Trial exam

Spring 2020

1 Let $X=\{a, b, c, d\}$.
Which of the following collections of subsets of X is not a topology on X ?
Select one alternative:$\mathcal{T}=\{\varnothing,\{a\},\{a, b\},\{a, b, d\},\{a, d\},\{d\}, X\}$$\mathcal{T}=\{\varnothing,\{a\},\{a, b, c\},\{a, d\},\{b, c, d\}, X\}$$\mathcal{T}=\{\varnothing,\{b, c, d\},\{d\}, X\}$$\mathcal{T}=\{\varnothing,\{a\},\{a, b\},\{a, c, d\}, X\}$
Solution: The collection

$$
\mathcal{T}=\{\varnothing,\{a\},\{a, b, c\},\{a, d\},\{b, c, d\}, X\}
$$

is not a topology on X as T3 is not satisfied: the intersection of the open sets $\{a, b, c\}$ and $\{b, c, d\}$ is not an open set as $\{a, b, c\} \cap\{b, c, d\}=\{b, c\} \notin \mathcal{T}$. (Similarly, $\{a, d\} \cap\{b, c, d\} \notin \mathcal{T}$.)
2 Let $X=\{a, b, c, d, e\}$ and let $\mathcal{T}=\{\varnothing,\{a\},\{a, b, c\},\{b, c\}, X\}$ be a topology on X.
Which of the following statements is false?
Select one alternative:
$\square \quad$ The interior of $\{d, e\}, \operatorname{Int}(\{d, e\})$, is equal to the empty set \emptyset.
$\square \quad$ The closure of $\{e\}, \overline{\{e\}}$, is equal to $\{d, e\}$.
$\square \quad X$ is compact.
$\square \quad X$ is Hausdorff.
Solution: Since the points b and c are not separated by disjoint open sets, X is not Hausdorff. (The same argument applies to a and d, a and e, b and d, b and e, c and d, c and e, and d and e.)

3 Let X be a topological space, and let \mathcal{B} be a basis for the topology on X. Furthermore, let A be a subset of X.

Show that $x \in \bar{A}$ if and only if $B \cap A \neq \emptyset$ for every basis element $B \in \mathcal{B}$ where $x \in B$.
(Here \bar{A} denotes the closure of A.)
Solution: This is essentially the same problem as Exercise 3.6 in lecture notes. We first show that $x \notin \bar{A}$ if and only if there is no neighborhood U of x such that $U \cap A=\emptyset$.
Let $x \notin \bar{A}$. Then $x \in \bar{A}^{c}=X \backslash \bar{A}$. Since \bar{A}^{c} is open in X, \bar{A}^{c} is a neighborhood of x such that $\bar{A}^{c} \cap A=\emptyset$.

For the other implication assume that there is a neighborhood U of x such that $U \cap A=\emptyset$. Since U is open in X, U^{c} is closed in X, and $A \subseteq U^{c}$. Thus as the closure of A is the smallest closed subset of X that contains A, it follows that $\bar{A} \subset U^{c}$. Hence, $x \notin \bar{A}$.
From what we have just proved it follows that $x \notin \bar{A}$ if and only if there is a neighborhood U of x such that $U \cap A=\emptyset$. Since each basis element $B \in \mathcal{B}$ is open in X, and for each neighborhood U of x there is a basis element $B \in \mathcal{B}$ such that $x \in B \subseteq U$, we have $x \in \bar{A}$ if and only if there is a basis element $B \in \mathcal{B}$ such that $B \cap A \neq \emptyset$ and $x \in B$.

4 Let \mathbb{R} be the set of real numbers equipped with the standard topology, and consider the set of rational numbers \mathbb{Q} as a subspace of \mathbb{R}.
Show that the subset $A=\{x \in \mathbb{Q} \mid-\sqrt{5}<x<\sqrt{5}\}$ of \mathbb{Q} is both open and closed in \mathbb{Q}.
Solution: Since the open interval $(-\sqrt{5}, \sqrt{5})$ is open in \mathbb{R} and $A=(-\sqrt{5}, \sqrt{5}) \cap \mathbb{Q}$, it follows that A is open in the subspace topology on \mathbb{Q}. Similarly, since the closed interval $[-\sqrt{5}, \sqrt{5}]$ is closed in \mathbb{R} and $A=[-\sqrt{5}, \sqrt{5}] \cap \mathbb{Q}$, it follows that A is closed in the subspace topology on \mathbb{Q}.
5 Let $X=\{a, b, c, d\}$ be given the topology $\mathcal{T}_{X}=\{\varnothing,\{a\},\{a, c, d\},\{c, d\}, X\}$, and let $Y=\{1,2,3\}$ be given the topology $\mathcal{T}_{Y}=\{\emptyset,\{1\},\{1,3\}, Y\}$.
Find a basis for the product topology on $X \times Y$ expressed using bases for the topologies on X and Y, respectively.
Solution: Note that $\mathcal{B}_{X}=\{\{a\},\{c, d\}, X\}$ is a basis for \mathcal{T}_{X}, and that $\mathcal{B}_{Y}=\{\{1\},\{1,3\}, Y\}$ is a basis for \mathcal{T}_{Y}. Then by Theorem 5.8 in the lecture notes, it follows that

$$
\mathcal{B}_{X \times Y}=\left\{B_{X} \times B_{Y} \mid B_{X} \in \mathcal{B}_{X} \text { and } B_{Y} \in \mathcal{B}_{Y}\right\}
$$

is a basis for the product topology on $X \times Y$.
6 Let X be a topological space, and consider $I=[0,1]$ as a subspace of \mathbb{R} where \mathbb{R} is given the standard topology. Furthermore, let the cone on X be the quotient space $C X=X \times I / \sim$, where \sim is the equivalence relation on the product space $X \times I$ given by $(x, 0) \sim\left(x^{\prime}, 0\right)$ for all $x, x^{\prime} \in X$. Show that $C X$ is path connected.

Solution: Denote by $[x, t]$ the equivalence class of (x, t), and let v denote the vertex of $C X$, i.e., v is the point corresponding to $[X, 0]$. Then for any $x \in X$ and any $t>0$, there is a path $f: I \rightarrow X \times I$ given by

$$
f(s)=(x,(1-s) t) .
$$

In other words, f is a path in $X \times I$ from (x, t) to $(x, 0)$. Thus $\pi \circ f: I \rightarrow C X$ is a path in $C X$ from $[x, t]$ to v. Hence, $C X$ is path connected.
7 Let X be a topological space, and let $A_{1}, A_{2}, \ldots, A_{n}$ be subspaces of X each of which is compact in X.
Show that $\bigcup_{i=1}^{n} A_{i}$ is compact in X.
Solution: Let \mathcal{A} be an open cover of $\bigcup_{i=1}^{n} A_{i}$, i.e.,

$$
\bigcup_{i=1}^{n} A_{i} \subseteq \bigcup_{U \in \mathcal{A}} U
$$

We must show that \mathcal{A} has a finite subcover.
Note that $A_{i} \subseteq \bigcup_{U \in \mathcal{A}} U$ for all $i \in\{1,2, \ldots, n\}$. Hence, \mathcal{A} is an open cover of each A_{i}. Since each A_{i} is compact in X, there is a finite subcover \mathcal{A}_{i} of \mathcal{A} that covers A_{i}. Thus

$$
\bigcup_{i=1}^{n} \mathcal{A}_{i}
$$

is a finite subcover of the open cover \mathcal{A}. Hence, $\mathrm{U}_{i=1}^{n} A_{i}$ is compact in X.

8 Let X be a contractible space.
Show that X is path connected.
Solution: Let $a, b \in X$. Since X is contractible there is a homotopy $H: X \times I \rightarrow X$ such that

$$
H(x, 0)=x
$$

and

$$
H(x, 1)=c
$$

for all $x \in X$ for some fixed point $c \in X$. Then the map $\alpha: I \rightarrow X$ given by $\alpha(t)=H(a, t)$ is a path in X from $\alpha(0)=a$ to $\alpha(1)=c$. Similarly, the map $\beta: I \rightarrow X$ given $\beta(t)=H(b, t)$ is a path in X from $\beta(0)=b$ to $\beta(1)=c$. Thus a, b and c are all joined by paths. Hence, X is path connected.
9 Let B be a Hausdorff space, and let E be a topological space.
Show that if $p: E \rightarrow B$ is a covering map, then E must be Hausdorff.
Solution: Let e and e^{\prime} be two distinct points in E, i.e., $e \neq e^{\prime}$. If $p(e) \neq p\left(e^{\prime}\right)$, there are, by assumption that B is Hausdorff, disjoint open subsets U and U^{\prime} in X such that $p(e) \in U$ and $p\left(e^{\prime}\right) \in U^{\prime}$. Then $p^{-1}(U)$ and $p^{-1}\left(U^{\prime}\right)$ are disjoint neighborhoods of e and e^{\prime}, respectively.

Let U be a neighborhood of $p(e)$ that is evenly covered by p, i.e.,

$$
p^{-1}(U)=\bigsqcup_{\lambda \in \Lambda} V_{\lambda}
$$

where V_{λ} is open in E, and $\left.p\right|_{V_{\lambda}}: V_{\lambda} \rightarrow U$ is a homeomorphism for each $\lambda \in \Lambda$. If $p(e)=p\left(e^{\prime}\right)$, then there are distinct indices λ_{1} and λ_{2} in Λ such that $e \in V_{\lambda_{1}}$ and $e^{\prime} \in V_{\lambda_{2}}$.
Hence, E is Hausdorff.
10 Let n be an integer that is greater than or equal to 3 , and let $D^{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}\right.$ । $\left.\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}} \leq 1\right\}$ be considered as a subspace of \mathbb{R}^{n} where \mathbb{R}^{n} is given the standard topology.
Show that the inclusion map $i: D^{n} \backslash\{0\} \rightarrow D^{n}$ induces an isomorphism of fundamental groups. (Here 0 denotes the origin in \mathbb{R}^{n}.)
You may assume as a known fact that the m-sphere S^{m} is simply connected where S^{m} is considered as a subspace of \mathbb{R}^{m+1} and m is an integer that is greater than or equal to 2 .

Solution: Since D^{n} is contractible, and $D^{n} \backslash\{0\}$ is a deformation retract of S^{n-1} (the homotopy $H: D^{n} \backslash\{0\} \times I \rightarrow D^{n} \backslash\{0\}$ given by

$$
H(x, t)=(1-t) x+t \frac{x}{\|x\|}, \quad x=\left(x_{1}, x_{2}, \ldots, x_{n}\right), \quad\|x\|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}
$$

is a deformation retraction of $D^{n} \backslash\{0\}$ onto S^{n-1}), it follows that for any $d_{0} \in D^{n} \backslash\{0\}$, we have

$$
\pi_{1}\left(D^{n} \backslash\{0\}, d_{0}\right) \cong 0
$$

and

$$
\pi_{1}\left(D^{n}, d_{0}\right) \cong 0
$$

where 0 denotes the trivial group and where we have used the fact that S^{n-1} is simply connected. Hence, the induced homomorphism $i_{*}: \pi_{1}\left(D^{n} \backslash\{0\}, d_{0}\right) \rightarrow \pi_{1}\left(D^{n}, d_{0}\right)$ is an isomorphism for each $d_{0} \in D^{n} \backslash\{0\}$.

