and 𝑠 − 𝜖 < 𝑦 < 𝑠. This is a

contradiction to the fact that 𝑠 is the least upper bound of 𝑓(𝑋). Hence, 𝑠 = sup 𝑓(𝑋) ∈ 𝑓(𝑋).

6.4 Exercises

Exercise 6.1 Let 𝑋 be a topological space. Show that 𝑋 is connected if and only if every

continuous map from 𝑋 to a discrete space consisting of at least two points is constant.

Exercise 6.2 Let 𝑋 be a topological space, and let 𝐴 ⊆ 𝐵 ⊆ 𝐴 be subspaces of 𝑋.

(a) Show that if 𝐴 is connected then so is 𝐵.

(b) Show that [𝑎, 𝑏), (𝑎, 𝑏], [𝑎, 𝑏], (−∞, 𝑏] and [𝑎,∞) are all connected spaces when con-

sidered as subspaces of ℝ with the standard topology.

Exercise 6.3 Let𝑋 be a topological space, and consider 𝐼 = [0, 1] as a subspace ofℝwhereℝ

is given the standard topology. Furthermore, let the cone on𝑋bequotient space𝐶𝑋 = 𝑋×𝐼/∼,

where∼ is the equivalence relation on the product space 𝑋× 𝐼 given by (𝑥, 0) ∼ (𝑥′, 0) for all

𝑥, 𝑥′ ∈ 𝑋. Show that 𝐶𝑋 is path connected.

Exercise 6.4 Let 𝑋 be a Hausdorff space, and let 𝐴 be a subspace of 𝑋. Show that 𝐴 is

Hausdorff.

Exercise 6.5 Let 𝑋 be an infinite set with the cofinite topology.

(a) Show that 𝑋 is compact.

(b) Show that any subset of 𝑋 is compact.
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Exercise 6.6 Let 𝑋 be a compact space, and let 𝑌 be a Hausdorff space. Furthermore, let

𝑓∶ 𝑋 → 𝑌 be a continuous map.

(a) Show that 𝑓 is a closed map.

(b) Show that if 𝑓 is a surjective continuous map, then 𝑓 is a quotient map.

(c) Show that if 𝑓 a bijective continuous map, then 𝑓 is a homeomorphism.

(d) Show that 𝑓 is proper, i.e., for each subset 𝐾 of 𝑌 that is compact the preimage 𝑓−1(𝐾)

is compact.

Exercise 6.7 Show that the surface of the cube centered at the origin,

𝐶 = {(𝑥, 𝑦, 𝑧) ∈ ℝ3 ∣ max{|𝑥|, |𝑦|, |𝑧|} = 1},

and the 2-sphere,

𝑆2 = �(𝑥, 𝑦, 𝑧) ∈ ℝ3 � �𝑥2 + 𝑦2 + 𝑧2 = 1� ,

are homeomorphic where they are both considered to be subspaces of ℝ3 with the standard

topology.

Exercise 6.8 Let 𝑋 be a topological space, and let 𝐴1.𝐴2, … , 𝐴𝑛 be subspaces of 𝑋 each of

which is compact. Show that
𝑛

�

𝑖=1

𝐴𝑖

is compact.
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