Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

Side 1 av 3

Contact during the exam: Eldar Straume. Phone: 99410389

Exam in TMA4190 Manifolds

English Wednesday June 2, 2010 Time: 09.00-13.00

Permitted aids : Code D Grades: June 23, 2010

Instructions. In the problems below, the term differentiable (or smooth) map or manifold means C^{∞} -differentiable.

Problem 1

a) Consider the cone

$$C = \{(x, y, z) \in \mathbb{R}^3; x^2 + y^2 = z^2\}$$

with the topology induced as a subset from \mathbb{R}^3 . Is C a topological manifold ? Explain.

b) Show that the function $\varphi: \mathbb{R}^2 \to \mathbb{R}^2$ given by

$$\varphi:(x,y)\to(xe^y+y,xe^y-y)$$

is a diffeomorphism.

Problem 2

- a) Let M be a topological manifold. Explain briefly what is a smooth structure on M, and what is a smooth map $f: M \to M$.
- b) Consider the homeomorphism $\varphi : \mathbb{R} \to \mathbb{R}$ defined by $\varphi(x) = x^5$. Let \mathcal{A} denote the standard smooth structure of \mathbb{R} and let \mathcal{B} denote the smooth structure containing the chart (\mathbb{R}, φ) . Show that \mathcal{A} is different from \mathcal{B} .
- c) Let $f: \mathbb{R} \to \mathbb{R}$ be any function. Describe the property f must have in order to be a smooth map $f: \mathbb{R} \to \tilde{\mathbb{R}}$, where $\tilde{\mathbb{R}}$ denotes the real line \mathbb{R} with the smooth structure \mathcal{B} . Find a map f which is a diffeomorphism between \mathbb{R} and $\tilde{\mathbb{R}}$?

Problem 3

Consider the maps

$$\psi: \Omega \to \mathbb{R}^3, \quad \psi(u, v) = (u, 1 - \cos v, \sin v)$$

 $\eta: \Delta \to \mathbb{R}^2, \quad \eta(x, y, z) = (x, \arccos(1 - y))$

where
$$\Omega = \{(u, v) \in \mathbb{R}^2; 0 < v < \pi\}$$
 and $\Delta = \{(x, y, z) \in \mathbb{R}^3; 0 < y < 2\}$.

a) Show that the Jacobi matrix $D_p\psi$ at each point p=(u,v) belongs to the matrix space

$$O(3,2) = \{A \in \mathbb{R}^{3 \times 2}; A^T A = I\}$$

where $\mathbb{R}^{3\times 2}$ denotes the set of 3×2 -matrices. Use this property of ψ to show that the tangent map at p

$$\psi_*: \mathbb{R}^2 = T_p\Omega \to T_{\psi(p)}\mathbb{R}^3 = \mathbb{R}^3$$

preserves the Euclidean inner product of tangent vectors, that is,

$$\langle \psi_*(\mathbf{a}), \psi_*(\mathbf{b}) \rangle = \langle \mathbf{a}, \mathbf{b} \rangle$$

- b) Show that ψ is an injective immersion. Moreover, show that the image surface $M=\psi(\Omega)$ is a submanifold of \mathbb{R}^3 which is diffeomorphic to Ω . (Hint: Consider the restriction $\eta|_M$ of the above map η .)
- c) As submanifolds of Euclidean spaces Ω and M have induced metric structures. We claim that the map $\psi:\Omega\to M$ is also an isometry. This is a consequence of any one of the following two equivalent statements:
- (i) The length of any smooth curve in Ω is equal to the length of its image curve in M.
- (ii) Along M the coordinates x, y, z in \mathbb{R}^3 are functions of u and v. The following identity holds:

$$du^{2} + dv^{2} = (dx^{2} + dy^{2} + dz^{2})|_{M}.$$

Choose either (i) or (ii) and prove the statement.

Problem 4

In homogeneous coordinates, a point in the projective plane is represented by a nonzero triple $[x_1,x_2,x_3]$, with at least one $x_i\neq 0$, together with the rule that $[x_1,x_2,x_3]=[kx_1,kx_2,kx_3]$ whenever $k\neq 0$. The topology of P^2 is the quotient topology of $\mathbb{R}^3-\{0\}$ (or S^2) via the map $\pi:(x_1,x_2,x_3)\to [x_1,x_2,x_3]$. We cover P^2 with the open sets

$$U_i = \{[x_1, x_2, x_3]; x_i \neq 0\}, i = 1, 2, 3.$$

Show that P^2 is a 2-dimensional smooth manifold by constructing chart functions $\varphi_i:U_i\to\mathbb{R}^2$ so that $\{(\varphi_i,U_i),i=1,2,3\}$ is a smooth atlas. Is P^2 compact?

Problem 5

Let M be a 2-dimensional connected smooth manifold and

$f:M\to\mathbb{R}$

a smooth map which is surjective and has no critical points. Assume also f is proper, that is, the inverse image of a compact set is compact. Use Ehresmann's fibration theorem to show that M is a product $F \times B$ (modulo a diffeomorphism) of two manifolds. What manifolds are F and B?