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1 Preliminaries

Let V be the set of all functions from F3* to Fo. We define the sum, product
and scalar multiplication in the usual way: for any fi,fo € V, z € FJ* and
a€Fy,

(f1 + f2)(2) = fi(2) + f2(2),
(f1.f2)(2) = f1(2)f2(z) and
(af1)(2) = a(fi(2)).

It is easy to verify that V is an Fa-vector space and a ring. Furthermore, since
there are 22" elements in V, it must be a 2™-dimensional vector space.

We define the support of a function in V' to be the set of points where the
function is non-zero:

Supp f = {z € F3" | f(2) # 0}

The weight of a function is the size of its support, wt(f) = | Supp f|. We note
that f1fo = 0 if and only if Supp f1 N Supp f2 = 0.

Next, consider the ring of polynomials in m variables, Fo[z1,..., 2] Any
polynomial p € Falzy,...,2,,] defines a function from F%5* to Fo by replacing
the variables 1, ..., x,, with the coordinates of the vector z = (z1,..., z,,) and

evaluating the sum:
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Again, it is clear that this map Fa[z1,...,2,] — V is a ring homomorphism.
We shall identify the polynomial with its corresponding function.

Note that the non-zero polynomial x] — x; corresponds to the zero func-
tion when r > 0. This means that for any polynomial, there exists a second
polynomial of degree at most m that defines the same function.

Ezample 1. Let m = 4. The monomials x{zgu and z1zox4 define the same
function.



Let M, be the set of monomials in Fa[zq,...,2,,] where each variable ap-
pears at most once.

Ezxzample 2. For m = 1,2,3 we have:

M1 = {173;1}7
My = {1, 1,29, x122}, and

M3 = {1,1’17$2,x3, x1x2,x1$3,x2x37$1$2x3}.

We know that there are 2™ elements in M,,, since each element corresponds
to a subset of {1,2,...,m} and there are 2™ such subsets.

Proposition 1. M, is a basis for V.

Proof. Since M,,, has 2™ elements and the dimension of V' is 2™, we only need
to prove that they are linearly independent.

The claim is clearly true for M;. Suppose it holds for M;_;. Let A € F§"
have a 1 in its ith coordinate and zeros everywhere else. Then for any f € M;_;
and any z € F3*, f(z) = f(z + A).

Now note that any linear combination ¢ of elements of M; can be written as

c= Z apf + Z atf.

feM;_1 feM;_1

Suppose that ¢ = 0 in V. For any z where the ith coordinate is zero, we have

that
0=clz)= 3 apf(e)
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By the properties of A above, ZfEMmfl asf(z) = 0 holds for any z, which
implies ZfeMmfl asf = 0in V, which again implies that ay = 0 for all f €
M;_1, by the hypothesis.

Then, by considering elements of F5* where the ith coordinate is 1, we get
that a’f = 0 for all f € M;_;1, and consequently that the elements of M; are
linearly independent. The claim follows by induction. O

2 The Underlying Code

Let M(r,m) be the monomials in M,, of degree at most r. Let RM’(r,m)
be the subspace of V spanned by M(r,m). It follows immediately that the
dimension k of RM'(r,m) is () + (7) + -+ (7).

Fix any ordering of the & monomials in M (r,m). We encode y € F% as

k
c=Y yifi
i=1



3 Further preliminaries

We define a map ¢ : V — Fy by

o)=Y f(2)

Z€Fy

It is easy to verify that ¢ is a vector space homomorphism. We shall describe
its kernel and cokernel by describing its action on the basis M,,.

Proposition 2. For any monomial f € M,,,

~_J1 degf=m, and
¢(f){0 deg f < m.

Proof. Tt is clear that ¢(x1 - - x,,) = 1.
If deg f < m, let x; be a variable not included in the monomial. Let A € F§*
have a 1 in its ith coordinate, and zeros everywhere else. Then for any z € F3",

f(z) = £z + A), and
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which proves the claim. O

This obviously extends to any linear combination of monomials.
Corollary 3. Let ¢ be a linear combination of monomials from M,,. Then

1 degc=m, and
¢(c) =
0 degc<m.

To any monomial f € M, we associate the function set
Sy = {H(.ﬁl +a;) | a; € Fa}.
zitf
Ezample 3. For f = x129 € My, 31 f and x4 1 f and we get that
Sy =A{xsza, (x3 + Dwa, z3(xa + 1), (23 + 1) (22 + 1)}

For each variable x; that does not appear in f, we have two choices for «;.
Therefore, there are at most 2™~9¢8/ functions in S t. Also, different choices for
the coefficients «; give different linear combinations of monomials, which means
that there are exactly 2m~4°¢/ distinct functions in Sy.



Proposition 4. Let f € M,,, and s,s' € Sy, s # s'. Then ss’ = 0.

Proof. Since s and s’ are distinct, there must be some x; such that z; | s and
(x; +1) | ¢, or vice versa. Considered as polynomials, z;(z; + 1) must divide
the polynomial product ss’, that is, ss’ = x;(x; + 1)s” for some s”.

Note that as a function, z? + z; = 0. Therefore

ss' = (22 4+ 2;)8" =0
in V which proves the claim. O

The above proposition says that distinct functions in Sy have disjoint sup-
port.

Proposition 5. Let f, f' € M, be such that deg f' < degf =1r and f # .
Then for any s € Sy, ¢(sf) =1 and ¢(sf’) = 0.

Proof. Suppose without loss of generality that f = x1---x,. Then, as a poly-
nomial, s is the monomial x, 41 - - - T,, and lower-degree terms. This means that
sf is the monomial 1 ...z, and lower-degree terms and therefore ¢(sf) = 1.

Now we construct a polynomial p from the polynomial sf’ by replacing each
monomial term by the corresponding monomial where each variable appears at
most once. It is clear that degp < deg sf’ and that p is a linear combination of
monomials from M,,,. Furthermore, since each reduced monomial still represents
the same function as the original monomial, p represents the same function as
sf" and ¢(p) = B(sf").

If deg f' < deg f, then degp < deg sf’ = degs+deg f' < degs+deg f =m,
hence ¢(p) = 0.

If deg ' = deg f, we know that f’ and x,11 - - - &, must have some variable
in common. Therefore, the only term in sf’ of degree m is replaced by a lower-
degree term in p, hence degp < m. Hence, ¢(p) = 0. O

Proposition 6. Let f € My, and e € V. Then ¢(se) =1 for less than wt(e)
functions in Sy.

Proof. Since the functions in Sy all have disjoint supports, the support of e can
have non-trivial intersection with the support of at most wt(e) functions in S;.
Therefore, ¢(se) = 1 for at most wt(e) functions in Sy. O

4 Minimum Distance and Decoding

Recall that with M (r,m) = {f1,..., fx}, we encode y € F% as

k
c= Zyzfz
im1



For any f; with deg f; = r and any s € Sy, we see that

k
¢(sc) = > yid(sf:) = y;.

i=1
Suppose our ordering of the monomials in M (r, m) satisfies deg f; < deg fit1,
1 < i < m. Then we decode ¢ € V as follows:

1. Start with j = k and ¢; = ¢.

2. Compute 2™~" estimates ;s = ¢(s¢;) for distinct functions s € Sy,. Set
y; to be equal to the majority vote among the estimates g; ;.

3. If j =1, we have decoded y = (y1,...,yx). Stop.
4. Set éj,1 < éj — yjfj'
5. Decrease j and continue from Step 2.

Suppose we have & = e + Y 7_, y;fi, where wt(e) < 2™~ "' For each

estimate we get
Ui, = 0(s8) = y; + p(se).

As we have seen, since there are at least 2™~" functions in Sy, more than half
the estimates for y; must be correct. Therefore, the majority vote will correctly
determine y;, and ¢;_1 = e + 23;11 yi fi-

To summarize, if ¢ differs from the encoding of % in less than 2™~ "1 points,
that is, if wt(é — Zle yifi) < 2™~ "1 the above algorithm will output y.

5 The Code

Fix an ordering of the elements of FJ*, say FJ* = {z1, ..., zom }. Define the map
v:V = F3" by

I (Fz)see s fzam).
It is easy to verify that v is a vector space isomorphism. We can also observe
that

wt(f) = wt(v(f)),
o(f1f2) =v(f1) - v(f2),

where wt : F%m — Z is the usual Hamming weight, and - denotes the usual dot
product.

The vector space isomorphism maps our monomial basis of RM’(r,m) to a
basis of a subspace RM (r,m) of F3". For the previously described decoding
algorithm, we can observe that ¢(sé¢) corresponds to v(s) - ¢, where ¢ € F2",
otherwise the decoding algorithm is essentially unchanged.

We have proved the following.

Theorem 7. The code RM(r,m) is a linear (2™,k,2™"")-code, where k =
2izo (7)-



