INTRODUCTION TO TOPOLOGY

MARIUS THAULE

VERSION 0.15

2021






Contents



1. Introduction

These are lecture notes from the course TMA4190 Introduction to Topology given in the Spring
semester 2021 at NTNU. They are intended as a supplement to the lectures and may not be
entirely self-contained.

Please send me an email if you spot any errors!

What is topology?

Topology! The stratosphere of human thought! In the twenty-fourth century it might
possibly be of use to someone. . .

— Aleksandr Solzhenitsyn

Topology is a part of mathematics concerned with the study of spaces. In topology, we consider
two spaces to be equivalent if one can be continuously deformed into the other. Such a continuous
deformation is known as a homeomorphism, i.e., a continuous bijection with a continuous inverse.
See Figure 1.1 for an example of two homeomorphic spaces.

Figure 1.1: The surface of the (unit) cube and the (unit) sphere S? are homeomorphic.

We might ask ourselves the following question.

Question Let X and Y be two spaces. Does there exist a homeomorphism ¢: X — Y? In
other words, are X and Y homeomorphic?

Showing that two spaces are homeomorphic involves the construction of a specific homeomor-
phism between them. Proving that two spaces are not homeomorphic is a problem of a different
nature. It is a hopeless exercise to check every possible map between the two spaces for whether
or not it is a homeomorphism. Instead we might check to see whether there is some “topological
invariant” of spaces (where this invariant is preserved under a homeomorphism) that allows us to
differentiate between the two spaces.
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Figure 1.2: The disc D? and the annulus are not homeomorphic.

One instrument to help us detect topological information of a space is the fundamental group
associated to the space. It is reasonable to expect that the disc D? and the annulus are not homeo-
morphic. The annulus has a hole through it while the disc does not, see Figure 1.2.

To detect the hole through the annulus we may use loops, i.e., continuous maps from the unit
interval to the annulus with the endpoints identified. See Figure 1.3.

Figure 1.3: A loop.

It is then possible to construct a group involving such loops. This group is what is known as the
fundamental group.

Some applications

To help illustrate some of the power of topology, let us consider two theorems, both of which may be
proved using topology and more specifically, the fundamental group.

The first theorem is the Brouwer fixed point theorem.

Theorem 1.1 (Brouwer fixed point theorem) Let f: D™ — D™ be a continuous map from
the (unit) disk in R™ to itself. Then f has a fixed point, i.e., there is some point x € D™ such
that f(x) = x.

For n = 1 this is a well-known result from calculus: The graph of any continuous map f: [0,1] =
[0, 1] must cross the diagonal y = x for some x, € [0, 1]. Hence, f(x,) = x,. See Figure 1.4.

The second theorem is the fundamental theorem of algebra.
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Figure 1.4: The graph of any continuous map from [0, 1] to [0, 1] must cross the diagonal.

Theorem 1.2 (The fundamental theorem of algebra) A polynomial equation
2"+ ap_1z" 1+ +a;z+a;=0

of degree n > 0 with complex coefficients has at least one complex root.

. J

To prove it we will use the fact that the fundamental group of the circle is isomorphic to the group
of integers. The fundamental theorem of algebra may be proved in many different ways, including
using only algebraic techniques and analysis. However, the proof we will provide (based on [3]) is a
fairly simple corollary of the computation of the fundamental group of the circle.



2. Continuous maps

2.1 Metric spaces

From calculus we know what to mean by a continuous map from R™ to R™: a map f: R* - R™
is continuous at p € R™ if for all € > 0 there exists a § > 0 such that if ||p — q||gn < 6, then
IIf (@) — f(@)|lrm < €. Here || - ||gn denotes the Euclidean norm in R™. Similarly, || - ||gm denotes
the Euclidean norm in R™.

Topological spaces provide the most general setting for which the concept of continuity makes
sense. Before we get to the concept of a topological space, let us consider metric spaces. Metric
spaces allow us to speak of distance between elements. Using the notion of distance between ele-
ments we can make sense of continuity of maps between metric spaces.

Definition 2.1 (Metric spaces) A metric space (X, d) is a non-empty set X together with a
map d: X X X — R called a metric such that the following properties hold:

M1 d(x,y) > O0forallx,y € X,and d(x,y) = 0ifand only if x = y;
M2 d(x,y)=d(y,x)forallx,y € X;

M3 d(x,z) <d(x,y)+d(y,z)forallx,y,z € X.

The first condition says that the distance between two elements is always positive, and equal to zero if
and only if the two elements are the same. The second condition says that distance is symmetric. The third
condition says that the triangle inequality holds. The metric d is sometimes also referred to as a distance
function.

Example 2.2 (R" seen as a metric space) Let X = Rand d be the map defined by d(x,y) =
|x — y|(= +/(x — y)?). The first two requirements for d are clearly satisfied, and the third
follows from the usual triangle inequality for real numbers,

dx,z) = |x—z| =|(x =+ @ -2 <|x =yl +|y —z| = d(x,y) + d(y,2).

For X = R™ with n > 0 an integer, let d(x,y) = ||x — y|| where || - || is the Euclidean
norm, e.g., forn = 2, d(x,y) = ||x — y|| = /(x1 —y1)? + (x, — y2)2. Again, the first
two requirements for d are clearly satisfied. The third requirement follows from the triangle
inequality for vectors in R™.

We may equip R™ with other metrics than the one described in Example 2.2. For instance, for
X = R?, let
d(x,y) = |x1 = y1| + |xz = y2|.
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This is known as the taxi cab metric.
We say that two metrics d4 and d, on the same set X are equivalent if there exist constants L and
M such that

di(x,y) < Ld(x,y) and dp(x,y) < Mdy(x,y)

forallx,y € X.
Example 2.3 (Discrete metric spaces) ForanysetX,letd: X X X — R be the map given by

1 x+y,

d(x,y) = 0 x=y

We call d the discrete metric on X.

Example 2.4 (C[a,b]) Let X = C[a,b], i.e., the set of continuous maps from the interval
I =[a,b] € RtoR,and let

d(x,y) = max|x(i) — y(@DI-

Example 2.5 |Ifdisa metriconasetX,and A € X is any subset of X, then d is also a metric
on A.

2.2 Continuous maps between metric spaces

The definition of continuity of maps between metric spaces is completely analogous to the situation
that we have from calculus.

Definition 2.6 (Continuous maps between metric spaces) Let (X, dy) and (Y, dy) be two
metric spaces. Amap f: X = Y is continuous at p € X if for all e > 0 thereisa § > 0 such

that if dy(p, q) < & then dy(f(p), f(9)) <e.
If f is continuous at every p € X, we say that f is continuous.

To get us to the setting of topological spaces we will need the concept of open and closed sets.

Definition 2.7 (Open and closed balls) Let (X,d) be a metric space, and let a € X and
r > 0 be real number. The open ball centered at a with radius r is the subset

Bla;r) ={x€X|d(x,a) <r}
of X. The closed ball centered at a with radius r is the subset
B(a;7) = {xeXld(xa)<r}

of X.

\. J

In Euclidean space with the usual metric (induced from Euclidean norm), a ball (as defined above)
is precisely what we think of as a ball in everyday language. Open balls are sometimes referred to as
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simply balls, and closed balls are sometimes referred to as discs, e.g. Theorem 1.1.

Example 2.8 (Open balls in discrete metric spaces) Let (X, d) be the metric space defined
in Example 2.3. Then
B(x;r) ={x} and B(x;n)=X

forall0 <ry < landallr, > 1.

Definition 2.9 (Open and closed sets) Let (X, d) be a metric space. Asubset A S X is open
in X if for every point a € A, there is an open ball B(a; r) about a contained in A. We say that
Ais closed in X if the complement A = X\ A ={x € X | x &€ A} is open.

Most subsets are neither open nor closed. Subsets that are both open and closed are sometimes referred
to as clopen. In particular, both @ and X are clopen in X.

Lemma 2.10 Let (X,d) be a metric space, x € X and r > 0 a real number. Then the open
ball B(x;r) € X is open in X, and the closed ball B(x;r) € X is closed in X.

Proof. We prove the statement about open balls. The statement about closed balls follows from a
similar argument.

Assume that y € B(x;7r). We need to prove that there is an open ball B(y; €) about y that is
contained in B(x; ). Let € = r — d(x,y). By the triangle inequality of the metric d, M3, we have
that for z € B(y; €),

d(x,z) <d(,y)+dy,z) <d(x,y)+e=d(x,y)+r—d(x,y)=r.
Hence, B(y; €) € B(x; 7). O

For a metric space (X, d), a subset A € X and x € X, we say that: (i) x is an interior point of A if
there is an open ball B(x; r) about x which is contained in 4, (ii) x is an exterior point of A if there is
an open ball B(x; r) which is contained in A€ and (iii) x is a boundary point if all open balls about x
contains points in A and in A€. Hence, A is openin X if and only if A only consists of its interior points.
An interior point will always belong to A. An exterior point will never belong to A. A boundary point
will some times belong to 4, and some times to A°€.

Definition 2.11 (Neighborhoods) Let (X, d) be a metric space, A a subset of X and x € X.
We say that A is a neighborhood of x if there is an open ball about x that is contained in A. We
say that A is an open neighborhood (of x) if A itself is open.

Theorem 2.12 (Continuity at a point) Let (X,dy) and (Y, dy) be two metric spaces, and
letp € X. Amap f: X — Y is continuous at p if and only if for all neighborhoods B of f (p),
there is a neighborhood A of p such that f (4) € B.

\. J

Proof. Assume that f is continuous at p. If B is a neighborhood of f(p), then, by definition, there
is an open ball By (f(p); €) about f(p) that is contained in B. Since f is continuous at p, there is a
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6 > 0suchthatif dy(p,q) < 8, then dy(f(p), f(q)) < €. Hence, f(Bx(p; 6)) € By(f(p); €) S B.
That is, if we let A = Bx(p, §), then for all neighborhoods B of f(p), we have that f(4) € B where

A is a neighborhood of p.

Assume that for all neighborhoods B of f(p), there is a neighborhood A of p such that f(4) € B.
We need to prove that forall e > 0, thereisa § > 0 such thatif dx(p,q) < 6, thendy(f(p), f(q)) <
€. By utilizing the fact that B = By (f (p); €) is a neighborhood of f(p), then, by assumption, there
must be a neighborhood A of p such that f(A) € B. Since A is a neighborhood of p, there is an open
ball Bx(p; &) about p that is contained in A. Now assume that dy(p,p’) < 6. Thenp’ € Bx(p; 6) S
A. Thus f(p') € B = By(f(p); €), and hence, dy(f (p), f(p")) < €. Thus fis continuous atp. [

The following theorem gives an alternative description of continuous maps between metric spaces.

Theorem 2.13 (Continuous maps between metric spaces) Let (X,dy) and (Y, dy) be two
metric spaces. Amap f: X = Y is continuous if and only if for every subset B C Y openinY,
the preimage of B under f,

fTYB)={x€X|f(x) EB}CX,

is openin X.

Proof. Assume that f is continuous. For B € Y open in Y, we have to prove that f ~1(B) € X is open
in X. Let a € f~1(B). We want to prove that there is an open ball about a in X that is contained in
f~1(B). By assumption, B € Y is open in Y. Hence, there is an € > 0 such that By(f(a); €) S B.
From the assumption that f is continuous thereisa § > 0 such that By(a; 8) € f~1(By(f(a);€)) S
f1(B).

We now prove the opposite implication. Assume that for every subset B € Y open in Y, the
preimage f~1(B) of B under f is openin X. Let a € X and € > 0 be a real number. From the first
assumption it follows that f~1(By(f(a); €)) € X is open in X. As f~1(By(f(a); €)) is open and
contains a, there isa § > 0 such that By(a; §) € f~1(By(f(a); €)). Thus x € Bx(a; &) implies that
f(x) € By(f(a); €). Hence, f: X = Y is continuous. O

Let A and B be sets, and let f: A > B. Then f~1(B) will always exist even if there is no inverse map. In
the cases where f has an inverse there is no ambiguity. If U and V are both subsets of B then

AUV =7 WU V) and fTHUNY) =10 NIV,
and furthermore, if U € V then f~1(U) € f~*(V). LetU € Aand V C B, then
Ucf'(f) and fIV)EV.
We also note that if U is a subset of B then

fTEBA\D) = fHU) = (FHUN = A\ ().
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2.3 Exercises

Exercise 2.1 Does d(x,y) = (x — y)? define a metricon X = R?

Exercise 2.2 Show that R? equipped with the taxi cab metric is a metric space.

Exercise 2.3 Let (X,d) be a metric space. Show that the map d’': X X X — R given by

d(x,y)

TN = T dey)

is also a metric on X.

Exercise 2.4 Draw a picture of the open ball B((0,0); 1) in the metric space (R?, d) with
(@ dxy) =di(xy) = [x2 =yl + |x2 =yl
(b) d(x,y) =dy(x,y) = (x1 —y1)? + (x2 — ¥2)%

() dxy) =de(xy) =max{|x; — |, |x2 — 2}

Exercise 2.5 Show thatd,, d, and d, (as defined in Exercise 2.4) are equivalent on X = R?.

Exercise 2.6 Show thatin a discrete metric space (X, d), cf. Example 2.3, every subset is both
open and closed in X.

Exercise 2.7 Show that for equivalent metrics d and d’ on the set X, the open sets are the
same.

Exercise 2.8 Let (X,dy) and (Y, dy) be metric spaces, and let f: X — Y be a map. Show
that f is continuous if and only if for every subset B € Y closed in Y, the preimage f~1(B) is
closed in X.



3. Topological spaces

3.1 Definition and examples

Topological spaces are spaces constructed to support continuous maps. The definition is as follows.

Definition 3.1 (Topological spaces) A topological space is a set X together with a collection
T of subsets of X that are called open in X, such that the following properties hold.

Tl Thesubsets @ and X are in 7.
T2 The union of the elements of any subcollection of T is in 7.

T3  The intersection of the elements of any finite subcollection of T isin T.

A topological space is strictly speaking an ordered pair (X, T). We refer to 7" as the topology on X. We will
often omit specific mention of T if no confusion will arise.

The following theorem states that every metric space (X, d) is a topological space with the metric
topology T; on X.

Theorem 3.2 (Metric spaces are topological spaces) Let (X,d) be a metric space. Let Ty
be the collection of subsets U € X with the property that U € Ty if and only if for each x € U
there is anr > 0 such that B(x;r) € U. Then J; defines a topology on X.

Proof. Clearly, ® € T;. To show that X € J;, note that for any x € X, B(x; 1) € X. Hence, X € Tj.
Thus T1 is satisfied.

Let {Uj}1ea be any subcollection of 7;. We need to prove that V = U, Uy € 7. Let x € V.
From V = U, U, thereis A € A such that x € U,. By the property of U, satisfied by the U, in 7
thereisan r > 0 such that B(x;r) € U,. Hence, B(x;r) € V. Thus V € Ty, and T2 is satisfied.

We prove that the intersection of two elements of T is also an element of 7. The general result
then follows by an induction argument. Let U;, U, € J;. We need to prove that U; N U, € J;. Let
x € U;NU,. Since U;NU, S U;, we have that x € U; fori = 1, 2. By the defining property of 7; there
isanr; > O suchthat B(x;7;) € U; fori = 1,2. Letr = min{ry,r»}. Then B(x; 1) € B(x;1;) € U; for
i=1,2. Thus B(x;r) € U; N U,, and so Uy N U, € T;. Hence, T3 is satisfied. O

The following theorem relates the metric topologies for two equivalent metrics.

Theorem 3.3 Let X be any set, and let d, and d, be two equivalent metrics on X. Then
le = sz.

12
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This follows from Exercise 2.7.

Example 3.4 (Discrete topology) Let X be any set. The collection T of all subsets of X, i.e.
the power set P (X) of X, is a topology on X. We refer to this topology as the discrete topology.
A set X equipped with the discrete topology is referred to as a discrete topological space.

The discrete topology is the unique topology where the singletons are open. We can think of a
discrete topological space as a space of separate, isolated points, with no close interaction between
different points.

For any set X, the discrete topology is the largest topology we may equip X with. The smallest
topology is called the indiscrete topology.

Example 3.5 (Indiscrete topology) Let X be any set. The collection T consisting of @ and
X is a topology on X, referred to as the indiscrete topology on X. A set X equipped with the
indiscrete topology is referred to as an indiscrete topological space.

Example 3.6 LetX = {a,b, c}. The following collections all define a topology on X.
(1) Ti=Tia =1{0 X}

) 7 ={0{a} X}

B3) 7 ={2{a b} X}

) 7, ={0{a},{a, b}, X}

(5)  J5 =1{9,{a b}, {b},{b,c}, X}

(6) T =Tqisc = P(X) ={0,{a},{a, b}, {a,c},{b},{b, c},{c} X}

There are in total 29 topologies on X. However, there are also collections of subsets of X
which do not define topologies on X. None of the following collections of subsets of X define
a topology on X.

(1) {2 {a},{b}, X}
2) {9{a} {c} X}
3) {@{a b} {b c} X}

Definition 3.7 (Comparable topologies) Let X be any set and suppose that 7; and T, are
two topologies on X. If T; € T,, we say that J; is coarser than 7, and that T, is finer than 7;.
We say that 73 and 7, are comparable if either 73 € 75 or 75, € 73.

Clearly, for any set X, the discrete topology T4 contains the indiscrete topology T'ing: Tgisc =2
T'ing- Hence, the discrete topology is finer than the indiscrete topology and the indiscrete topology is
coarser than the discrete topology.
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Example 3.8 (Cofinite topology) Let X be any set. The collection T of subsets of X consisting
of subsets U S X such that U¢ = X \ U is either finite or all of X is a topology on X. We refer
to this topology as the cofinite topology on X.

If X is a finite set, the cofinite topology is equal to the discrete topology. If X is an infinite set, the
cofinite topology is strictly coarser than the discrete topology, in the sense that the cofinite topology
is properly contained in the discrete topology.

We end this section with a theorem that we can use to prove that some set is open. To state the
theorem we need the following definition.

Definition 3.9 (Neighborhoods) Let X be a topological space, U a subset of X and x € X.
We say that U is a neighborhood of x if x € U and U is open in X.

A neighborhood in the sense of the previous definition is sometimes referred to as an open neigh-
borhood, cf. Definition 2.11.

Theorem 3.10 Let X be a topological space. A subset U of X is open in X if and only if for
every x € U there is a neighborhood U, of x such that U, € U.

Proof. Assume that U is open in X. Then for every x € U, U is a neighborhood of x that is contained
inU.

We prove the other implication. Assume that for every x € U thereis a U, € T such that
x € U, € U, i.e., that U, is a neighborhood of x such that U, € U. To prove that U € T, we will
prove that U = U,y Uy. Assume that x’ € U,s. Then x' € Uy S U,y Uy. Furthermore, any point
in U,y Uy isin Uy forsome x € U so by assumption, U, € Uandx € U, € U. Hence, U = U,y U,.
As U is the union of open sets it must be an open set as well by T2. ]

3.2 Continuous maps

We know from Theorem 2.13 that a map between metric spaces is continuous if and only if the preim-
age of an open set is open. This motivates the following definition.

Definition 3.11 (Continuous maps between topological spaces) Let X and Y be topological
spaces. Amap f: X — Y is said to be continuous if preimages of open sets are open, i.e., if V
is an open set in Y then the preimage f~1(V) of V under f is open in X.

Hence, all continuous maps between metric spaces (X, dy) and (Y, dy) are also continuous maps
between the corresponding topological spaces X and Y with the metric topologies 7, and 73, re-
spectively.

Example 3.12 Let X and Y be topological spaces. Then all constant maps from X to Y are
continuous: the preimages are either empty or the entire space, and these are always open,
cf. T1.
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Example 3.13 Let X be a discrete topological space and Y a topological space. Then all maps
from X to Y are continuous.

Example 3.14 Let X be any topological space and Y be an indiscrete topological space. Then
all maps from X to Y are continuous.

Example 3.15 Let Ry be the discrete topological space consisting of the real numbers with
the discrete topology, and let R be the topological space consisting of the the real numbers
with the usual (Euclidean) metric topology. Then the identity map
id

]Rdisc — R

is continuous by Example 3.13, while the identity map
id
R — Rdisc

is not continuous: singletons are open in the discrete topology but not in the (Euclidean) metric
topology.

The following theorem says that the composition of two continuous maps is a continuous map.

Theorem 3.16 (Composition of continuous maps) Let X, Y and Z be topological spaces. If
f:X—>Yandg:Y — Zare continuous maps, then the composite go f: X = Z is continuous.

Proof. Let W C Z be open in Z. We need to prove that (g o f)~1(W) is open in X. Since

(e NTTW)={x€eX|g(f(x) €W}
={x€X|f(x) € g (W)}
={xeXlx€f Mgt W)N}=f"gT (W)
and that g~1(W) is openin Y and f~1(g~1(W)) is open in X (by continuity of g and f), it follows
that (g o f)"1(W) is open in X. Hence, g ° f is continuous. O

We can express continuity at a point for maps between topological spaces using neighborhoods.
(See Theorem 2.12 for the case of metric spaces.)

Definition 3.17 (Continuity at a point) Let X and Y be topological spaces, and let x € X. A
map f: X — Y is continuous at x if for all neighborhoods V of f(x) there is a neighborhood
U of x such that f(U) € V.

Theorem 3.18 Let X andY be topological spaces. Amap f: X = Y is continuous if and only
if it is continuous at each x € X.

Proof. Assume that f is continuous, and let x € X and V be a neighborhood of f(x). Then the set
U = f~1(V) is a neighborhood of x such that f(U) € V.

Assume that f is continuous at each x € X. LetV € Y be openin Y. Choose x € f~1(V). Since
f is continuous at x there is neighborhood U, of x such that f(U,) € V. Hence, U, € f~1(V). It
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follows that £ ~1(V) can be written as the union of the open sets U,, and hence, it is open in X. Thus
f is continuous. O

3.3 Homeomorphisms

We now introduce the notion of topological equivalence, also known as homeomorphism.

Definition 3.19 (Homeomorphisms) Let X and Y be topological spaces. A bijective map
f: X - Y with the property that both f and f~1: Y — X are continuous, is called a homeo-
morphism. If there exists a homeomorphism f: X — Y, we say that X and Y are homeomor-
phicand write X = Y.

A homeomorphism f: X — Y gives a one-to-one correspondence between open sets in X and Y. As a
result, any property of a topological space that can be expressed in terms of its elements and its open subsets
is preserved by homeomorphisms. Such a property is called a topological property.

Example 3.20 Let R be the topological space of the real numbers with the (Euclidean) metric
topology. The map

f:R->R
x> 2x—1
is a homeomorphism. Let
g:R->R
1
yrs;0+1)

then, clearly, g(f(x)) = x and f(g(y)) = y for all real numbers x and y. Thus f is a bijection
and f~1 = g. From calculus we know that f and g are continuous. Hence, f is a homeomor-
phism.

Example 3.21 LetX = {a,b},andletT; = {@,{a}, X} and T, = {@, {b}, X} be two topologies
onX. Themap f: X = Xgiven by f(a) = band f(b) = a s clearly a continuous bijection
(with the domain given J; as topology, and the codomain given 7, as topology). Also, f is its
own inverse: f = f~1. Hence, f is a homeomorphism and (X,7;) = (X, 7).

Homeomorphisms are continuous bijections, but the converse is not true.
Example 3.22 Let X = {a, b}. The identity map id: X — X where the domain is given the
discrete topology and the codomain is given the indiscrete topology is a continuous bijection

but not a homeomorphism: the inverse map is not continuous.

The following theorem says that being homeomorphic is an equivalence relation on any set of
topological spaces.
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Theorem 3.23 Let X,Y and Z be topological spaces.

Reflexivity  The identity mapid: X — X (where the domain and the codomain are equipped
with the same topology), given by id(x) = x for x € X, is a homeomorphism.

Symmetry If f: X = Y is a homeomorphism, then f‘1: Y — X is also a homeomorphism.

Transitivity Iff: X - Yand g: Y — Z are homeomorphisms, then g o f: X = Z is also a
homeomorphism.

\. J

Proof. The identity map id: X — X (where the domain and the codomain are equipped with the
same topology) is clearly continuous and bijective. As the identity map is its own inverse, then it is
also a homeomorphism. Hence, X = X and so = satisfies the reflexivity condition for an equivalence
relation.

If f: X > Y is a homeomorphism, then f~1: Y - X is also a homeomorphism: f ! is a continu-
ous bijection with continuous inverse (f "1)™ = f: X > Y. Hence, X = Y ifand only if Y = X. Thus
= satisfies the symmetry condition for an equivalence relation.

Theorem 3.16 tells us that the composition of two homeomorphisms f: X - Yandg: Y = Zis
continuous. The composition of two bijective maps is always bijective. Hence, g ° f is a continuous
bijection. We need to prove that its inverse, (g ° )™, is continuous. Since (g o f)™! = f71o
g~ 1 is a composition of continuous maps, then by Theorem 3.16 sois (g © f)™1. Thus g o fis a
homeomorphism. Hence, if X = YandY = Z, then X = Z. Thus = satisfies the transitivity condition
for an equivalence relation. ]

3.4 Closed sets

Recall that in a topological space X, a subset A of X is an open subset if and only if A is an element of
the topology of X, i.e.,, AET.

Definition 3.24 (Closed subsets) A subset K of a topological space X is closed in X if and
only if the complement K¢ = X \ K is open in X.

This is completely analogous to how we defined closed subsets in metric spaces, cf. Definition 2.9.

Example 3.25 Let X be a discrete topological space. Since every subset of X is open in X, it
follows that every subset of X is also closed in X.

Example 3.26 Let X be an indiscrete topological space. The only subsets of X that are closed
in X are @ and X (which are also the only subsets that are open in X).

Recall that in a discrete topological space, all the singletons are open sets. This is usually not the
case.

Example 3.27 Let R be the topological space of the real numbers with the (Euclidean) metric
topology. Then everysubset [a,b] = {x € R | a < x < b} € Risclosedin R: the complement
[a,b]¢ = R\ [a,b] = (—,a) U (b, ) is a union of open sets in R, and hence, is open in R.
Furthermore, all the singletons are closed: the complement {a}¢ = R\{a} = (—0,a)U(a, )
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is a union of open sets in R, and hence, is open in R.

By passing to complements we get the following theorem.

Theorem 3.28 Let X be a topological space.
(1) Both @ and X are closed (as subsets) in X.
(2) The intersection of any subcollection of closed sets in X is closed in X.

(3) The union of any finite subcollection of closed sets in X is closed in X.

\. J

It follows that we could have defined a topological space X by specifying a collection of subsets
of X satisfying the three statements in Theorem 3.28 where we would say that a subset of X is open
in X if its complement is closed in X.

We end this section with a theorem describing the connection between continuous maps and
closed sets. We will need the following definition.

Definition 3.29 (Closure) Let X be a topological space, and let A be a subset of X. The
closure of A, written A, is the intersection of all subsets of X that contain A and which are
closed in X.

From the definition it follows that 4 is the smallest subset of X that contains 4 and which is closed
in X. Furthermore, if A is closed in X, then A=A

There is an analogous definition for open sets where we take union instead of intersection. We
can define the interior of A, written Int(A4), to be the union of all subsets of X that are contained in
A and which are open in X. It follows that Int(A) is the largest subset of X that is contained in 4 and
which is open in X. Furthermore, Int(4) € A € A.

Example 3.30 Let X be atopological space consisting of the set {a, b, c} and the topology T" =
{9, {a}, {a, b}, X}. Then the closed subsets in X are @, {b, c}, {c} and X. Thus the intersection of
all of the closed subsets that contain {b} is simply {b, c} N X = {b, c}, and hence, {b} = {b, c}.

Example 3.31 Let R be the topological space of the real numbers with the (Euclidean) metric
topology. Assume that a < b are real numbers. Then (a, b] = [a, b] and Int((a, b]) = (a, b).

Let (X, d) be a metric space. If we consider X as a topological space with the metric topology 73,
the closure B(x; 1) of an open ball B(x;r) about x € X is, in general, not the same as the closed
ball B(x; ). If d is the discrete metric and X has at least two elements, then B(x; 1) = {x} while
B(x; 1) = X. It is always the case that B(x; ) S B(x; ).

Definition 3.32 (De_nse) Let X be a topological space, and let A be a subset of X. We say
that Ais densein X if A = X.

From the definition it follows that A is dense in X if and only if A N U # @ for every nonempty
subset U of X which is open in X.
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Example 3.33 Let R be the topological space of the real numbe_rs with the (Euclidean) metric
topology. Then the subset Q of rational numbers is dense in R: Q = R.

Example 3.34 For any topological space X, the subset X is dense in X. If X is a discrete
topological space, then the subset X is the only dense subset in X.

Theorem 3.35 Let f: X = Y be a map between topological spaces. Then the following are
equivalent:

(1) f is continuous;
(2) forevery subset A of X, we have f(Z) C f(4);

(3) forevery closed subset B of Y, the preimage f~1(B) of B under f is closed in X.

Proof. By passing to complements, it follows readily that (1) and (3) are equivalent. We will prove
that (2) is equivalent to (3).

Assume (2). Let B be a subset of Y that is closed in Y, and let A = f~1(B). We must show that 4
is closed. We have f(A) € B. If x € A, then f(x) € f(A) € m C B. Hence,x € f~1(B) = A. In
other words, A € A. Thus A = 4, and hence, f~1(B) is closed in X.

Now assume (3). Let A be a subset of X. We must show that f(4) < m Since m is
closed in Y, it follows by assumption that f ~1(f(A)) is closed in X. Furthermore, A € f~1(f(4)) <
F~Y(f(A)). Since f~1(f(A)) is closed in X, it follows that A S f~1(f(A)). Hence, f(4) € f(A). O

3.5 Exercises

Exercise 3.1 LetX = {a,b,c,d}. Show that T = {@,{a}, {a, b},{a, b, c},{b,c,d}, X} is not a

topology on X. Find a topology 7" (different from the discrete topology) on X suchthatT € 7.

Exercise 3.2 Let X be a non-empty set, and let x, be an element of X. Show that
T={UCX|xq&UorX\U is finite}

is a topology on X.

Exercise 3.3 Let X be a set, and let A be a subset of X. Define the coarsest topology on X
such that A is openin X.

Exercise 3.4 Show that the discrete topology T i is finer than the cofinite topology T'.,; on
any set X.

Exercise 3.5 Let X = {a,b,c,d}. Find two topologies 7; and 7, with 7; # T, such that a
bijection f: X — X is a homeomorphism (where the domain is given 73 as topology and the
codomain is given 7, as topology).
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Exercise 3.6 Let X be atopological space, and let A and B be subsets of X.

(@) Assumethat A € B. Show that A € B.

(b) ShowthatAUB = AUB.
We say that a set A intersects or meetsaset Bif AN B # Q.

Exercise 3.7 Let X be atopological space, and let A be a subset of X. Show that x € Aifand
only if every neighborhood of x intersects A.

Exercise 3.8 LetX ={a,b,c,d, e}, and let
T ={0,{a, b}, {a,b,c},{a b,d e}, {b},{b,c} {b,d e} {bcd, e} {d e} X}

be a topology on X. Is the subset {a, b} dense in X?



4. Generating topologies

4.1 Generating topologies from subsets

The following theorem tells us how we may extract a third topology from two other topologies on the
same set.

Theorem 4.1 (The intersection of two topologies is a topology) Let X be a set, and let 7}
and T, be two topologies on X. Then 71 N T, is also a topology on X.

Proof. Clearly, @ and X are in 73 N 75, so T1 is satisfied.

Let {U;},¢ea be a collection of sets such that U, € 73 NT, foreach A € A where Ais some index set.
Then, fori =1,2,U, € T;foreachA € A. Thus U ¢, Uy € T;fori = 1,2. Hence, U, Uy ET1 N T,
and so, T2 is satisfied.

Finally, to prove that T3 is satisfied, let U,V € 73 N J,. Thus, fori = 1,2, U,V € J; implies that
UNV eJ;.Hence, UNV €T; NT,. O

Theorem 4.1 may be extended to hold for a family of topologies: if {T3},¢4 is a family of topologies on X,
then N;cp 77 is also a topology on X. If we follow the convention that for subsets S of a fixed (large) set U,

ﬂS =U,
Sep
then the extended version of Theorem 4.1 may also include an empty family {7} } ¢4 of topologies with
(7 =7w.
A€
i.e., the discrete topology on X (with our fixed (large) set U being equal to P (X)). However, not all mathemati-
cians follow this convention. Thus we will in general not define the intersection of an empty family.

The union of two topologies is not necessarily a topology.

Example 4.2 LetX = {a,b,c}, and letT; = {@,{a} {a, b}, X} and T, = {@,{c}, X} be two
topologies on X. Then
N7 ={0,X}

is the indiscrete topology on X while
T U7, = {9,{a},{a,b},{c}, X}

is not a topology on X: 77 U T, does not satisfy T2.

21
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Recall from Section 3.1 that for any set X the discrete topology T 4 is the largest topology we
may equip X with, and the indiscrete topology T4 is the smallest topology we may equip X with. For
any topology 7 on X we have

Tind SE S Tdisc-

That is, we have partially ordered topologies on X by inclusion.

Let X be a set. We often want to have a collection of subsets § of X to be the open subsets of a

topology on X.

7~

Definition 4.3 (Topology generated by a collection of subsets) Let X be a set, and let § be
a collection of subsets of X. The topology generated by S is the topology

=[] 7

T topology
SCT

on X.

In other words, (S) contains § and for any other topology 7’ containing §, we have (S} € 7.
Thus (S) is unique.

Example 4.4 Let X be aset,andletS = @. Then (S) is the same as the indiscrete topology

onk,i.e.,
($) =Ting = {0, X}.

Example 4.5 Let X be a set, and let § be the collection of all the singletons of X, i.e., § =
{{x} | x € X}. Then (S) is the same as the discrete topology on X, i.e.,

() = Taise = PX).

4.2 Basis for a topology

It is often convenient to define a topology T on a set X by only specifying a subcollection B of T
satisfying certain properties. The open subsets of X are then precisely the unions of subcollections

of B. In this way, we say the basis determines, or generates, the topology.

Definition 4.6 (Basis) Let X be a set. A basis for a topology on X is a collection B of subsets
of X such that

Bl foreachx € X, thereisa B € B such that x € B;

B2 ifB;,B, € Bandx € B; N B,, then thereisa B; € Bsuchthatx € B; € B; N B,.

The elements of B are sometimes referred to as basis elements. Basis elements are subsets of X.

Example 4.7 Let X be aset, and let B be the collection of all the singletons of X. Then Bis a
basis for the discrete topology on X.
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Example 4.8 Let (X,d) be a metric space. Then the collection of (open) e-balls
B ={B(x;¢e) | x € X,e > 0}
is a basis for the metric topology 75, as defined in Theorem 3.2, on X.

The following theorem describes a topology generated by a basis.

Theorem 4.9 Let X beaset, and let B be basis for a topology on X. The collection T generated
by B of subsets U of X with the property that for each x € U there is a basis element B € B
with x € B € U is a topology on X.

Proof. Clearly, @ and X are both in T. Hence, T1 is satisfied.

Let {U,},ea be a subcollection of 7. Let V = U ep Uz. We need to prove thatV € 7. Let x € V.
Then there isa A € A such that x € Uj. Since U, € T, there is a basis element B € B such that
x€EBC U, AsU, cV,itfollowsthatx € B € V. Hence,V € T, and so, T2 is satisfied.

Let U;,U, € T. We need to prove that Uy N U, € T. Letx € U; N U,. Since Uy N U, € U;
we have x € U;, and thus there is a basis element B; € B with x € B; € U; fori = 1,2. Hence,
x € B; N B, € U; N U,. By B2 there is a basis element B; € B with x € B; € B; N B,. Thus
X € B; € U; N U,, and hence, T3 is satisfied. O

The topology generated by a basis may also be described using the following theorem.

Theorem 4.10 Let X be a set, and let B be a basis for a topology T on X. Then T is equal to
the collection of all unions of elements of B.

Proof. Let B € B be any basis element. Then for each x € B we obviously have x € B and B € B.
Thus B € 7. It follows that any union of basis elements is a union of elements of 77, and hence, is in
T.

Conversely, let U € T. For each x € U thereisa B, € B withx € B, and B, € U. Then
U = U,ey By, and thus, U is the union of elements of B. O

We end this section with a theorem describing a criterion for whether one topology is finer than
another when both topologies are described using bases.

Theorem 4.11 Let X be a set, and let By and B, be bases for topologies T, and T,, respec-
tively, on X. Then the following are equivalent:

(1) T is finerthan 73, i.e., T3 € T5.

(2) Foreach B, € By and each x € B, thereis a B, € B, such that x € B, € B;.

\. J

Proof. Assume (1). Let B; € B; and x € B;. Since B; € J; and J; € 7, we have B; € T,. Further-
more, as 75 is the topology generated by B, there is a B, € B, such that x € B, where B, € B;.
Hence, (2) is satisfied.

Now assume (2). Let U € J;. We must prove that U € 7. Since B, generates 73, then for each
x € U thereisa By € By suchthatx € By € U. By assumption there is a B, € B, such that
X € B, € B;. Hence, B, € U, and so, U € T7,. Thus (1) is satisfied. ]
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In order to have 7} € T, it is not necessary to have B; € B,, i.e., each basis element in B; need not be a
basis element in B,. However, for each basis element B; € B; and each point x € B; there should be some
(possibly) smaller basis element B, € B, such that x € B, € B;.

4.3  Subbasis for a topology

Let X be a set, and let § be a collection of subsets of X. We can form a basis B for a topology by simply
taking all finite intersections

n

B = Si

i=1
of elements of §. Thus the open sets in the topology generated by this basis are all unions of such
basis elements B, cf. Theorem 4.10. Thus the open sets are all unions of all finite intersections of
elements of §. The collection § is then referred to as a subbasis.

Definition 4.12 (Subbasis) Let X be a set. A subbasis for a topology on X is a collection S of
subsets of X whose union equals X.

Lemma 4.13 Let X be a set, and let § be a subbasis for a topology on X. The collection B
consisting of all finite intersections of elements of S is a basis for a topology on X and is called
the basis associated to S.

Proof. Each x € X must liein some S € §. Hence, x € S. Thus x is an element of the basis element
S in B, and so, B1 is satisfied.

Let B; = NiZ; S; and B, = N, S/ be two basis elements of B, and let x € B; N B,. We must
prove that there is a basis element B; € B such that x € B; € B; N B,. Let

w=(()(0%)

Then Bj is also a finite intersection of elements of S, and hence, B; € B with x € B3. Thus B2 is
satisfied. O

By combining the previous lemma with Theorem 4.10, we get the following lemma.

Lemma 4.14 Let X be a set, and let § be a subbasis for a topology on X. The collection
T generated by S consisting of all unions of all basis elements of the associated basis B is a
topology on X.

When referring to the topology T generated by the subbasis § we mean the topology generated
by the associated basis B. We have § € B C 7.

The following theorem provides an explicit description of the topology generated by a collection
of subsets S of a set X.
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Theorem 4.15 Let X be a set, and let § be a subbasis for a topology on X. Then there is
a unique topology (S) generated by S which is coarser than any other topology containing S,

where -
(8) = {U ﬂ Sai

AEA i=1

Sai € 5}.

In other words, (S) is the topology for which § is a subbasis.

Proof. Since the discrete topology Tgi.c = P(X), there is at least one topology on X that contains
S. We know from Theorem 4.1 that taking the intersection of all topologies that contain § is again a
topology which clearly still contains §. By construction, (S) is then contained in any other topology
containing §. Thus (S) is the unique topology with this property.

Let

ny
T = {U (Vs |52 € S}.
AEA i=1
Clearly, Ts € (S). We need to prove that they are equal. To do this we will prove that T is a topology
on X that contains S. Hence, by the first part (§) = Js. Since § is a subbasis for a topology on X, by
Lemma 4.14 we know that the topology generated by S is equal to the collection of all unions of basis

elements of the associated B to S. Hence, T is a topology on X. O]

We end this section with a theorem about continuity and (sub)basis.

Theorem 4.16 Let X and Y be topological spaces, and let B (resp., S) be a basis (resp.,
subbasis) for the topology on Y. Then a map f: X — Y is continuous if and only if for each
B € B (resp. S € S) the preimage f~*(B) (resp., f ~1(S)) is open in X.

Proof. We prove the statement about basis.

Assume that f is continuous. Since each basis element B € B is open in Y, then by continuity
f~Y(B)isopenin X.

Assume that for each B € B the preimage f~1(B) is open in X. Let T}, be the topology on Y.
Since every V € Jy is a union V = U ;¢ By of basis elements B, € B, we have

o= e

AEA
Thus if each f~1(B,) is openin X, sois f~1(V). O

4.4 Exercises

Exercise 4.1 LletX = {a,b,c,d, e}, and let
T ={9,{a,b},{a,b,d, e}, {b},{b,d, e}, {b,c,d, e} {c,d e}, {d e}, X}

be a topology on X. Show that § = {{a, b}, {b,d,e},{c,d,e}} is a subbasis for T. IsS' =
{{a, b},{b, c,d, e}, {d, e}} a subbasis for T'?
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Exercise 4.2 Let B be the collection of all open intervals (a,b) = {x ER | a < x < b}inR.

(a) Show that B is a basis for a topology on R. The topology generated by B is called the
standard topology on R denoted by T 4.

(b) ShowthatT 4y = T; where T is the metric topology obtained from the metricd(x,y) =
lx = yl.

Exercise 4.3 Show that
S={(a,©) | a€R}U{(—,b) | b € R}

is a subbasis for the standard topology on R.

Exercise 4.4 Let Q deonte the set of rational numbers, and let R denote the set of real
numbers. Show that
B={(a,b)la<b,abeqQ}

is a basis for the standard topology on R where (a,b) = {x € R | a < x < b}.

Exercise 4.5 Let B be the collection of all half-open intervals of the form [a,b) = {x € R |
a<x<b}inR.

(a) Show that B is a basis for a topology on R. The topology generated by B is called the
lower limit topology on R.

(b) Find the closure of the subset (0, 1) of R given the lower limit topology.

Exercise 4.6 Foreachn € Z, let

{n} if n is odd,
B(n) = o
{n—1nn+1} ifniseven.
Show that the collection B = {B(n) | n € Z} is a basis for a topology on Z. The topology gen-
erated by B is known as the digital line topology on Z. See [1, pp. 62—64] for some applications
of this topology.

Exercise 4.7 Let B be the collection of all subsets of the form A, , = {az + b | z € Z} of Z,
where a,b € Z and a # 0. (The set 4, ;, is known as an arithmetic progression.)

(a) Show that B is a basis for a topology on Z.

(b) Show that there are infinitely many primes by using the topology generated by B. (This
topology is known as the arithmetic progression topology on Z and it was used originally
by Furstenberg [2] to show that there are infinitely many primes.)
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Exercise 4.8 Let X be atopological space, and let B be a basis for the topology on X. Show
that a subset A of X is dense in X if and only if every non-empty basis element in B intersects
A. (Recall that a set U intersectsaset VifUNV # @.)

27



5. Constructing topological spaces

5.1 Subspaces

Let A be a subset of a topological space X. There is a natural way to define a topology on A that is
based on the topology on X.

Definition 5.1 (Subspace topology) Let X be a topological space, and let A be a subset of
X. The collection
Ty={ANnU | UisopeninX}

of subsets of A is called the subspace topology on A.

The subspace topology is indeed a topology.

Lemma 5.2 Let X be a topological space, and let A be a subset of X. Then the collection
Ty ={ANnU | UisopeninX}isatopology on A.

Proof. Let T denote the topology on X.

Sinced, X €T, 0 =AnNn@and A = AN X,then, clearly, , A € T,. Hence, T1 is satisfied.

Let {V3},1ea be a collection of subsets of A who are openin 4, i.e., V; € ;. We must show that
Ujep Vi € Ty. Foreach A € Athereisa Uy € T such that V), = AN U,. Thus

UI/}L=U(AHU,1)=ADUU,1.
AEA AEA AEA

Since U ep Uy € T, it follows that U e Vi € T4. Hence, T2 is satisfied.
Let 1, 15, ..., V,, be subsets of A that are openin 4, i.e., V; € T, fori = 1,2, ...,n. We must show
that N[~ V; € Ty. Foreach i € {1,2,...,n} thereis a U; € T such that V; = A n U;. Thus

n n n
Vi=ﬂ(AnUi)=AﬂﬂUi.
i=1 i=1 i=1
Since Nj=, U; € T, it follows that N}, V; € T4. Hence, T3 is satisfied. O

Let X be a topological space (with topology T), and let A be a subspace of X. If IV is a subset of 4, there are
two possible meanings to the statement “V is open.” We can either take VV to be openin X, i.e., V € T, or we
can take VV to be openin 4, i.e., V € T4. In general, these do not mean the same thing.

The next example illustrates the fact that we may have subsets of a topological space X that are
open in the subspace 4 but which are not open in X.

28
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Example 5.3 Let R denote the set of real numbers equipped with the standard topology, cf.
Exercise 4.2, and let I = [0, 1] be a subspace of R. Then sets of the form [0, @) and (a, 1] with
0 <a<1areopeninlbutnotinR.

The following theorem describes how we may extract a basis for the subspace topology on A from
the basis of a topology on X.

Theorem 5.4 Let X be a topological space, and let B be a basis for the topology on X. If A is
a subset of X, then the collection

B,={ANB|B € B}

is a basis for the subspace topology on A.

Proof. We need to prove that By is a basis for the subspace topology on A. We first prove that B, is a
basis for a topology on 4, and then that the topology generated by B, equals the subspace topology
on A.

First note that each B € Bis openin X, and so,each AN B € By isopenin A. Foreachx € X
there is a basis element B € B such that x € B. Let x € A. Since A = A N X, there must be a basis
element B € Bsuch thatx € AN B. Hence, B1 holds. Now let x € AN (B; N B;) where B; and B, are
basis elements of B. Since B is a basis for the topology on X, it follows that there is a basis element
B; of Bsuchthat B; € By NB,andx € AN B; € AN (By N B,). Hence, B2 is satisfied. Thus By is a
basis for a topology on A.

Let 7, be the subspace topology on A. We want to prove that the topology 7’ generated by By is
equalto 7. IfANU € T, and x € AN U, then, using the fact that B is a basis for the topology on X,
we have B € Bsuchthatx e ANB S ANU. ThusANU € 77, cf. Theorem 4.9. By Theorem 4.10
we know that 7" is equal to the collection of all unions of elements of B,. Hence, if W € T’ then W
equals a union of elements of B,. Since each element of B, belongs to 7, and T is a topology, W
also belongs to 7. O

We end this section with an alternative description of the subspace topology. Let X be a topolog-
ical space, and let T be a set. There do exist topologies on T that make f: T — X continuous, e.g.,
the discrete topology. If 7 is the intersection of all topologies on T such that f is continuous, then J¢
is the coarsest topology for which f is continuous and

T ={f~*(U) | Uis openin X}.
From this we may define the subspace topology as follows: Let X be a topological space, and let A be
subset of X. The subspace topology on A is then the coarsest topology on A for which the inclusion
i: A - X, givenbyi(x) = xfor x € 4, is continuous. This coincides with our previous definition as
i"Y(U) = AN U for any subset U of X. Thus
Ti={i"*(U) | UisopeninX} ={ANU | UisopeninX},

and hence, 7; = Ty.
The following theorem describes a universal property for the subspace topology.
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Theorem 5.5 Let X be a topological space, and let A be a subset of X. Then the subspace
topology on A is the only topology on A with the following universal property: for every topo-
logical spaceY andeverymap f: Y — A, fis continuous ifand only ifiof: Y — X is continuous
where i: A — X is the inclusion map given by i(x) = x for x € A.

X

vl

Y — A
f

Proof. We will first prove that the subspace topology T4 has the universal property that for every
topological space Y and everymap f: Y = A, fis continuous ifand onlyifie f: Y — X is continuous.
Then we will prove that T} is the only topology on A with this property.

Consider A as a subspace of X. Assume that f is continuous. Since the inclusion map i is con-
tinuous (with A given the subspace topology), and the composition of two continuous maps is again
continuous, cf. Theorem 3.16, it follows that i o f is continuous. Now assume that i o f is continuous.
Let V be an opensetin4,i.e.,V = AN U for some open set U in X. Since

W) =fAnD) =IO =@ H7HO)

is open in Y by continuity of i o f, it follows that f is continuous. Thus the subspace topology 74 has
the desired property.

Let T’ be a topology on A with the universal property that for every topological space Y and every
map f: Y = A, fis continuous ifand only ifio f: ¥ — X is continuous. We must show that 7, = 7.

Let T be the topology on X, and let A be given the topology 7. First let Y = A with the subspace
topology. Then for f = id: (4,T,) = (A,T'), we haveioid = i: (4,T,) - (X,T) which is
continuous. Hence, by the universal property id is continuous.

X, 7)

el

(A' '7:4) T (A' T,)

Thus any V € 7' must also be an element of 7, and so, 7’ € Tj,.
Secondly letY = A with T as its topology. Then, clearly, f = id: (4,7") - (A4,7") is continuous.
Thus by the universal property it follows that i o id = i: (4,7") = (X, T) is continuous.

o

(AT = (AT)

Thus forany U € T, we have i"Y(U) = AN U € T'. Thatis, T, € 7'. Hence, T, = T". O
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5.2 Products

Let X and Y be topological spaces. If we want to give the product X X Y a topology, a first approach
might be to take the collection

C={UxV|UisopeninXandVisopeninY}

as the topology on X X Y. However, C is not a topology. The union of two elements of C is not
necessarily of the form U X V for some U open in X and some V openin Y. See Figure 5.1.

Uy U,

Figure 5.1: The collection C of all products of open sets in X and in Y is not a topology on X X Y.

We can remedy the situation by taking C as a basis instead. The topology generated from this
basis is what we will take to be the product topology on X X Y.

Definition 5.6 (Product topology) Let X and Y be topological spaces. The product topology
on X X Y is the topology generated by the basis

B={UXxV |UisopeninXandVisopeninY}.

Lemma 5.7 Let X andY be topological spaces. Then the collection
B={UXV |UisopeninXandV isopeninY}

is a basis for a topologyon X X Y.

Proof. Let (x,y) € X X Y. We need to show that there is a basis element U X V € B such that
(x,y) eUXV c X XY.Since XisopeninXandYisopeninY, wesimplytake U =XandV =Y.
Thus B1 is satisfied.

Now let (x,y) € (U; X V3) N (U, X V) where Uy X V3, U, XV, € B. Since

(U X)) N Uy x ) = U nU) X (L N1),

and U; N U, and V; N, are open in X and Y, respectively, it follows by letting U; = U; N U, and
V3 =V, N, that there is a basis element U3 X V3 € Bsuchthat (x,y) € U3 X3 € (U XV)N(U, XK,).
Hence, B2 holds. Thus B is a basis for a topology on X X Y. ]
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The basis described in Lemma 5.7 is relatively large; it consists of pairs of every open set U in X
and every open set Vin Y. The following theorem describes a smaller basis for the product topology
based on bases rather than whole topologies.

Theorem 5.8 Let X and Y be topological spaces. If By is a basis for the topology on X and
By is a basis for the topology on Y, then the collection

BXXY = {BX X By | BX € BX and By € By}

is a basis for the product topology on X X Y.

Proof. We follow the arguments for the proof of Theorem 5.4 and adapt them to our current setting.

First note that each By X By € By X By is openin X X Y as each By is open in X and each By is
openinY. Let (x,y) € X X Y. Using the fact that By and By are bases for topologies on X and Y,
respectively, there are basis elements By € By and By € By such that (x,y) € By X By € X X Y.
Thus B1 is satisfied. Now let (x,y) € (Bx1 X By1) N (Bx, X By,) where Bx1,Bx, € By and
By 1, By ; € By. Since

(Bx,1 X By1) N (Bx2 X By2) = (Bx,1 N Bx2) X (By1 N By ;)

and By and By are bases for the topologies on X and Y, respectively, it follows that there are basis
elements By 3 € By and By 3 € By suchthatx € By3 € By; N Bx,, ¥ € By3 € By, N By, and
(x,¥) € Bx3 X By3 € (Bx1 N Bx,) X (By; N By,). Thus B2 holds. Hence, By is a basis for a
topologyon X X Y.

Let Ty.y be the product topology on X X Y. We want to prove that the topology 7' generated
by Byxy is equal to Tyyy. Let W € Tyyy, and let (x,y) € W. Then there is an open set U in X and
anopen set VinY such that (x,y) € U XV € W, cf. Theorem 4.9. Since U is open in X and By is a
basis for the topology on X, it follows that there is a basis element By € By such thatx € B, € U.
Likewise, there is a basis element By € By such thaty € By € V. Thus (x,y) € By X By € W,
and so, W € J7, cf. Theorem 4.9. By Theorem 4.10, we know that 7 is equal to the collection of all
unions of elements of Byy. Hence, if W € T’ then W equals a union of elements of Byy. Since
each element of Byy belongs to Ty«y and Ty«y is a topology, W also belongs to Ty yy- ]

Example 59 Llet X = {a,b,c,d,e} and Y = {1,2,3} with topologies 7y, =
{0,{a, b},{b},{b,c,d, e}, X} and Ty = {@, {1}, {1, 2}, Y}, respectively. Then the collection

Byxy = {{a,b} x {13, {b} x {1}, {b, ¢, d, e} x {1},
{a,b} x {1,2},{b} x {1,2},{b,c,d, e} x {1,2},
{a,b} xY,{b} xY,{b,c,d,e} x Y}

is a basis for the product topology on X X Y.

Example 5.10 Let R denote the set of real numbers equipped with the standard topology,
cf. Exercise 4.2. Then the collection

Bgz = {(a,b) X (c,d) | a < b,c < d}

of open rectangular regions in R? is a basis for the product topology on R? = R X R, since a
basis for the standard topology of R is the collection of open intervals of the form (a, b) where
a<hb.
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Example 5.11 Let St denote the circle {(x,y) € R? | x2 + y? = 1} seen as a subspace
of R? (with the standard topology), i.e., S is given the subspace topology. A basis element B
for the product topology on the torus T2 = S* x S is illustrated in Figure 5.2. Note that the
surface depicted in Figure 5.2 is homeomorphic to T?; it is the surface of revolution generated
by revolving a circle, say of radius 1 in the xz-plane with center (2,0, 0), about an axis, e.g.,
the z-axis.

Figure 5.2: An illustration of a basis element B for the product topology on T2 = S x S1.

We end this section with an alternative description of the product topology. The mapm;: XXY —
X given by
m(x,y) =x
for (x,y) € X XY is called the projection of X X Y onto X. Similarly, the map 7, : X XY — Y given by
T (x,y) =y

for (x,y) € X X Y is called the projection of X X Y onto Y.

' D

Theorem 5.12 Let X andY be topological spaces. Letm: X XY = Xandm,: X XY - Y be
the projections of X X Y onto its first and second factors, respectively. The product topology is
the only topology on X X Y with the following universal property: for every topological space
Zandeverymap f: Z - X XY, fis continuous ifand only iftiof: Z - Xandmyof: Z - Y
are continuous.

XxXY XXY
. .
Z X Z——Y
mTyof Tyof

Proof. We follow the arguments for the proof of Theorem 5.5 and adapt them to our current setting.
We first prove that the product topology Ty «y has the universal property that for every topological
space Zandeverymap f: Z - X XY, fiscontinuous ifandonlyifty o f: Z > Xandmyof: Z > Y
are continuous.
Let X X Y be given the product topology, and let f: Z — X X Y be continuous. Since 7 1(U) =
UXY foranopensetUin XandYisopeninY, it follows that ir4 is continuous. Likewise, m,: XXY - Y
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is continuous. Thus by Theorem 3.16 both 4 o f and 1, o f are continuous. Now assume that 7t; o f
and 1, o f are continuous. Let U X V be a subset of X X Y where U is an open set in X and V is an
opensetinY. Since U XV = n71(U) n ;1 (V) and

fUXV) = fHmrt(U) Nt (V)
=@t O) N NV
= (@ o NN (e V)

is open in Z by continuity of m{ o f and m, o f, and subsets of the form U X V form a basis for the
product topology on X X Y, cf. Lemma 5.7, it follows that f is continuous.

Let T be a topology on X X Y with the universal property that for every topological space Z and
everymap f: Z - X XY, fis continuous ifand onlyif ty o f: Z - Xandmy o f: Z — Y are
continuous. We must show that Tywy = 7.

Let Ty be the topology on X and Jy be the topology on Y, and let X X Y be given the topology 7.
First let Z = X X Y with the product topology. Then for f = id: (X XY, Tyyy) = (X XY,T), we have
myoid =m: (X XY, Txuy) = (X,Tx) and my oid = my: (X X Y, Tyxy) = (Y, Ty) which are both
continuous. Thus by the universal property id is continuous.

(X XY,T) (X XY,T)
2 2l
(X XY, Txxy) o id X, 7x) (X XY, Txxy) ——y ¥, 7y)

Hence, any W € T must also be an element of Ty, and so, T € Tyyy.

Secondly let Z = X X Y with T as its topology. Then, clearly, f =id: (X XY, T) = (X XY, T)is
continuous. Thus by the universal property it follows that both 7y cid = 1 : (X X Y,T) = (X, Ty)
andmy oid =m,: (X X Y,T) = (Y,Jy) are continuous.

X XY,T) X XY,T)
id id
/ J’“ / J”Z
X XY,T) —— (X,Tx) A XY, T) ——0 (V,5)

Thus foreach U € Ty and V € Ty, we have
nfl(U)=UXY€ET and m'(V)=XXVET,
andso, U xV = n71(U) nm;1(V) € T. Hence, Tyxy S T. Thus Tyxy = 7. O

We can extend our discussion of the product topology from X X Y to X; X X, X -+ X X, where each X;
is a topological space. If we are to extend to the product [[,., X3, which we can think of as the set of maps
f+ A= Ujep Xy where f(4) € X, for each A € A, of an indexed family {X},¢5 of topological spaces we may
proceed in two ways. We may equip [[,c, X1 with the topology generated by the basis [[,., Uy where U, is
open in X, for each A € A. This is known as the box topology. We may also equip ]—IAEA X, with the topology
generated by the subbasis § = U#EA{nljl(Uﬂ) | Uy isopeninX,}. Thisis known as the product topology.
For finite products ]_[?=1Xi the two topologies are the same. Also, the box topology is, in general, finer than
the product topology. Finally, several results regarding finite products may be extended to arbitrary products
when using the product topology but not the box topology.
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5.3 Quotient spaces

Let X be atopological space. In Section 5.1, we discussed how to define the coarsest possible topology
on a subset A of X such that the inclusion map i: A = X is continuous. This is known as the subspace
topology. If we let A be a set which is not necessarily a subset of X and we consider a surjective map
m: X — A, the quotient topology is the finest topology on A such that T is continuous.

The torus T? = S1 x S (see Figure 5.2) can be constructed by taking a rectangle and “gluing”
its edges together in an appropriate way as shown in Figure 5.3. Such a construction involves the
concept of quotient topology.

a

a

Figure 5.3: Constructing the torus T?2.

Definition 5.13 (Equivalence classes) Let X be a set, and let ~ be an equivalence relation
on X. The equivalence class of x € X is the subset

[x] ={y €X1x~y}

of X. Let
X/~={[x] | x € X}

be the set of equivalence classes.

J

By definition, x € [x] for each x € X and [x] = [y] if and only if x ~ y. Moreover, two
equivalence classes [x4] and [x,] are either disjoint or equal. Finally, the union of all equivalence
classes equal X.

e

Lemma 5.14 Let X and A be sets, and let m: X — A be a surjective map. Then the map
9 X/~— A

given by
e([x]) = m(x),

where xq ~ x, if and only if t(x1) = m(x,), is a bijection.

Proof. The map is well-defined since [x1] = [x;] onlyif x; ~ x5, and so, m(x1) = m(x;) by definition
of the equivalence relation. It is injective since @([x1]) = @([x;]) implies m(x;) = m(x;), and
SO, X1 ~ Xy, i.e., [x1] = [x,]. Finally, it is surjective since 7 is; every element of A is of the form
m(x) = @([x]) for some x € X. O

Thus by Lemma 5.14 we can, up to a bijection, go back and forth between equivalence relations
on X and surjective maps X — A.
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Definition 5.15 (Quotient space) Let X be atopological space, let A be aset,andletm: X —
A be a surjective map. The quotient topology on A induced by 1 is the collection of subsets U
of A such that m~1(U) is open in X. We say that 7 is a quotient map if A is given the quotient
topology, and we call A the quotient space.

In other words, m: X — A is quotient map if it is surjective and a subset U of A is openin A4 if and
only if ~1(U) is open in X. Equivalently, 7 is a quotient map if it is surjective and U is closed in A if
and only if =1(U) is closed in X. Clearly, a quotient map is continuous.

Lemma 5.16 Let X be a topological space, let A be a set, and let m: X — A be a surjective
map. Then the quotient topology on A induced by m is a topology and it is the finest topology
on A such that 1 is continuous.

Proof. Since m~1(@) = @ and m~1(A) = X, and both @ and X are open in X, it follows that @ and A
are open in A. Thus T1 holds.
Let {U;}1en be a collection of subsets of A that are open in A. Then t~1(U,) is open in X for each

A € A. Since
n1 (U UA) = J=w»

AEA AEA
is a union of open sets in X, it must be open in X. Hence, U;¢5 U, is open in A. Thus T2 is satisfied.
Let U; and U, be subsets of A that are open in A. Then both m~1(U,) and m~1(U,) are open in
X. Since
(U nUR) =~ (Uy) N (Up)

is a (finite) intersection of open sets in X, it must be open in X. Hence, U; N U, is open in 4, and so,
T3 is satisfied. Thus the quotient topology is a topology.

Let T be a topology on A such that m is continuous. We must show that T is coarser than the
guotient topology. Since 7 is continuous when A is given T as its topology, we have foreachV € T
that m~1(V) is open in X, and so, V is in the quotient topology. Hence, T is coarser than the quotient
topology. ]

Example 5.17 Let R be the set of real numbers equipped with the standard topology, let
A ={a,b,c}, and let

n:R->A
be the map given by
a x=0,
n(x) =4b x<0,
c x>0.

Then the quotient topology on A induced by 7 is the collection {@, {b}, {b, c}, {c}, A} of subsets
of A.

Definition 5.18 (Open and closed maps) Let X andY be topological spaces,andletf: X - Y
be a continuous map. We say that f is an open map if for each subset U of X that is open in X
the image f(U) is open in Y. Likewise, we say that f is a closed map if for each subset V of X
that is closed in X the image f (V) is closed in Y.
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Example 5.19 Any homeomorphism is both open and closed. However, the converse is, in
general, not true. Let R be the set of real numbers equipped with the standard topology, and
let * be the space consisting of a single element. Then R — * is both an open and a closed map
but it is clearly not a homeomorphism.

Lemma 5.20 Let X andY be topological spaces, and let t: X — Y be a surjective continuous
map.

(1) Ifmisin addition open then it is a quotient map.

(2) Ifmisin addition closed then it is a quotient map.

\

Proof. Assume that 7 is in addition open. Let V be a subset of Y. If V is open in Y then =~ 1(V) is
open in X by assumption of continuity of 7. If T~ (V) is open in X then since 7 is surjective, we have

m(mt (V) =V

which is open in Y since we have assumed that 7 is an open map. Hence, (1) holds.

Now assume that 7 is also closed in addition to being a surjective continuous map. Let W be
a subset of Y. If W is closed in Y then m~1(WW) is closed in X by assumption of continuity of . If
n‘i(W) is closed in X then since 7 is surjective, we have

m(rt (W) =W

which is closed in Y since we have assumed that 7 is a closed map. Hence, (2) holds. ]

Example 5.21 Let R be the set of real numbers equipped with the standard topology. Con-
sider [0, 1] as a subspace of R and S as a subspace of R? where R? is also given the standard
topology. Let

m: [0,1] » St

be the map given by
n(t) = (cos(2mt), sin(2mt)).

Then, clearly,  is a surjective continuous map. We can show that 7 is also closed (to do this it
helps to have defined compactness). Thus by Lemma 5.20 7 is a quotient map. Note that  is
not open as ([0, t)) is not open for 0 < t < 1 (where we are using the fact that [0, t) is open
in[0,1] for0 <t < 1).

Let ~ be the equivalence relation on [0, 1] given by s ~ tif and only if m(s) = m(t), and let

p:[0,1] - [0,1]/~

be the map given by
p(t) = [t].
Then, clearly, p is a surjective continuous map. The induced bijective map

@:[0,1]/~ - St

given by @([t]) = m(t) is then a homeomorphism from [0, 1]/~ with the quotient topology
induced by p to S with the quotient topology induced by 7. See Figure 5.4.
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Figure 5.4: Constructing the circle S1.

Example 5.22 Consider [0,1] X [0, 1] as a subspace of R X R = R? where R? is given the
standard topology, and T? = S x S as a subspace of R? X R? = R* where R* is also given
the standard topology. Let

m: [0,1] X [0,1] - St x ST

be the map given by
(s, t) = (cos(2ms), sin(2ms), cos(2mt), sin(2mt)).

Clearly, i is a surjective continuous function. As in the previous example, we can show that
is closed, and so, by Lemma 5.20 it is a quotient map.
Let ~ be the equivalence relation on [0, 1] X [0, 1] given by (s,0) ~ (s,1) and (0,t) ~
(1,t), and let
p: [0,1] X [0,1] = ([0,1] x [0,1])/~

be the map given by
p(s, t) = [s, t].

Then, clearly, p is a surjective continuous map. The induced bijective map
¢: ([0,1] x [0,1])/~ - S x 5*

given by ¢([s, t]) = (s, t) is then a homeomorphism from ([0, 1] x [0, 1])/~ with the quo-
tient topology induced by p to S x S with the quotient topology induced by 7. The equiv-
alence classes are then the sets {(0,0), (0, 1), (1,0), (1, 1)} (the four vertices of the square
are identified), {(s, 0), (s, 1)}, {(0,t), (1,t)} (opposing edges of the square are identified), and
{(s,t)} fors,t € (0,1). See Figure 5.3.

Example 5.23 The real projective space is the quotient space
RP™ = S™/~

where S™ is the n-sphere and ~ is the equivalence relation given by x ~ yifandonlyifx = +y,
i.e., [x] = {x, —x}. We say that x and —x are antipodal points. The topology on RP" is defined
by the quotient map

w: S™ > RP"

given by m(x) = [x].

We end this section with an alternative description of the quotient topology.
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Theorem 5.24 Let X be a topological space, let A be a set, and let t: X — A be a surjective
map. The quotient topology is the only topology on A with the following universal property: for
every topological space Y and everymap f: A = Y, f is continuous ifand only if femr: X =Y
is continuous.

‘on
Y

Y
f

D X

Proof. We follow the arguments for the proofs of Theorem 5.5 and Theorem 5.12 and adapt them to
our current setting.

We first prove that the quotient topology 7™ has the universal property that for every topological
space Y and every map f: A = Y, fis continuous if and only if f o r: X — Y is continuous.

Let A be given the quotient topology induced by 7, and assume that f: A — Y is continuous.
By definition of the quotient topology w~1(U) is open in X if and only if U is open in A. Hence,  is
continuous. Thus by Theorem 3.16 f o w: X — Y is continuous. Now assume that f er: X = Yis
continuous. Let V be an open set in Y. Since m is a quotient map and (f o 7)1 (V) = n~1(f~1(V))
is open in X by assumption of continuity of f o m, it follows that f~1(V) is open in A. Thus f is
continuous.

Let T’ be a topology on A with the universal property that for every topological space Y and every
map f: A =Y, fiscontinuousifand only if forr: X — Y is continuous. We must show that 7’ = T7.

Let T be the topology on X, and let A be given the topology 7. First let Y = A with the quotient
topology induced by fom. Thenfor f =id: (4,T") - (A,T™),we haveidor = m: (X,T) — (4, T™)
which is continuous. Hence, by the universal property id is continuous.

X, 7)

|

AT) 5 (AT

Thus any V € T must also be an element of 7/, and so, 7™ € T".
Secondly letY = A with T’ as its topology. Then, clearly, f = id: (4,7") = (A4,T") is continuous.
Thus by the universal property it follows that id er = : (X,T) — (4,T") is continuous.

X, 7)

S

(A4T) = (AT

Since the quotient topology induced by 7 is the finest topology on A such that i is a continuous map,
cf. Lemma 5.16, it follows that 7/ € T™. Hence, 7' = J™. O
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5.4 Exercises

Exercise 5.1 Let R be the set of real numbers equipped with the standard topology. Show
that any subspace of the form (a, b), i.e., an open interval, is homeomorphic to R.

Exercise 5.2 Let X be atopological space and let Y be a subspace of X. If A is a subset of ¥,
show that the subspace topology on A inherited from Y is equal to the subspace topology on
A inherited from X.

Exercise 5.3 Let R be the set of real numbers equipped with the standard topology, and
consider the set of rational numbers Q as a subspace of R. Show that the subset

A:{er|—\/§<x<\/§}

of Q is both open and closed in Q.

Exercise 5.4 LetX = {a, b, c,d} be given the topology 7y = {®, {a},{a, c,d},{c,d}, X}, and
let Y = {1, 2,3} be given the topology 7, = {@,{1},{1,3},Y}. Find a basis for the product
topologyon X X Y.

Exercise 5.5 Let X and Y be topological spaces, and let A and B be subsets of X and Y,
respectively. Show that the topology on A X B as a subspace of the product X X Y is equal to
the product topology on A X B where A and B are given the subspace topology inherited from
X and Y, respectively.

Exercise 5.6 Let X andY be topological spaces. Show that the product topology is the coars-
est topology on X XY for which both of the projection mapsm;: XXY = Xandm,: XXY =Y
are continuous.

Exercise 5.7 Let X and Y be two topological spaces, and let X X Y be given the product
topology. Show that if f: X — Y is a continuous map, the subspace

G={(xy) EXXYIy=f(x)}

of X X Y, is homeomorphic to X.

Exercise 5.8 Let R be the set of real numbers equipped with the standard topology. Let
m:R->Z
be the map given by
X X€EZ
m(x) = . .
n x €m—1,n+1),andnisan odd integer.

Show that the quotient topology on Z induced by m is equal to the digital line topology, cf.
Exercise 4.6.



6. Topological properties

6.1 Connected spaces

One of the fundamental results of calculus is the intermediate value theorem. The theorem says that
for a continuous map f: [a, b] = R and for a real number r between f(a) and f(b) there is a real
number ¢ € [a, b] such that f(c) = r. See Figure 6.1. From this result we can deduce that the graph
of a continuous map (in this setting) is connected.

y

AN

f(®)

f(a)

|
|
|
|
|
|
|
|
|
I
b

Figure 6.1: The intermediate value theorem.

Definition 6.1 (Connected space) Let X be a topological space. A separation of X is a pair
of non-empty subsets U and V that are open in X, disjoint and whose union equal X. We say
that X is connected if there are no separations of X. Otherwise it is disconnected.

The property of being connected is a topological property as it is formulated entirely in terms of the col-
lection of open sets. In other words, if X and Y are homeomorphic topological spaces and X is connected then
soisY.

Example 6.2 Let X be the set {a,b,c,d,e}. If we equip X with the topology 7; =
{0,{a,b},{a,b,c},{a,b,d, e}, {d, e}, X} then it is disconnected; the pair U = {a,b,c} and
V = {d, e} is a separation of X in this topology.

However, if we equip X with the topology 7, = {@,{a, b, c},{c},{c, d, e}, X} then it is con-
nected; there are no separations of X in this topology.

41
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Example 6.3 Let X be an indiscrete space. Then X is connected as there are no separations
of X, i.e., there are no non-empty open subsets of X who are disjoint and whose union equal
X.

Example 6.4 Let X be adiscrete space containing two or more points. Then X is disconnected.
Letp € XandletU = {p}and V = U¢ = X \ {p}. Then the pair U and V is a separation of X.

Example 6.5 Let R be the set of real numbers equipped with the standard topology, and
let X = [0,1) U (1,2) be a subspace of R. Since U = [0, 1) is open in X (but not in R) and
V =(1,2)isopenX,UNV = @and U UV = X, they form a separation of X. Thus X is
disconnected.

In the above examples the spaces that are connected all share the property that the only subsets
that are both open and closed in X are @ and X. Likewise, the disconnected spaces all share the
property that there are non-empty proper subsets of X that are both open and closed in X.

Theorem 6.6 Let X be a topological space. Then X is connected if and only if the are no
non-empty proper subsets of X that are both open and closed in X.

Proof. We prove the equivalent statement that X is disconnected if and only if there are non-empty
proper subsets of X that are both open and closed in X.

Assume X is disconnected, i.e., that there is a separation of X. Let U and V be a separation of X.
Thus U isopenin X. SinceUNV =@andUUV = X, we have U = X\ U = V. Thus U€ is open
in X, and so, U is closed in X. Hence, U is both open and closed in X. Likewise, V is both open and
closed in X.

Assume that the non-empty proper subset U of X is both open and closed in X. LetV = U°¢ =
X\U.ThenVisopeninX,UNV =@and U UV = X. Hence, the pair U and V is a separation of X.
Thus X is disconnected. L]

Theorem 6.7 Let X be a connected space, Y be a topological space, and let f: X = Y be a
surjective continuous map. Then Y is connected.

Proof. We prove the equivalent statement that if f: X — Y is a surjective continuous map and Y is
disconnected then X is disconnected.

Assume that Y is disconnected, i.e., there is a separation of Y. Let the pair U and VV be a separation
of Y. Then f~1(U) and f~1(V) are non-empty subsets of X which are open in X as f is a surjective
continuous map. Furthermore,

AN V)= Wnv)=0  and RO UFIV)=fIUUY) =X
Hence, the pair f~1(U) and f ~1(V) is a separation of X. Thus X is disconnected. O
A subset A of a topological space Z is connected in Z if A is connected in the subspace topology. Thus the

theorem can be extended to saying that the continuous image of a connected space is connected, i.e., assuming
X is a connected space and f: X — Y is a continuous map then f(X) is connected in Y.
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We will prove that the (finite) product of connected spaces is again connected. To prove this we
will need the following two results.

Lemma 6.8 LetX be adisconnected space with separation U and V, and let A be a connected
subspace of X. ThenA S UorACV.

Proof. Since U and V are open in X, the intersections A N U and A NV are both open in A (in the
subspace topology). Furthermore, the complementof ANUin Aisequalto ANV asU¢ = X\U =V.
Hence, ANU is also closedin A. Thus by Theorem 6.6 ANU is either empty or all of A as A is connected.
fANU=0thenACSV.IfANU = AthenA C U. dJ

Theorem 6.9 Let X be a topological space, and let {A;},ep be a collection of connected
subspaces of X such that N ;e A, is non-empty. Then U ;cp A, is connected.

Proof. LetY = Ujep Ap. Suppose that Y is disconnected, i.e., that there is a separation of Y. Let
U and V be a separation of Y. We will show that this leads to a contradiction, and so, Y must be
connected.

Let p € N ep Ay Then eitherp € U orp € V. Assume without loss of generality that p € U.
By Lemma 6.8 it follows that for each 4 € A either Ay € U or A; € V. Since we have assumed that
p € U we must have A; € U forall A € A. Thus Y € U. But this implies that VV is empty, and hence,
contradicts that U and V is a separation of Y. Thus Y is connected. ]

We can prove that the (finite) product of connected spaces is again connected.

Theorem 6.10 Let Xq,X,, ..., X, be connected spaces. Then the product space X; X X, X
-+ X X, is connected.

Proof. We prove the statement for the product of two connected spaces. The general result then
follows by an induction argument.

Let X and Y be two connected spaces. We must prove that X X Y is connected. Since for each
x € X the subspace {x} X Y of X X Y is homeomorphic to Y, it follows that {x} X Y is connected.
Similarly, for each y € Y the subspace X X{y} is homeomorphicto X, and hence, X X{y} is connected.
Thus by Theorem 6.9 it follows that for each x € X and each y € Y the subspace ({x} X Y)U (X X {y})
is connected as it is the union of two connected spaces whose intersectionis ({x} X Y) N (X X {y}) =
{(x,y)} # 0.

Fixxo € Xand let Ay, = ({xo} X Y) U (X X {y}). Then for each y € Y the subspace A, of X X Y is
connected as it is the union of two connected spaces whose intersection is equal to {(xy, ¥)}. Hence,
by Theorem 6.9 it follows that U, ¢y 4y, is connected as it is the union of connected spaces whose

intersection in non-empty. Since
UAy =X XY,

yeY

it follows that X X Y is connected. OJ

The theorem can be extended to hold for arbitrary products, [,., X», if we equip the product with the
product topology. If we equip [],., X3 with the box topology the statement is no longer true.
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An important example of a connected space is the set of real numbers equipped with the standard
topology.

Theorem 6.11 (The real numbers are connected) Let R be the set of real numbers equipped
with the standard topology. Then R is connected.

We will use the fact that the real numbers satisfy the following two properties.

(1) Every subset of R that is bounded above has a least upper bound. This is known as the least
upper bound property.

(2) Ifx,y € Rwithx < ythen thereisareal number z suchthatx < z < y.

Proof. Assume that Ris disconnected, i.e., that there is a separation of R. Let U and V be a separation
of R, and choose a € U and b € V. We may assume without loss of generality that a < b.

Let A = [a,b]NU and B = [a,b] N V. Then the pair A and B is a separation of [a, b], witha € A
and b € B. Also note that A is bounded above by b. Hence, by the least upper bound property A has
a least upper bound; ¢ = sup A. Thus a < ¢ < b. We will show that ¢ belongs neither to A norto B
thus contradicting the fact that A and B is a separation of [a, b].

Assume that ¢ € B. Since a € B and B is open in [a, b], it follows that there is a real number d
suchthata < d < cand (d, c] € B. This implies that d is an upper bound of A and that d is less than
the least upper bound c. That is a contradiction, and so, ¢ & B.

Now assume that ¢ € A. Since A is openin [a,b] and b & A, there is a real number d such that
[c,d) € A. Forany e € (c,d) it follows that e € A and e > c. That is a contradiction to the fact that
cis an upper bound of A. Thus ¢ € A.

Hence, c € A and ¢ & B. This is a contradiction to the fact that ¢ € [a, b] and that Aand B is a
separation of [a, b]. Thus R must be connected. O

As an immediate consequence of Theorem 6.11, we get that open intervals of the form (a, b),
(—o0,b) and (a, o) are all connected as they are all homeomorphic to R (with the standard topology).
We can also show that every closed interval [a, b] is connected. Furthermore, by Theorem 6.10 and
Theorem 6.11 R™ is a connected space.

We can now prove a generalized version of the intermediate value theorem.

Theorem 6.12 (Generalized intermediate value theorem) Let X be a connected space, and
let f: X = R be a continuous map where R is given the standard topology. If a,b € X and if
1 is a real number that lies between f (a) and f(b), there is a c € X such that f(c) =r.

Proof. Assumethatr € f(X). We will show that this contradicts the assumption that X is connected.
By assumption that r & f(X),

U=f"1((~o,1)) and V=f"1((r,))

are disjoint non-empty open subsets of X whose union equals X. Thus they are a separation of X.
This contradicts the assumption that X is connected. Hence, r € f(X). In other words, there is a
¢ € X such that f(c) =r. O

We end this section with a discussion of path connectivity.
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Definition 6.13 (Path connected space) Let X be a topological space, and let x,y € X. A
path from x to y is a continuous map f: [a, b] = X such that f(a) = x and f(b) = y where
[a, b] is a subspace of R with the standard topology. We say that X is path connected if every
pair of points of X can be joined by a path in X.

Example 6.14 Let R be the set of real numbers equipped with the standard topology. Then
R is path connected as for any two points, p, g € R, there is a path fromp to g in R, e.g., the
path given by f(t) = (1 — t)p + tq where t € [0, 1].

Example 6.15 Foralln > 2, R™ with the standard topology is path connected, and so is
R™\ {p} foreachp € R™ Forn = 1, R\ {p} is not (path) connected.

The next theorem states that path connectedness implies connectedness. While the converse
is not true in general, it can be shown that open subsets of R" that are connected are also path
connected.

Theorem 6.16 (Path connectedness implies connectedness) Let X be a path connected
space. Then X is connected.

Proof. Assume that X is path connected but that X is disconnected, i.e., there is a separation of X.
Let U and V be a separation of X. Let f: [a,b] — X be a path from x € Utoy € V. Then f~1(U)
and f~1(V) are disjoint non-empty open subsets of [a, b] whose union is equal to [a, b]. Thus they
are a separation of [a, b]. This is a contradiction to the fact that [a, b] is a connected space. O

Example 6.17 (The topologist’s sine curve) The topologist’s sine curve is the subspace

Sz{(x,sin(%)) ‘ 0<x<1}u{(0,y)|—1<y<1}

of R? with the standard topology. It can be shown that S is connected but not path connected.
See Figure 6.2.

et

Figure 6.2: The topologist’s sine curve.



46 6.2. Hausdorff spaces

6.2 Hausdorff spaces

A common feature that we typically want a topological space to have is the ability to separate the
individual points. This is commonly referred to as separation axioms. We will in this section focus on
the most common separation axiom.

Definition 6.18 Let X be a topological space. We say that X is Hausdorff if for each pair of
points x, y € X, with x # y, there are disjoint neighborhoods U and V of x and y, respectively.
In other words, for each pair of distinct points x,y € X there are open subsets U and V of X
withx € Uandy € VwhereUNV = 0.

The property to be a Hausdorff space is completely described using the elements of X and its open sets,
and so, it is a topological property. In other words, if X and Y are homeomorphic topological spaces and X is
Hausdorff thensois Y.

Example 6.19 Let X be the set {a, b, c}. If we equip X with the discrete topology then X
is Hausdorff since for all pairs of distinct points x,y € X, the open subsets {x} and {y} are
neighborhoods of x and y, respectively, and {x} N {y} = @.

However, if we equip X with the topology {@, {a, b}, {b}, X} it is not Hausdorff; the only
neighborhood of cis U = X, and no neighborhood V of either a or b can be disjoint from X.

Example 6.20 Let X be a set, and let 73 and 7, be two topologies on X. If T, is finer than 73
and X equipped with 73 as its topology is Hausdorff then X equipped with 7, as its topology is
also Hausdorff.

Theorem 6.21 Every metric space is Hausdorff.

Proof. Let (X,d) be a metric space, and let x and y be two distinct points in X. We must show that
there are disjoint neighborhoods U and VV of x and y, respectively.

Let § = d(x,y). Thend > 0. Let U = B(x; §/2) and V = B(y; §/2) be neighborhoods of x and
y, respectively. Thenby M3, U NV = @. ]

Example 6.22 For allintegersn > 1, the metric space (R", d) is Hausdorff. In particular, R"
with the standard topology is Hausdorff.

All Hausdorff spaces share the property that finite subsets are closed which is an immediate con-
sequence of the following theorem.

Theorem 6.23 Let X be a Hausdorff space. Then for each x € X the subset {x} of X is closed
in X.

Proof. Let x,y € X with x # y. Since X is Hausdorff, we have neighborhoods U and V of x and y,
respectively, such thiU NV =0. Thenx & V._In other words, xiVC = X \ V. Since V is open, V¢
is closed in X. Thus {x} € V¢, and hence, y & {x}. Hence, {x} = {x}. Thus {x} is closed in X. O
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There are examples of topological spaces who are not Hausdorff but have the property that finite
subsets are closed. One such example is the set of real numbers equipped with the cofinite topology.
We have seen that the (finite) product of connected spaces is connected, cf. Theorem 6.10. The
same statement holds for Hausdorff spaces, i.e., the (finite) product of Hausdorff spaces is Hausdorff.

Theorem 6.24 LetX4,X,, ..., X;, be Hausdorff spaces. Then the product space X1 XX, XXX,
is Hausdorff.

Proof. We prove the statement for two Hausdorff spaces. The general result then follows from an
induction argument.

Let (x1,¥1) and (x5, y,) be two distinct points in X X Y, i.e., x; # xp ory; # y,. If x4 # x,
there must be neighborhoods Uy and V in X of x; and x,, respectively, such that Uy N Vy = @ as
X is assumed to be Hausdorff. Then Uy X Y and Vx X Y are neighborhoods of (x1,y;) and (x,,y,),
respectively, where (Uxy XY)N(VxXY) = @. Similarly, if y; # y, there must be neighborhoods Uy and
Vy inY of y; and y,, respectively, such that Uy NV}, = @ as Y is assumed to be Hausdorff. Then X X Uy
and X XV, are neighborhoods of (x4, y;) and (x5, y,), respectively, where (X X Uy) N (X X I}) = @.
Hence, X X Y is Hausdorff. O

The theorem be extended to hold for arbitrary products, ]—[AGA X, if we equip the product with either the
product topology or the box topology.

We end this section with a result that helps us decide whether or not a topological space is Haus-
dorff.

Theorem 6.25 Let X be a topological space. Then X is Hausdorff if and only if the diagonal
A = {(x,x) | x € X} is closed in the product space X X X.

Proof. Assume that X is a Hausdorff space. Thus for any two distinct points x and y in X there are
neighborhoods U and V of x and y, respectively, suchthat U NV = @. Thus U X Visopenin X X X
and (x,y) € U X V,andso, (U X V) NA = @. Hence, there is a neighborhood N(y .y of (x,y) such
that N(, ) & A° = (X X X) \ A. Thus by Theorem 3.10, it follows that A® is open in X X X, and so, A
is closed in X X X.

Now assume that A is closed in the product space X X X. Then for any point (x,y) € X X X with
x #y,ie., (x,y) € AC, there is a basis element U X V for the product topology on X X X such that
(x,y) €U XV S A°. Since U XV € A°, we have U NV = @. Thus U and V are neighborhoods of x
and y, respectively, such that U NV = @. Hence, X is Hausdorff. O

6.3 Compact spaces

In Section 6.1 we saw how the intermediate value theorem might be generalized to connected spaces.
In this section we will see how the extreme value theorem may be generalized to compact spaces. The
extreme value theorem says that for a continuous map f: [a, b] — R there are points m, M € [a, b]
such that f(m) < f(x) < f(M) forall x € [a, b]. See Figure 6.3.
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f(m) =

Figure 6.3: The extreme value theorem.

Definition 6.26 (Cover of a space) Let X be a topological space, and let A be a collection
of subsets of X. We say that A is a cover of X, or covering of X if X = Uy 4A. If Alis also
openin X for each A € A, we say that A is an open cover of X, or open covering of X. We say
that A’ is a subcover of A if A’ is another cover of X that satisfies A’ € A.

Example 6.27 Let X be atopological space, and let B be a basis for the topology on X. Then
B is an open cover of X. Similarly, if § is a subbasis for the topology on X, then S is an open
cover of X.

Definition 6.28 (Compact spaces) Let X be a topological space. We say that X is compact
if every open cover A of X contains a finite subcover.

Similarly to connectedness, the property of being compact is a topological property as it is formulated
entirely in terms of the collection of open sets. In other words, if X and Y are homeomorphic topological
spaces and X is compact thensois Y.

Example 6.29 Let X be a finite topological space. Then X is compact as there are only finitely
many different open subsets A of X, and so, any collection covering X must necessarily be finite.

Example 6.30 Let X be an indiscrete space. Then X is compact as the only open covers are
the collections {X} and {@, X} which are finite.

Example 6.31 Let R be the set of real numbers equipped with the standard topology. Since
the open cover
A={(n—1,n+1)IneZ}

does not admit a finite subcover, R is not compact.



Chapter 6. Topological properties 49

Definition 6.32 (Compact subspaces) Let X be a topological space, and let A be a subset of
X. We say that A is compact if A is compact in the subspace topology.

If A is a subspace of X, a collection A of subsets of X is a cover of A if the union of elements of A
contains A.

Lemma 6.33 Let X be a topological space, and let A be a subspace of X. Then A is compact
if and only if every cover of A by open subsets of X contains a finite subcollection that covers
A.

Proof. Assume that A is compact. Let C be a cover of A by open subsets of X. Then the collection
C'={AnU|UEC}

is an open cover of A. Since A is compact there must be a finite subcover {AN U, ANU,,...,ANU,}
of C'. Hence, {U4, U,, ..., Uy, } is a finite subcollection of C that covers A.

Now assume that every cover of A by open subsets of X contains a finite subcollection that covers
A. Let C = {l4};en be a cover of A by open subsets of A. Hence, by definition of the subspace
topology, cf. Definition 5.1, we have for each A € Athat V) = A n U, where U, is an open subset
of X. Thus the collection C' = {U;},¢x is a cover of A by open subsets of X. Then, by assumption,
there must be a finite subcollection {Ull, Upys e U;Ln} that covers 4. Hence, {V,ll,V;Lz, ---'Vzn} is a
finite subcover of C. Thus every cover of A by open subsets of A has a finite subcover, and so, A4 is
compact. L]

The following two theorems indicates that being compact and being closed are closely related
properties.

[ Theorem 6.34 Let X be a compactspace, and let A be a closed subset of X. Then A is compact. ]

Proof. LetCbeacoverofA4,i.e., A S Ugce C, by open subets of X. Since Aisclosedin X, A° = X\ 4
is openin X. Thus
A =CU{A}

is an open cover of X. Since X is compact there must be a finite subcover A’ € A of X. If A’ contains
A€, let A" = A"\ {A°}. Then A" is a finite subcover of C that covers A. If A’ does not contain A€
then A’ is a finite subcover of C that covers A. Either way there is a finite subcover of C that covers
A. Thus A is compact. L]

Theorem 6.35 Let X be a Hausdorff space, and let K be a subset of X which is compact. Then
K is closed in X.

Proof. We show that K¢ = X \ K isopen in X. Let x € K€. Then for each y € K there are neighbor-
hoods U,, and V}, of x and y, respectively, such that U, N}, = @, since X is assumed to be Hausdorff
andx # y.

The collection C = {Vj, | y € K} of open subsets of X covers K since

KgUVy.

yEK
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Since K is assumed to be compact there must be a finite subcollection {;,,V},, ..., 13, } that covers
K. letV = Vy1 U Vy2 U--u I/;,n, andletU = Uy1 n Uy2 Nn--N Uyn' Then Uis openin X, x € U and
UNV = @. Furthermore, U € X\ V € X \ K = K. Hence, K€ is openin X. O

Theorem 6.36 Let X be a compact space, Y a topological space and let f: X — Y be a
surjective continuous map. Then Y is compact.

Proof. Let C = {Uj;}ea be an open cover of Y. Then A = {f ~1(U;)},en is an open cover of X. Since
X is compact there must be a finite subcover A’ = {f 1 (Uy,), f ' (Uy,), ..., f 1 (Uy, )} of A. Then
C' ={U,,, Uy,, ..., Uy, } is a finite subcover of C. Hence, Y is compact. O

The theorem can be extended to saying that the continuous image of a compact space is compact, i.e.,
assuming X is a compact space and f: X — Y is a continuous map then f(X) is compact.

We will prove that the (finite) product of compact spaces is compact. To prove this we need the
following result.

Lemma 6.37 (Tube lemma) Let X be a topological space, and let Y be a compact space.
If x € X and U is an open set in the product space X X Y containing {x} X Y, then there is a
neighborhood W of x in X such that W XY < U.

The set W X Y is often called a tube about {x} X Y. See Figure 6.4.

Y XXY

w
X X

Figure 6.4: A tube about {x} X Y.

Proof. AsUisopeninXXYand (x,y) € {x}xY < Uforally €Y, thereisa basis element W), xV}, € U
for the product topology on X XY such that (x,y) € W, XV;,. The collection {V},},.¢y is an open cover
of Y. Since Y is compact there must be a finite subcover of {V, }, ¢y, say, {Vyl' | /A Vyn}'

Let

w=[|w,

n
i
i=1
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Then W is open in X, and it must contain x. Clearly,

n
WXYEU(WinVyi)EU.
i=1

Thus{x} XY S W xYand W XY C U. O
The lemma is not true if we remove the assumption that Y is compact; the open set
U={(x,y)eRXR||xy]<1}SRXR

does contain {0} X R but does not contain any tube W X R containing {0} X R. (Here we have assumed
that R is given the standard topology, and hence, it is not compact, cf. Example 6.31.)

Theorem 6.38 Let X4, X, ..., X;, be compact spaces. Then the product space X1 X X5 XXX,
is compact.

Proof. We prove the statement for the product of two compact spaces. The general result then fol-
lows by an inductive argument.

Let X and Y be compact spaces. Let A be an open cover of X X Y. We must show that there is
a finite subcover A’ of A. For each x € X, {x} X Y is compact in X X Y as it is homeomorphicto Y
which is assumed to be compact. Thus there is a finite subcollection A, of A that covers {x} X Y.
Let Uy = Uy e, Ax- Then Uy is openin X X Y and contains {x} X Y. Thus by Lemma 6.37 for each
x € X there is a neighborhood W, € X such that x € W,,and W, XY € U,.. Furthermore, A, covers
W, XY.

Now let x € X vary. The collection {W, },cx is then an open cover of X. Since X is compact, there
must be a finite subcover {W, , W, ..., Wy} of (W, },ex. Foreach 1 < i < nthe subspace Wy, XY
is covered by the finite subcollection cﬂxi of A. Hence,

n
XxY:UWxixY
i=1

is covered by the subcollection A’ = Uj_; Ay, of A. Thus X X Y is compact. O

The theorem can be extended to hold for arbitrary products of compact spaces if we equip the product
with the product topology. This is known as Tychonoff’s theorem. It is a deep result whose proof uses several
original ideas. If we equip the product with the box topology the statement is no longer true.

We have already seen that the real line (with the standard topology) is not compact, cf. Exam-
ple 6.31. The next theorem states that all closed intervals of the real line are compact.

Theorem 6.39 Let R be the set of real numbers equipped with the standard topology. Then
every closed interval [a, b] in R is compact.

Proof. Let A = {U;},ep be a cover of [a, b] by open subsets of R, and let

S ={x € [a,b] | [a, x] is covered by a finite subcollection of A}.
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Note that S is bounded above by b. Since a € U; for some 4 € A, the singleton {U,} is a finite
subcollection of A that covers [a, a] = {a}. Hence, S is non-empty and it is bounded above. Thus S
has a least upper bound; ¢ = sup S. Clearly, a < ¢ < b.

We will show that ¢ € S. The result follows if we can also show that ¢ = b. Choose A’ € A with
c € Uyr. Since Uyr isopenin Rthereisarealnumbere > 0suchthat (c—¢,c+€) € Uyr. Hence, there
isan x € § such that c — e < x. So by definition of § there is a finite subcollection {U; , Uy,, ..., Uy }
of A such that [a, x] € Ui, Uy,. Furthermore, [x,c] € Uy. Thus [a,c] = [a,x] U [x, c] is covered
by the finite subcollection {U; , U, ..., U, , Uy} of A. Hence, ¢ € S.

We now show that ¢ = b. Assume that ¢ < b. Then there must be a y € [a, b] such that
¢ <y < c+e Thus[a,y]is covered by the subcollection {U; ,U,,, ..., Up,, Uy} of A such that
y € S. This is a contradiction of the fact that c is an upper bound. Hence, ¢ = b. L]

In order to state and prove the Heine—Borel theorem we need the following definition.

Definition 6.40 (Bounded subsets) Let (X, d) be a metric space, and let A be a subset of X.
We say that A is bounded if there isan M € R such that d(aq,a,;) < M forall aq,a, € A.

Equivalently, we may say that a subset A of a metric space (X, d) is bounded if thereisa K € R
and x € X suchthatd(a,x) < K forall a € A. In particular, this means that a subset of R" equipped
with the Euclidean metric is bounded if it is contained in some closed ball of finite radius centered at
the origin.

Theorem 6.41 (Heine—Borel) Let R" be given the (Euclidean) metric topology and the Eu-
clidean metric. A subset A of R™ is compact if and only if it is closed and bounded.

Proof. Assume that A is compact. By Theorem 6.21, R™ is Hausdorff, and so, by Theorem 6.35 A4 is
closed in R™. We must show that 4 is also bounded. Let A = {B(0;n) | n € Z,}, i.e., a collection
of open balls centered at the origin in R™. Then A is a cover of A by open subsets of R™. Since A is
compact there must be a finite subcollection of A that covers A. Thus thereisan N € Z, such that
A € B(0; N). Hence, forall a;, a, € A we have d(aq,a,) < 2N. Thus A is bounded.

Now assume that A is bounded and closed in R™. Let p = (p1, P2, ---, Pn) € A. Since A is bounded
there isan M € R such that d(a;,a,) < M forall a;,a, € A. Then A is contained in the product
space

P =[p1—M,py + M] X [p; = M,pp + M] X -+ X [pn — M, p, + M]

which by Theorem 6.39 and Theorem 6.38 is compact. Since A is closed in R™ and a subset of P, it
follows by extending Theorem 6.34 to our setting that A is compact. Specifically, let C be a cover of
A by open subsets of R™. Since A is closed in R™, A = R" \ A is open in R™. Thus

A = CU{A°}

is an open cover of R™, and thus it is also an open cover of P in the subspace topology. Since P is
compact there must be a finite subcover of A that covers P. This implies that there is a finite subcover
of C that covers A. Thus A is compact. ]

An immediate consequence of Theorem 6.41 is that S™ considered as a subspace of R**1 is com-
pact, and hence, that the torus T? = S x S is compact.
We end this section with a proof of the generalized extreme value theorem.
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Theorem 6.42 (Generalized extreme value theorem) Let X be a compact space, and let
f+ X — R be a continuous map where R is given the standard topology. Then there are
m,M € X such that

f(m) < f(x) < f(M)

forall x € X.

\. J

Proof. By Theorem 6.36, f(X) is compact. We must show that f(X) contains its supremum and its
infimum. If it does, then by setting f(m) = inf f(X) and f(M) = sup f(X) the theorem follows.
We prove that f(X) contains its supremum. The proof for the infimum is similar. Since f(X) is
compact, it is closed and bounded by Theorem 6.41. In particular, f(X) is bounded above. Hence,
the set f(X) has a least upper bound; s = sup f(X). Thusp < sforallp € f(X).
We must show that s € f(X). Assumethats & f(X). Since f(X)isclosed, i.e., f(X)¢ = R\ f(X)
is open, it follows that there is a real number € > 0 such that

(s—es+e)nf(X) =0.

Hence, there is a real number y such that y is an upper bound of f(X) ands — e < y < s. Thisisa
contradiction to the fact that s is the least upper bound of f(X). Hence, s =sup f(X) € f(X). O

6.4 Exercises

Exercise 6.1 Let X be a topological space. Show that X is connected if and only if every
continuous map from X to a discrete space consisting of at least two points is constant.

Exercise 6.2 Let X be atopological space,andletA € B C Abe subspaces of X.
(a) Show thatif A is connected then so is B.

(b) Show that [a, b), (a, b], [a, b], (—oo, b] and [a, ) are all connected spaces when con-
sidered as subspaces of R with the standard topology.

Exercise 6.3 LetX be atopological space, and consider I = [0, 1] as a subspace of R where R
is given the standard topology. Furthermore, let the cone on X be quotient space CX = XXI/~,
where ~ is the equivalence relation on the product space X X I given by (x,0) ~ (x', 0) for all
x,x' € X. Show that CX is path connected.

Exercise 6.4 Let X be a Hausdorff space, and let A be a subspace of X. Show that A is
Hausdorff.

Exercise 6.5 Let X be an infinite set with the cofinite topology.

(a) Show that X is compact.

(b) Show that any subset of X is compact.
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6.4. Exercises

Exercise 6.6 Let X be a compact space, and let Y be a Hausdorff space. Furthermore, let
f: X = Y be a continuous map.

() Show that f is a closed map.

(b) Show thatif f is a surjective continuous map, then f is a quotient map.

(c) Show thatif f a bijective continuous map, then f is a homeomorphism.

(d) Show that f is proper, i.e., for each subset K of Y that is compact the preimage f~1(K)

is compact.

Exercise 6.7 Show that the surface of the cube centered at the origin,
C ={(x,y,2) € R® | max{|x|, ||, |z[} = 1},

and the 2-sphere,
§? = {(x,y,z) € R3 | Vx2+y2 422 = 1},

are homeomorphic where they are both considered to be subspaces of R? with the standard
topology.

Exercise 6.8 Let X be a topological space, and let A;.4,, ..., 4;,, be subspaces of X each of
which is compact. Show that

is compact.
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