©NTNU

Norwegian University of
Science and Technology

Department of Mathematical Sciences

Examination paper for TMA4185 Coding theory

Academic contact during examination: Kristian Gjøsteen
Phone: 73550242

Examination date: May 15, 2017
Examination time (from-to): 09:00-13:00
Permitted examination support material: All printed and hand-written support material is allowed. A specific basic calculator is allowed.

Other information:

Language: English
Number of pages: 2
Number of pages enclosed: 0

Checked by:

```
Informasjon om trykking av eksamensoppgave
Originalen er:
1-sidig \(\boxtimes\) 2-sidig sort/hvit \(\boxtimes \quad\) farger \(\square\) skal ha flervalgskjema
```

Problem 1 Consider the linear code over \mathbb{F}_{3} defined by the parity check matrix

$$
H=\left[\begin{array}{lll}
0 & 1 & 2 \\
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 2 & 2 \\
1 & 1 & 0
\end{array}\right]
$$

a) Find a generator matrix for the code. What is the code's dimension? How many code words are there in the code?
b) What is the code's minimum distance d ? How many errors can the code correct? How many errors can the code detect?
c) You have received $\vec{y}=(1,2,0,0,2,1)$. If there are at most $(d-1) / 2$ errors, what is the error vector?
d) Let $\hat{\mathcal{C}}$ be the code \mathcal{C} extended by adding a parity check symbol ensuring that for every code word the sum of its coordinates is zero (it is even-like):

$$
\hat{\mathcal{C}}=\left\{\left(c_{1}, c_{2}, \ldots, c_{7}\right) \in \mathbb{F}_{3}^{7} \mid\left(c_{1}, c_{2}, \ldots, c_{6}\right) \in \mathcal{C} \wedge \sum_{i=1}^{7} c_{i}=0\right\} .
$$

Give a generator matrix and a parity check matrix for $\hat{\mathcal{C}}$. What is the dimension of $\hat{\mathcal{C}}$?
What is the minimum distance of $\hat{\mathcal{C}}$.

Problem 2 Let \mathcal{C} be a linear code over the field \mathbb{F}_{q}, and consider the first coordinate of the code words. Prove that either every code word has 0 in its first coordinate, or exactly $1 / q$ of all code words have 0 in their first coordinate.

Problem 3 Let $\omega \in \mathbb{F}_{4}$ have the property that $\omega^{2}=\omega+1$. Consider the convolutional code over \mathbb{F}_{4} given by $G=\left(\begin{array}{lll}x+1 & x^{2}+x+\omega\end{array}\right)$.

Encode the message $0,1, \omega, \omega+1,0,1, \omega, \omega+1,0,0,0,0$.

Problem $4 \quad$ Let $\beta \in \mathbb{F}_{16}$ satisfy $\beta^{4}=\beta+1$. Let \mathcal{C} be the Reed-Solomon code of length 15 with the twelve zeros $\{1,2,3, \ldots, 12\}$ and generator polynomial

$$
\begin{aligned}
g(x)=\beta^{3} & +\left(\beta^{3}+\beta^{2}+1\right) x+\left(\beta^{3}+\beta^{2}\right) x^{2}+\beta^{2} x^{3}+\left(\beta^{3}+1\right) x^{4} \\
& +\left(\beta^{3}+\beta^{2}+1\right) x^{5}+\beta^{2} x^{6}+x^{7}+\beta^{3} x^{8}+\left(\beta^{2}+1\right) x^{9} \\
& +\left(\beta^{3}+1\right) x^{10}+\left(\beta^{2}+1\right) x^{11}+x^{12} .
\end{aligned}
$$

a) How many errors can the code correct? How many erasures can the code correct? What is the dimension of the code?
Can you find a linear code of the same length with the same minimum distance over the same field, but with higher dimension?
b) A message has been encoded as $m(x) g(x)$. You receive

$$
y(x)=\beta^{3}+\left(\beta^{3}+\beta^{2}+\beta\right) x+\left(\beta^{3}+\beta^{2}+1\right) x^{2}
$$

where all the other coefficients have been erased. Recover the encoded message $m(x)$.

Problem 5 In this problem we will consider cyclic codes of length 9 over \mathbb{F}_{2}. It may be useful to know that 9 divides $2^{6}-1$, that $x^{6}+x^{3}+1$ is irreducible over \mathbb{F}_{2} and that there is an element α in \mathbb{F}_{64} with order 9 satisfying $\alpha^{6}=\alpha^{3}+1$.
a) Describe all such cyclic codes. For each code, give a generating polynomial and determine the minimum distance.
b) Consider the code with generating polynomial $g(x)=x^{6}+x^{3}+1$. Suppose you received

$$
y(x)=x^{8}+x^{6}+x^{5}+x^{3}+x^{2}+x+1
$$

and there is exactly one error. Find the location of the error and the correct code word.

