Contakt during exam:
Aslak Bakke Buan 735502 89/73 593520

EXAM IN TMA4185 CODING THEORY
 English

Monday May 23, 2005
Time: 0900-1400

Permitted aids:
approved calculator
all printed or written aids

The grades are posted in week 24 .
All answers should be explained.
K denotes the field with two elements $\{0,1\}$.

Problem 1

Let C be the linear binary Hamming-code given by the parity check matrix

$$
H=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

a) Find a generator matrix for the code. Find the minimum distance of the code.

Given an arbitrary linear binary code D of length n, we define $D(1)$ to be the code of length $n-1$, where the codewords in $D(1)$ are obtained by taking all codewords in D with 0 in the last position, and then deleting the last position. That is :
$D(1)=\left\{\underline{a}=\left(a_{1}, a_{2}, \ldots, a_{n-2}, a_{n-1}\right) \in K^{n-1} \mid\left(a_{1}, a_{2}, \ldots, a_{n-2}, a_{n-1}, 0\right) \in D\right\}$.
b) Show that $D(1)$ is a linear code.
c) Let C be the code in part a). Find a generator-matrix for $C(1)$. What is the minimum distance of $C(1)$?
d) Decode the received word $\underline{v}=(1,1,0,0,1,1)$, given that the code $C(1)$ is used.

Now let C be any Hamming-code.
e) Use the decoding-algorithm for Hamming-codes, to describe a decoding algorithm for $C(1)$

Now let C be an arbitrary Hamming-code with dimension k, length n and minimum-distance $d=3$. Let $C^{\prime}=C(1)$, og define a code $C^{\prime \prime}$ of length n as follows: Let the codewords in $C^{\prime \prime}$ be obtained by adding a parity bit to the codewords in C^{\prime}. That is: $\underline{a}=\left(a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}\right)$ is in $C^{\prime \prime}$ if and only if $\left(a_{1}, a_{2}, \ldots, a_{n-2}, a_{n-1}\right)$ is in C^{\prime} and $w t(\underline{a})$ is an even number.
f) Show that $C^{\prime \prime}$ is a linear code, and that the minimum-distance of $C^{\prime \prime}$ is 4 .
g) Show that $k^{\prime \prime}<k$, where $k^{\prime \prime}$ is the dimension of $C^{\prime \prime}$.

Problem 2

Let $g(x)=1+x^{2}+x^{4}+x^{5}$ in $K[x]$, and let $C=\langle g(x)\rangle$ be a binary cyclic code of length 15.
a) Can C correct all error-patterns of weight 2 ?
b) Show that C can be used to correct errors, when the error-pattern is either of the form $00 \ldots 0110 \ldots 00$ or of the form $00 \ldots 010 \ldots 00$. In other words: Show that the code is 2 -error-burst correcting.
c) Decode $r=000000010101010$, given that the code is C, and that the error-pattern is as in part b).

Problem 3

For which values of d is there a binary $[11,8, d]$-code?

Problem 4

Let the finite field $G F(8)$ be constructed using the polynomial $x^{3}+x+1$, and let β be a primitive element in this field. Let C be the $R S\left(2^{3}, 5\right)$-code with generator-polynomial $g(x)=(1+x)(\beta+x)\left(\beta^{2}+x\right)\left(\beta^{3}+x\right)$.
a) How many errors can the code C correct?
b) Decode the received word $\underline{r}=\left(1,0, \beta^{5}, \beta^{2}, 1,0,0\right)$.

