Trial exam

Spring 2020

1 Let $X = \{a, b, c, d\}$.

Which of the following collections of subsets of X is *not* a topology on X? Select one alternative:

- $\Box \quad \mathcal{T} = \{\emptyset, \{b, c, d\}, \{d\}, X\}$
- $\Box \quad \mathcal{T} = \{ \emptyset, \{a\}, \{a, b\}, \{a, b, d\}, \{a, d\}, \{d\}, X \}$
- $\Box \quad \mathcal{T} = \{ \emptyset, \{a\}, \{a, b, c\}, \{a, d\}, \{b, c, d\}, X \}$
- $\Box \quad \mathcal{T} = \{\emptyset, \{a\}, \{a, b\}, \{a, c, d\}, X\}$

Solution: The collection

$$\mathcal{T} = \{\emptyset, \{a\}, \{a, b, c\}, \{a, d\}, \{b, c, d\}, X\}$$

is *not* a topology on X as T2 is not satisfied: the intersection of the open sets $\{a, b, c\}$ and $\{b, c, d\}$ is not an open set as $\{a, b, c\} \cap \{b, c, d\} = \{b, c\} \notin \mathcal{T}$. (Similarly, $\{a, d\} \cap \{b, c, d\} \notin \mathcal{T}$.)

2 Let $X = \{a, b, c, d, e\}$ and let $\mathcal{T} = \{\emptyset, \{a\}, \{a, b, c\}, \{b, c\}, X\}$ be a topology on X.

Which of the following statements is false?

Select one alternative:

- The closure of $\{e\}$, $\overline{\{e\}}$, is equal to $\{d, e\}$.
- The interior of $\{d, e\}$, $Int(\{d, e\})$, is equal to the empty set \emptyset .
- \Box X is Hausdorff.
- \Box X is compact.

Solution: Since the points *b* and *c* are not separated by disjoint open sets, *X* is *not* Hausdorff. (The same argument applies to *b* and *d*, *b* and *e*, *c* and *d*, *c* and *e*, and *d* and *e*.)

3 Let *X* be a topological space, and let \mathcal{B} be a basis for the topology on *X*. Furthermore, let *A* be a subset of *X*.

Show that $x \in \overline{A}$ if and only if $B \cap A \neq \emptyset$ for every basis element $B \in \mathcal{B}$ where $x \in B$.

(Here \overline{A} denotes the closure of A.)

Solution: This is essentially the same problem as Exercise 3.6 in lecture notes. We first show that $x \notin \overline{A}$ if and only if there is no neighborhood U of x such that $U \cap A = \emptyset$.

Let $x \notin \overline{A}$. Then $x \in \overline{A}^c = X \setminus \overline{A}$. Since \overline{A}^c is open in X, \overline{A}^c is a neighborhood of x such that $\overline{A}^c \cap A = \emptyset$.

For the other implication assume that there is a neighborhood U of x such that $U \cap A = \emptyset$. Since U is open in X, U^c is closed in X, and $A \subseteq U^c$. Thus as the closure of A is the smallest closed subset of X that contains A, it follows that $\overline{A} \subset U^c$. Hence, $x \notin \overline{A}$.

From what we have just proved it follows that $x \in \overline{A}$ if and only if there is a neighborhood U of x such that $U \cap A \neq \emptyset$. Since each basis element $B \in \mathcal{B}$ is open in X, and for each neighborhood U of x there is a basis element $B \in \mathcal{B}$ such that $x \in \mathcal{B} \subseteq U$, we have $x \in \overline{A}$ if and only if there is a basis element $B \in \mathcal{B}$ such that $x \in \mathcal{B} \subseteq U$, we have $x \in \overline{A}$ if and only if there is a basis element $B \in \mathcal{B}$ such that $X \in \mathcal{B}$.

<u>4</u> Let \mathbb{R} be the set of real numbers equipped with the standard topology, and consider the set of rational numbers \mathbb{Q} as a subspace of \mathbb{R} .

Show that the subset $A = \{x \in \mathbb{Q} \mid -\sqrt{5} < x < \sqrt{5}\}$ of \mathbb{Q} is both open and closed in \mathbb{Q} .

Solution: Since the open interval $(-\sqrt{5}, \sqrt{5})$ is open in \mathbb{R} and $A = (-\sqrt{5}, \sqrt{5}) \cap \mathbb{Q}$, it follows that A is open in the subspace topology on \mathbb{Q} . Similarly, since the closed interval $[-\sqrt{5}, \sqrt{5}]$ is closed in \mathbb{R} and $A = [-\sqrt{5}, \sqrt{5}] \cap \mathbb{Q}$, it follows that A is closed in the subspace topology on \mathbb{Q} .

Let $X = \{a, b, c, d\}$ be given the topology $\mathcal{T}_X = \{\emptyset, \{a\}, \{a, c, d\}, \{c, d\}, X\}$, and let $Y = \{1, 2, 3\}$ be given the topology $\mathcal{T}_Y = \{\emptyset, \{1\}, \{1, 3\}, Y\}$.

Find a basis for the product topology on $X \times Y$ expressed using bases for the topologies on X and Y, respectively.

Solution: Note that $\mathcal{B}_X = \{\{a\}, \{c, d\}, X\}$ is a basis for \mathcal{T}_X , and that $\mathcal{B}_Y = \{\{1\}, \{1, 3\}, Y\}$ is a basis for \mathcal{T}_Y . Then by Theorem 5.8 in the lecture notes, it follows that

$$\mathcal{B}_{X \times Y} = \{B_X \times B_Y \mid B_X \in \mathcal{B}_X \text{ and } B_Y \in \mathcal{B}_Y\}$$

is a basis for the product topology on $X \times Y$.

6 Let X be a topological space, and consider I = [0, 1] as a subspace of \mathbb{R} where \mathbb{R} is given the standard topology. Furthermore, let the *cone on* X be the quotient space $CX = X \times I/\sim$, where \sim is the equivalence relation on the product space $X \times I$ given by $(x, 0) \sim (x', 0)$ for all $x, x' \in X$.

Show that *CX* is path connected.

Solution: Denote by [x, t] the equivalence class of (x, t), and let v denote the vertex of CX, i.e., v is the point corresponding to [X, 0]. Then for any $x \in X$ and any t > 0, there is a path $f : I \to X \times I$ given by

$$f(s) = (x, (1-s)t).$$

In other words, f is a path in $X \times I$ from (x, t) to (x, 0). Thus $\pi \circ f \colon I \to CX$ is a path in CX from [x, t] to v. Hence, CX is path connected.

T Let X be a topological space, and let $A_1, A_2, ..., A_n$ be subspaces of X each of which is compact in X.

Show that $\bigcup_{i=1}^{n} A_i$ is compact in *X*.

Solution: Let \mathcal{A} be an open cover of $\bigcup_{i=1}^{n} A_i$, i.e.,

$$\bigcup_{i=1}^{n} A_i \subseteq \bigcup_{U \in \mathcal{A}} U.$$

We must show that $\mathcal A$ has a finite subcover.

Note that $A_i \subseteq \bigcup_{U \in \mathcal{A}} U$ for all $i \in \{1, 2, ..., n\}$. Hence, \mathcal{A} is an open cover of each A_i . Since each A_i is compact in X, there is a finite subcover \mathcal{A}_i of \mathcal{A} that covers A_i . Thus

$$\bigcup_{i=1}^n \mathcal{A}_i$$

is a finite subcover of the open cover \mathcal{A} . Hence, $\bigcup_{i=1}^{n} A_i$ is compact in X.

8 Let *X* be a contractible space.

Show that *X* is path connected.

Solution: Let $a, b \in X$. Since X is contractible there is a homotopy $H: X \times I \to X$ such that

$$H(x,0) = x$$

and

$$H(x,1) = c$$

for all $x \in X$ for some fixed point $c \in X$. Then the map $\alpha \colon I \to X$ given by $\alpha(t) = H(a, t)$ is a path in X from $\alpha(0) = a$ to $\alpha(1) = c$. Similarly, the map $\beta \colon I \to X$ given $\beta(t) = H(b, t)$ is a path in Xfrom $\beta(0) = b$ to $\beta(1) = c$. Thus a, b and c are all joined by paths. Hence, X is path connected.

9 Let B be a Hausdorff space, and let E be a topological space.

Show that if $p: E \rightarrow B$ is a covering map, then *E* must be Hausdorff.

Solution: Let e and e' be two distinct points in E, i.e., $e \neq e'$. If $p(e) \neq p(e')$, there are, by assumption that B is Hausdorff, disjoint open subsets U and U' in X such that $p(e) \in U$ and $p(e') \in U'$. Then $p^{-1}(U)$ and $p^{-1}(U')$ are disjoint neighborhoods of e and e', respectively.

Let U be a neighborhood of p(e) that is evenly covered by p, i.e.,

$$p^{-1}(U) = \bigsqcup_{\lambda \in \Lambda} V_{\lambda}$$

where V_{λ} is open in E, and $p|_{V_{\lambda}} \colon V_{\lambda} \to U$ is a homeomorphism for each $\lambda \in \Lambda$. If p(e) = p(e'), then there are distinct indices λ_1 and λ_2 in Λ such that $e \in V_{\lambda_1}$ and $e' \in V_{\lambda_2}$.

Hence, E is Hausdorff.

10 Let *n* be an integer that is greater than or equal to 3, and let $D^n = \{(x_1, x_2, ..., x_n) \in \mathbb{R}^n \mid \sqrt{x_1^2 + x_2^2 + \cdots + x_n^2} \le 1\}$ be considered as a subspace of \mathbb{R}^n where \mathbb{R}^n is given the standard topology.

Show that the inclusion map $i: D^n \setminus \{0\} \to D^n$ induces an isomorphism of fundamental groups. (Here 0 denotes the origin in \mathbb{R}^n .)

You may assume as a known fact that the *m*-sphere S^m is simply connected where S^m is considered as a subspace of \mathbb{R}^{m+1} and *m* is an integer that is greater than or equal to 2.

Solution: Since D^n is contractible, and $D^n \setminus \{0\}$ is a deformation retract of S^{n-1} (the homotopy $H: D^n \times I \to D^n$ given by

$$H(x,t) = tx + (1-t)\frac{x}{\|x\|}, \qquad x = (x_1, x_2, \dots, x_n), \quad \|x\| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2},$$

is a deformation retraction of D^n onto S^{n-1}), it follows that for any $d_0 \in D^n \setminus \{0\}$, we have

$$\pi_1(D^n \setminus \{0\}, d_0) \cong 0$$

and

$$\pi_1(D^n, d_0) \cong 0$$

where 0 denotes the trivial group and where we have used the fact that S^{n-1} is simply connected. Hence, the induced homomorphism $i_* : \pi_1(D^n \setminus \{0\}, d_0) \to \pi_1(D^n, d_0)$ is an isomorphism for each $d_0 \in D^n \setminus \{0\}$.