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Instructions. In the problems below, the term di¤erentiable (or smooth) map
or manifold means C1-di¤erentiable.

Problem 1
a) Consider the cone

C = f(x; y; z) 2 R3;x2 + y2 = z2g

with the topology induced as a subset from R3. Is C a topological manifold ?
Explain.
Solution C is a "double" cone in 3-space, with the common top point at

origin. The surface C is the union of the two cones z = �
p
x2 + y2 , and it

is a connected topological space. However, if we remove the origin point, the
two cones will be disconnected. That is, C � f0g splits into the disjoint union
of the upper surface with z > 0 and the lower surface with z < 0, so C � f0g
is disconnected (as a topological space with the subspace topology from R3.)
On the other hand, a topological manifold is locally Euclidean, and clearly you
cannot make a connected 2-dimensional manifold disconnected by just removing
one point, not even locally. For example, if C was a manifold, there would be an
open nbd in C around the origin which is homeomorphic to an open 2-disk, say.
But removal of a point from this disk does not make it disconnected. Therefore,
C is not a topological manifold.
.

b) Show that the function ' : R2 ! R2 given by

' : (x; y)! (xey + y; xey � y)

is a di¤eomorphism.
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Solution The simplest way is to calculate explicitly the inverse of '. Set

u = xey + y, v = xey � y

and solve for x and y in terms of u and v. We �nd �rst y and then x, namely

x =
(u+ v)

2
e
v�u
2 , y =

(u� v)
2

Clearly, '�1 is smooth, so ' is a di¤eomorphism.
.
Problem 2

a) Let M be a topological manifold. Explain brie�y what is a smooth
structure on M , and what is a smooth map f :M !M:
Solution A smooth structure determines what continuous functions f :

M ! R can be called "smooth". Formally, the smooth structure is uniquely de-
termined by a maximal smooth atlas A. An atlas A0 consists of charts ('�; U�),
so that the union of the open sets U� cover M and '� : Ua ! �U� is a homeo-
morphism onto an open subset of Rn (n is the dimension of M). A0 is said to
be smooth if all the transision functions for overlapping charts,

'�� = '� � '�1� : '�(U� \ U�)! '�(U� \ U�)

(which are clearly homeomorphisms between open sets in 6 Rn) are di¤eomor-
phisms. An atlas is maximal if whenever ('
 ; U
) is any chart on M which has
smooth transitions (in the above sense) with all the charts in the atlas, the chart
already belongs to the atlas. We note that a smooth atlas A0 onM is contained
in a unique maximal smooth atlas A, so that A0 determines a unique smooth
structure on M .
The map f :M !M is said to be smooth if, loosely speaking, it is a smooth

function when it is expressed in local coordinates. Namely, for any chosen atlas
A0 � A and chosen two charts ('�; U�), ('� ; U�) belonging to A0 and such
that f�1(U�) \ U� 6= ?, the composition

�f�� = '� � f � '�1� : '�(f
�1(U�) \ U�)! '�(U�) = �U�

is a smooth map (as a function between open sets in 6 Rn).
.
b) Consider the homeomorphism ' : R!R de�ned by '(x) = x5. Let

A denote the standard smooth structure of R and let B denote the smooth
structure containing the chart (R; '). Show that A is di¤erent from B.
Solution A is de�ned by the atlas containing just the identity map Id :

R! R , as a globally de�ned chart. Similarly, ' : R!R is a chart belonging
to B. However, their transition function

Id � '�1 : R!R, x! 5
p
x

is not a di¤eomorphism, since it is not even di¤erentiable at x = 0:
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.
c) Let f : R!R be any function. Describe the property f must have

in order to be a smooth map f : R ! ~R, where ~R denotes the real line R with
the smooth structure B. Find a map f which is a di¤eomorphism between R
and ~R?
Solution : As above, for R we use the atlas consisting of the chart (Id;R)

and for ~R we use the atlas consisting of the chart ' : R!R. Thus the local
expression for f will be

�f = ' � f � Id�1 : x! f(x)5

Therefore, f : R! ~R is smooth if and only if x! f(x)5 is a smooth function
on R.
Now, choose f to be '�1, that is, f(x) = 5

p
x:Then the local expression of

f becomes �f(x) = x, so �f is the identity map on R and hence it is smooth.
Therefore, f is smooth. On the other hand, the inverse f�1 has the same local
expression as f , namely equal to the identity on R, so f�1 : ~R! R is also
smooth. Thus we conclude that f is a di¤eomorphism.

.
Problem 3

Consider the maps

 : 
 ! R3,  (u; v) = (u; 1� cos v; sin v)
� : �! R2, �(x; y; z) = (x; arccos(1� y))

where 
 = f(u; v) 2 R2; 0 < v < �) and � = f(x; y; z) 2 R3; 0 < y < 2g:

a) Show that the Jacobi matrix Dp at each point p = (u; v) belongs
to the matrix space

O(3; 2) = fA 2 R3�2;ATA = Ig

where R3�2 denotes the set of 3 � 2-matrices. Use this property of  to show
that the tangent map at p

 � : R2 = Tp
! T (p)R3 = R3

preserves the Euclidean inner product of tangent vectors, that is,

h �(a);  �(b)i = ha;bi

Solution The Jacobi matrix is

D =

0@ 1 0
0 sin v
0 cos v

1A
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and

(D )TD =

�
1 0 0
0 sin v cos v

�0@ 1 0
0 sin v
0 cos v

1A =

�
1 0
0 1

�
so D belongs to O(3; 2):
The tangent spaces of 
 � R2 and R3 at any point are naturally identi�ed

with R2 and R3 respectively, and thus the usual inner product (dot product) on
R2 and R3 becomes an inner product on the tangent spaces. With respect to
the standard bases, the matrix of  � is precisely the matrix D . Moreover, if

vectors in R2 and R3 are represented as column matrices, e.g., a =
�
a1
a2

�
and

ha;bi = aTb = a1b1 + a2b2, then

 �(a) = (D )a =(D )

�
a1
a2

�
and

h �(a);  �(b)i = h(D )a; (D )bi = ((D )a)T (D )b
= aT (D )T (D )b = aTb = ha;bi

.

b) Show that  is an injective immersion. Moreover, show that the
image surface M =  (
) is a submanifold of R3 which is di¤eomorphic to 
.
(Hint: Consider the restriction �jM of the above map �:)
Solution For  to be an immersion, it must have rank 2 at each point. But

the rank of  is the rank of the matrix D , which is always equal to 2.
To show that  is also globally injective, assume  (u1; v1) =  (u2; v2).

Clearly, u1 = u2, but also cos v1 = cos v2: Since we assume v lies in the interval
(0; �), where cos v is strictly decreasing, it follows that v1 = v2: We conclude
that  is injective.
The image of  is the surface M =  (
) in R3. We give M the induced

topology from R3, so we know from the above that

 : 
!M

is a continuous and bijective map. In order to establish that the map is also a
di¤eomorphism, we must ensure the following:

(i)  �1 :M ! 
 is continuous, (ii) M is a smooth manifold, and

(iii)  �1 :M ! 
 is smooth

In fact, a homeomorphism which is smooth is also a di¤eomorphism, by the
inverse function theorem, which guarantees that the inverse will necessarily be
smooth.
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It is perhaps surprising that the properties (ii) and (iii) follow from property
(i). In fact, (i) says that the above map 
!M is a homeomorphism. Then it
will follow from the de�nition of "immersion" and "submanifold" that M has
the structure of a submanifold of R3 and, moreover, the map 
 ! M will be
smooth because 
! R3 is smooth and M � R3 is a submanifold.
So, the student need only verify that  �1 : M ! 
 is continuous � this

is the essense of the question asked. Now, a simple calculation shows that the
composition � �  is the indentity map. In particular,  �1 is the restriction of
� to M . But � is a smooth map on an open set containing M , so clearly the
restriction �jM is continuous.
.

c) As submanifolds of Euclidean spaces 
 and M have induced metric
structures. We claim that the map  : 
 ! M is also an isometry. This is a
consequence of any one of the following two equivalent statements:

(i) The length of any smooth curve in 
 is equal to the length of
its image curve in M .

(ii) Along M the coordinates x; y; z in R3 are functions of u and v.
The following identity holds :

du2 + dv2 = (dx2 + dy2 + dz2)jM :

Choose either (i) or (ii) and prove the statement.
Solution (i) We show that the length of a smoothly parametrized curve

t! 
(t) in 
, t 2 [a; b], will be mapped to a curve  � 
 on M having the same
length. The velocity of the curve at p = 
(t) is the tangent vector 
0(t) = d

dt
(t)
in the tangent plane Tp
 = R2, and the length L of a curve is obtained by
integrating the speed, hence

L(
) =

bZ
a

p
h
0(t); 
0(t)idt =

bZ
a

p
h �(
0(t));  �(
0(t))idt

=

bZ
a

p
h( � 
)0(t)); ( � 
)0(t))idt = L( � 
)

(ii) The Euclidean metric on R2, with (u; v) regarded as coordinates with
respect to an orthonormal basis, can be expressed by the equation

ds2 = du2 + dv2

where ds is the arc-length element. The expression represents the Riemannian
metric in terms of the coordinates (u; v). Similarly, in Euclidean 3-space with
coordinates (x; y; z) with respect to an orthonormal basis, the (Riemannian)
metric expresses as

ds2 = dx2 + dy2 + dz2

Then there will be induced a (Riemannian) metric on any submanifold of R3.
Let us calculate the induced metric on M , in terms of the coordinates (u; v)

5



on M de�ned by the global chart ( �1;M). To do this, regard the coordinates
x; y; z restricted to M as functions of u and v and calculate their di¤erential :

dx = du; dy = sin vdv; dz = cos vdv

Then dx2 = du2; dy2 = sin2 vdv2; dz2 = cos2 vdv2, and their sum equals du2 +
dv2:This proves the statement (ii).
.
Remark The above map  : 
 ! R3 is a rigid map which provides an

example of an origami, the Japanese art of folding paper. Namely, 
 represents
a thin sheet of paper which is immersed into 3-space according to the map
 . The paper is rigid in the tangential directions, and it cannot be stretched,
compressed, or sheared. The paper is allowed to be folded, but then  would
not be smooth along the folding curve, although still continuous. In our case the
paper sheet is rolled up to a sylinder perpendicular to the yz-plane direction. For
the interesting reader, we refer to a recent article on origami with many pictures
: "Origami and Partial Di¤erential Equations", in Notices of the Amer. Math.
Society, May 2010.
.
Problem 4
In homogeneous coordinates, a point in the projective plane is represented

by a nonzero triple [x1; x2; x3], with at least one xi 6= 0, together with the rule
that [x1; x2; x3] = [kx1; kx2; kx3] whenever k 6= 0. The topology of P 2 is the
quotient topology of R3�f0g (or S2) via the map � : (x1; x2; x3)! [x1; x2; x3].
We cover P 2 with the open sets

Ui = f[x1; x2; x3];xi 6= 0g, i = 1; 2; 3:

Show that P 2 is a 2-dimensional smooth manifold by constructing chart func-
tions 'i : Ui ! R2 so that f('i; Ui); i = 1; 2; 3g is a smooth atlas. Is P 2

compact?

Solution Consider the projection map � :

S2 � R3 � f0g ! P 2

P 2 has the quotient topology from R3�f0g. For any point [x1; x2; x3] in P 2 one
can, after muliplying the x0is with some number k, assume that x

2
1+x

2
2+x

2
3 = 1:

Therefore, P 2 is also the image of S2:In fact, precisely the two antipodal points
(x1; x2; x3) and (�x1;�x2;�x3) on S2 are mapped to the same point [x1; x2; x3].

S2 is both a Hausdor¤ and compact space, and being the image of a compact
space via a continuous map, P 2 is also compact. It is also easy to see that P 2 is
Hausdor¤, by considering the map S2 ! P 2, but we shall not pay any attention
to this.
Finally, we turn to the construction of a smooth atlas f('i; Ui); i = 1; 2; 3g

on P 2. We de�ne the chart '3 as follows:

'3 : [x1; x2; x3] = [
x1
x3
;
x2
x3
; 1]! (

x1
x3
;
x2
x3
):
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Clearly it is a bijective map U3 ! R2, and we claim it is a homeomorphism.
Observe that the open set ��1(U3) of S2 consists of all (x1; x2; x3) with x3 6= 0,
which is union of the upper hemisphere (x3 > 0) and the lower hemisphere
(x3 < 0), and � maps each hemisphere homeomorphically to U3. We see that
the composition '3 �� is a homeomorphism (x1; x2; x3)! (x1x3 ;

x2
x3
) from each of

the hemispheres to R2. In particular, '3 is a homeomorphism. The charts '1
and '2 are de�ned similarly to '3, and they are seen to be homeomorphisms
by similar reasoning.
It remains to show that all the transition functions 'i � '�1j are smooth

(on their domain of de�nition). Since all cases are similar, let us choose the
following :

'2 � '�11 : (x; y)! [1; x; y] = [
1

x
; 1;

y

x
]! (

1

x
;
y

x
)

which is a di¤eomorphism of the set f(x; y) 2 R2;x 6= 0g to itself.
.
Problem 5
Let M be a 2-dimensional connected smooth manifold and

f :M ! R

a smooth map which is surjective and has no critical points. Assume also f is
proper, that is, the inverse image of a compact set is compact. Use Ehresmann�s
�bration theorem to show thatM is a product F�B (modulo a di¤eomorphism)
of two manifolds. What manifolds are F and B?
Solution Since f has no critical points, it has rank 1 everywhere, so it is a

submersion. According to Ehresmann�s theorem f : M ! R is the projection
of a locally trivial �bration (or �ber bundle). We indicate this as follows

F !M ! R

where F is the �ber, that is, the f�1(p) ' F for all points p in R. Namely, all
�bers are di¤eomorphic to the same manifold F:
What can F be ? Since p is a regular value for f , the �ber is a 1-dimensional

submanifold of M , and it is compact since f is proper. Therefore F must be a
disjoint union of circles, say F = S11[S12[:::[S1k. On the other hand, because of
the special simple topology of R (it is contractible) all �ber bundles (including
vector bundles) over R must, in fact, be trivial. That is, the �ber bundle is a
product bundle, so that M ' F� R. But we know that M is connected, and
the product space cannot be connected unless k = 1, hence M ' S1� R.
.
Note The student was not expected to be able to show that the above �-

bration is trivial. In fact, this is just the statement of Lemma 9.5.7 in Dundas,
with n = 1. The general theory of �ber bundles belongs to algebraic topology.
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