
Convolutional codes

KG

May 3, 2013

1 Setting

We have a tuple of infinite sequences of message symbols

m10, m11, m12, . . .
m20, m21, m22, . . .

...
mk0, mk1, mk2, . . .

that we want to encode as a tuple of infinite sequences of codeword symbols

c10, c11, c12, . . .
c20, c21, c22, . . .

...
cn0, cn1, cn2, . . .

The i th information frame is the vector (m1i , m2i , . . . , mki), while the i th code-
word frame is (c1i , c2i , . . . , cni).

We shall study injective maps from k-tuples of infinite series to n-tuples of
infinite series, and how to recover the k-tuple from the n-tuple in the presence of
errors.

The information rate of the code is the fraction k/n. Obviously, one goal is
to have the information rate as high as possible.

Often, we shall consider the sequences as produced sequentially in time, so
that a symbol mi1 comes before mi2 in time, and m1i comes before m3i :

m10, m20, . . . , mk0, m11, . . . , mk1, m12, . . .

1

2 Power Series

Let F be a field. The power series ring F¹xº is the set of infinite formal sums
(

a0+ a1x + a2x2+ · · ·=
∞
∑

i=0

ai x i

�

�

�

�

�

ai ∈ F

)

.

Addition is coefficient-wise, and multiplication of
∑

ai x i and
∑

bi x i is the series
∑

ci x i where the coefficients are given by the sums

ci =
i
∑

j=0

a j bi− j .

It is easy to show that this really is a ring.
We note that the polynomials form a subring of the power series ring. We

say that a power series has finite weight if it has only a finite number of non-zero
coefficients, that is, if it is a polynomial. If it is not a polynomial, we say that it
has infinite weight.

It is easy to show that F¹xº has a single maximal ideal generated by x (F¹xº
is a local ring), and that the elements of this ideal (those with zero constant term)
are all the non-invertible elements. This means that we can always write a non-
zero power series as xd f (x), where d ≥ 0 and f (x) is invertible.

Next, we consider the field of fractions FLxM of F¹xº. Consider a fraction
a(x)/b (x). We can always write b (x) = xd c(x), where c(x) is invertible, say with
inverse e(x). Then

a(x)

b (x)
=

a(x)

xd c(x)
=

a(x)e(x)

xd
= x−d a(x)e(x).

We have a canonical form for the non-zero elements of the field of fractions:
xd f (x), where f (x) is invertible and d is any integer, both positive and negative.

The rational functions (fractions where the numerator and denominator are
both polynomials) form a subfield of FLxM. We say that an element of FLxM has
finite weight if it is of the form xd f (x), where f (x) is a polynomial.

3 Convolutional Codes

First, we assume that our symbols come from a finite field F. We shall then rep-
resent each infinite sequence as a power series from the power series ring F¹xº,

2

and k-tuples and n-tuples as vectors of power series. To simplify notation, we
denote these tuples of power series by m(x) and c(x).

We want to study injective maps G : F¹xºk → F¹xºn and the possibility of
recovering the starting point after perturbing the code word tuple with an error
vector,

m(x) G7−→ c(x) c(x)+ e(x) m(x).

We begin by formulating a number of restrictions on what maps we are in-
terested in.

1. The i th codeword frame should only depend on the first i information
frames: if a(x)≡ b(x) (mod x i+1), then G(a(x))≡G(b(x)) (mod x i+1).

2. The map G should be F-linear. That is, for any a(x), b(x) and any c ∈ F,
we have that G(ca(x)) = cG(a(x)) and G(a(x)+b(x)) =G(a(x))+G(b(x)).

3. The map G should respect multiplication by x. That is, G(x i m(x)) =
x i G(m(x)) for any i ≥ 0.

4. The map G should have finite constraint lenght d . That is, the i th code-
word frame should only depend on the i th information frame and the d
preceeding information frames.

Injective maps from F¹xºk to F¹xºn that satisfy these four points are called
convolutional encoders, and the image of these maps are called convolutional codes.

Three of the four restrictions can be interpreted in terms of time as follows:

1. Codeword frames should not depend on information frames from the fu-
ture.

3. Delaying the information frames is equivalent to delaying the codeword
frames.

4. A finite memory for message symbols should be sufficient to compute the
codeword information.

At this point, we can begin to deduce various properties of these encoders.
Consider a k-tuple m(x) = (m1(x), m2(x), . . . , mk (x)), m j (x) =

∑∞
i=0 m j i x i , j =

1,2, . . . , k. We shall first look at the first l codeword tuples, so modulo x l we

3

have (by the first, third and second property, followed by rearranging sums) that

G(m(x))≡G

∞
∑

i=0

m1i x i ,
∞
∑

i=0

m2i x i , . . . ,
∞
∑

i=0

mki x i

!!

≡G

l−1
∑

i=0

m1i x i ,
l−1
∑

i=0

m2i x i , . . . ,
l−1
∑

i=0

mki x i

!!

≡
l−1
∑

i=0

x i G
��

m1i , m2i , . . . , mki
��

≡
l−1
∑

i=0

x i
k
∑

j=1

m j i G(e j)

≡
k
∑

j=1

G(e j)
l−1
∑

i=0

m j i x i ≡
k
∑

j=1

G(e j)m j (x) (mod x l),

where e j is the vector with 1 in its j th coordinate and 0 everywhere else. Since
this holds for any l , we have that

G(m(x)) =
k
∑

j=1

G(e j)m j (x).

In other words, the map G is uniquely determined by its action on the unit vec-
tors e1,e2, . . . ,ek . If G(e j) = (g j 1(x), g j 2(x), . . . , g j n(x)) ∈ F¹xºn , then the map
G is quite simply right-multiplication by the matrix













g11(x) g12(x) . . . g1n(x)
g21(x) g22(x) . . . g2n(x)

...
...

gk1(x) gk2(x) . . . gkn(x)













.

We shall identify the map G with this matrix, called a generator matrix for the
convolutional code, and denote the application of G to m(x) by m(x)G, right-
multiplication by G.

Finally, the fourth property says that the i th information frame should influ-
ence at most the next d + 1 codeword frames. In other words, the power series
m j i x i g j l (x), which describes the influence of the j th bit of the i th information
frame, should have only a finite number of non-zero coefficients. That is, it
should have finite weight, which means that g j l (x) should be a polynomial.

Let us now consider the vector space map from FLxMk to FLxMn defined by
G. We know that for any vector m(x) ∈ FLxMk , there is an integer d ≥ 0 such

4

that xd m(x) ∈ F¹xºk . It follows that the action of G on F¹xºk is essentially
the same as the action on FLxMk , in particular, G is still injective.

Since G is an injective vector space map from FLxMk to FLxMn , we have that
k ≤ n and that the matrix has rank k.

We see that a convolutional encoder is a k×n matrix with polynomial entries
that has a right inverse (though not necessarily with polynomial entries). An
(n, k)-convolutional code is essentially a k-dimensional subspace of FLxMn .

4 Choosing Encoders

For any convolutional code, there are many different encoders G. Which shall
we use?

Catastrophic Encoders We shall first discuss a property we do not want our
encoder to have. Suppose we have some message f(x) of infinite weight such that
e(x) = f(x)G has finite weight. It can then happen that a finite error in trans-
mission, namely e(x), will lead to an infinite number of errors in the decoding,
namely f(x).

If there exists some message f(x) of infinite weight such that its encoding
f(x)G has finite weight, we say that the encoder is catastrophic. We do not want
to use catastrophic encoders.

It is easy to see that a sufficient condition for a generator matrix G to be
non-catastrophic is the following:

The generator matrix G has a right inverse where every entry has
finite weight.

It can be shown that this is also a necessary condition.

Canonical Generator Matrices We would like a generator matrix that makes
the computation of the codeword as simple as possible. One measure of simplic-
ity is the number of information frames required to compute a given codeword
frame.

When c(x) =m(x)G, we know that

ci (x) =
k
∑

j=1

m j (x)g j i (x).

If d j i = deg g j i (x), we need d j i symbols from m j (x) to compute each symbol in
ci (x). In other words, we need

d j =max
i

d j i

5

symbols from m j (x) to compute c(x). In total, we need

d =
∑

j

max
i

deg g j i (x)

memory to compute the codeword frames of c(x). This number d is called the
external degree of G.

For any given convolutional code, there is at least one encoder with minimal
external degree. Such an encoder is called a canonical generator matrix for the
convolutional code. The minimal external degree of the encoders is called the
degree of the convolutional code.

For any vector a(x) of polynomials, let

dega(x) =max
i

degai (x).

Let G be a generator matrix, and let g j (x) denote its j th row. It can be shown
that G is canonical if and only if the following two conditions are met:

1. There exists a right inverse for G with polynomial entries.

2. For any vector m(x) of polynomials,

deg(m(x)G) =max
j
(deg m j (x)+ degg j (x)).

Note that any canonical generator matrix is also a non-catastrophic encoder.
It is easy to see that the converse does not hold.

5 Representing Encoders

We discuss a number of representations for encoders by way of an example over
F2. So consider the generator matrix

G =
�

1+ x + x2 1+ x2 � .

We see that the i th codeword frame can be computed from the i th, the i − 1th
and the i − 2th information frames using the formulae

c1i = mi +mi−1+mi−2, and
c2i = mi + mi−2.

6

Such formulae can be efficiently implemented using shift registers, as illus-
trated by the following diagram:

mi−1 mi−2mi

c1i

c2i

Note that the number of memory cells used by this circuit is equal to the degree
of the generator matrix.

After feeding a sequence of message symbols to this circuit, the output need
not be the complete codeword. To get a codeword, one needs to feed a (fixed
number) of zeros to the circuit such that the memory is guaranteed to be all
zeros.

This circuit can in turn be represented as a finite state machine with output:

00

10 01

11

1,1
1

1,01 0,0
1

0,11

0,10

1,00

0,00

1,1
0

Another representation of the state machine, where dotted red arrows denotes 0
as input and blue arrows denote 1 as input, is the following:

00 00

10 10

01 01

11 11

00

11

10

01

10

01

00

11

7

This diagram is most useful when combined into a trellis diagram as follows:

00 · · ·

10 · · ·

01 · · ·

11 · · ·

00

11

00

11

10

01

00

11

10

01

10

01

00

11

00

11

10

01

10

01

00

11

00

11

10

01

10

01

00

11

Any path that starts in the top left corner corresponds to a (truncated) codeword.
Any path that starts in the top left corner and terminates in the all-zero state (top
row) corresponds to a codeword. The message corresponding to the path can be
deduced from the colours of the edges, and the codeword corresponding to the
path can be computed by concatenating the edge labels. We shall use a variant of
this diagram for decoding.

6 Decoding

We have been given the message m(x) and a convolutional code with generator
matrix G. The code word c(x) was transmitted and y(x) = c(x) + e(x) was re-
ceived. The decoding problem is to recover m(x) (or equivalently, c(x)) from
y(x).

Finding the First Information Frame Observe that if we by some method
can determine the first information frame, that is, the constant term of m(x), say
m0 = (m10, m20, . . . , mk0), we can compute

y(x)−m0G ≡ c(x)+ e(x)−m0G ≡ (m(x)−m0)G+ e(x)≡ e0 (mod x),

where e0 is the constant term of the error series. Then

y(x)−m0G− e0 = xz(x)

for some power series z(x). This means that after decoding the first information
frame, we can determine the error in the first codeword frame. After removing
the error and the effect of the first information frame, what remains is essentially
a new power series z(x). We can now proceed to decode the first information
frame of this power series just as we did for y(x), which will result in yet another
power series, etc.

In other words, the decoding problem can be reduced to recovering the first
information frame. While this approach works, it may not be the best approach.

8

Viterbi decoding Again, we illustrate with an example over F2 based on the
generator matrix

G =
�

1+ x + x2 1+ x2 � .

Suppose we received the bits 1110101111 We draw a variant of the the trellis
diagram where each edge is labeled not with the output of the state machine, but
rather the Hamming distance between the output of the state machine and the
corresponding codeword frame.

00 . . .

10 . . .

01 . . .

11 . . .

11 10 10 11 11
2

0

1

1

0

2

1

1

0

2

0

2

1

1

2

0

1

1

1

1

2

0

2

0

1

1

1

1

2

0

This is now a weighted graph. The weight of any path starting in the top left
corner and terminating on the right hand side is equal to the Hamming distance
between the corresponding (truncated) code word and the received word. Find-
ing a (truncated) codeword with minimal distance to the received bits now cor-
responds to finding such a path with minimal weight. Note that there may be
more than one path with minimal weight. Once we have decided on a path, the
corresponding message can be deduced from the colours of the edges in the path.

To ensure that we find a codeword and not a truncated codeword, we are
really looking for a path from the top left corner that returns to the all-zero state.
(The example shows a truncated codeword with errors.)

9

