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1 Preliminaries

Let V be the set of all functions from Fm
2 to F2. We define the sum, product

and scalar multiplication in the usual way: for any f1, f2 ∈ V , z ∈ Fm
2 and

a ∈ F2,

(f1 + f2)(z) = f1(z) + f2(z),

(f1f2)(z) = f1(z)f2(z) and

(af1)(z) = a(f1(z)).

It is easy to verify that V is an F2-vector space and a ring. Furthermore, since
there are 22

m

elements in V , it must be a 2m-dimensional vector space.
We define the support of a function in V to be the set of points where the

function is non-zero:

Supp f = {z ∈ Fm
2 | f(z) 6= 0}.

The weight of a function is the size of its support, wt(f) = |Supp f |. We note
that f1f2 = 0 if and only if Supp f1 ∩ Supp f2 = ∅.

Next, consider the ring of polynomials in m variables, F2[x1, . . . , xm]. Any
polynomial p ∈ F2[x1, . . . , xm] defines a function from Fm

2 to F2 by replacing
the variables x1, . . . , xm with the coordinates of the vector z = (z1, . . . , zm) and
evaluating the sum:( ∑

r1,...,rm

ar1,...,rmx
r1
1 · · ·xrmm

)
(z) =

∑
r1,...,rm

ar1,...,rmz
r1
1 · · · zrmm .

Again, it is clear that this map F2[x1, . . . , xm] → V is a ring homomorphism.
We shall identify the polynomial with its corresponding function.

Note that the non-zero polynomial xri − xi corresponds to the zero func-
tion when r > 0. This means that for any polynomial, there exists a second
polynomial of degree at most m that defines the same function.

Example 1. Let m = 4. The monomials x71x2x4 and x1x2x4 define the same
function.
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Let Mm be the set of monomials in F2[x1, . . . , xm] where each variable ap-
pears at most once.

Example 2. For m = 1, 2, 3 we have:

M1 = {1, x1},
M2 = {1, x1, x2, x1x2}, and

M3 = {1, x1, x2, x3, x1x2, x1x3, x2x3, x1x2x3}.

We know that there are 2m elements in Mm, since each element corresponds
to a subset of {1, 2, . . . ,m} and there are 2m such subsets.

Proposition 1. Mm is a basis for V .

Proof. Since Mm has 2m elements and the dimension of V is 2m, we only need
to prove that they are linearly independent.

The claim is clearly true for M1. Suppose it holds for Mi−1. Let ∆ ∈ Fm
2

have a 1 in its ith coordinate and zeros everywhere else. Then for any f ∈Mi−1
and any z ∈ Fm

2 , f(z) = f(z + ∆).
Now note that any linear combination c of elements of Mi can be written as

c =
∑

f∈Mi−1

aff + xi
∑

f∈Mi−1

a′ff .

Suppose that c = 0 in V . For any z where the ith coordinate is zero, we have
that

0 = c(z) =
∑

f∈Mm−1

aff(z).

By the properties of ∆ above,
∑

f∈Mm−1
aff(z) = 0 holds for any z, which

implies
∑

f∈Mm−1
aff = 0 in V , which again implies that af = 0 for all f ∈

Mi−1, by the hypothesis.
Then, by considering elements of Fm

2 where the ith coordinate is 1, we get
that a′f = 0 for all f ∈ Mi−1, and consequently that the elements of Mi are
linearly independent. The claim follows by induction.

2 The Underlying Code

Let M(r,m) be the monomials in Mm of degree at most r. Let RM′(r,m)
be the subspace of V spanned by M(r,m). It follows immediately that the
dimension k of RM′(r,m) is

(
m
0

)
+
(
m
1

)
+ · · ·+

(
m
r

)
.

Fix any ordering of the k monomials in M(r,m). We encode y ∈ Fk
2 as

c =

k∑
i=1

yifi.
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3 Further preliminaries

We define a map φ : V 7→ F2 by

φ(f) =
∑

z∈Fm
2

f(z).

It is easy to verify that φ is a vector space homomorphism. We shall describe
its kernel and cokernel by describing its action on the basis Mm.

Proposition 2. For any monomial f ∈Mm,

φ(f) =

{
1 deg f = m, and

0 deg f < m.

Proof. It is clear that φ(x1 · · ·xm) = 1.
If deg f < m, let xi be a variable not included in the monomial. Let ∆ ∈ Fm

2

have a 1 in its ith coordinate, and zeros everywhere else. Then for any z ∈ Fm
2 ,

f(z) = f(z + ∆), and∑
z∈Fm

2

f(z) =
∑

z∈Fm
2 ,zi=0

f(z) +
∑

z∈Fm
2 ,zi=1

f(z)

=
∑

z∈Fm
2 ,zi=0

f(z) +
∑

z∈Fm
2 ,zi=0

f(z + ∆)

= 2
∑

z∈Fm
2 ,zi=0

f(z) = 0,

which proves the claim.

This obviously extends to any linear combination of monomials.

Corollary 3. Let c be a linear combination of monomials from Mm. Then

φ(c) =

{
1 deg c = m, and

0 deg c < m.

To any monomial f ∈Mm we associate the function set

Sf = {
∏
xi-f

(xi + αi) | αi ∈ F2}.

Example 3. For f = x1x2 ∈M4, x3 - f and x4 - f and we get that

Sf = {x3x4, (x3 + 1)x4, x3(x4 + 1), (x3 + 1)(x4 + 1)}.

For each variable xi that does not appear in f , we have two choices for αi.
Therefore, there are at most 2m−deg f functions in Sf . Also, different choices for
the coefficients αi give different linear combinations of monomials, which means
that there are exactly 2m−deg f distinct functions in Sf .
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Proposition 4. Let f ∈Mm and s, s′ ∈ Sf , s 6= s′. Then ss′ = 0.

Proof. Since s and s′ are distinct, there must be some xi such that xi | s and
(xi + 1) | s′, or vice versa. Considered as polynomials, xi(xi + 1) must divide
the polynomial product ss′, that is, ss′ = xi(xi + 1)s′′ for some s′′.

Note that as a function, x2i + xi = 0. Therefore

ss′ = (x2i + xi)s
′′ = 0

in V which proves the claim.

The above proposition says that distinct functions in Sf have disjoint sup-
port.

Proposition 5. Let f, f ′ ∈ Mm be such that deg f ′ ≤ deg f = r and f 6= f ′.
Then for any s ∈ Sf , φ(sf) = 1 and φ(sf ′) = 0.

Proof. Suppose without loss of generality that f = x1 · · ·xr. Then, as a poly-
nomial, s is the monomial xr+1 · · ·xm and lower-degree terms. This means that
sf is the monomial x1 . . . xm and lower-degree terms and therefore φ(sf) = 1.

Now we construct a polynomial p from the polynomial sf ′ by replacing each
monomial term by the corresponding monomial where each variable appears at
most once. It is clear that deg p ≤ deg sf ′ and that p is a linear combination of
monomials from Mm. Furthermore, since each reduced monomial still represents
the same function as the original monomial, p represents the same function as
sf ′ and φ(p) = φ(sf ′).

If deg f ′ < deg f , then deg p ≤ deg sf ′ = deg s+ deg f ′ < deg s+ deg f = m,
hence φ(p) = 0.

If deg f ′ = deg f , we know that f ′ and xr+1 · · ·xm must have some variable
in common. Therefore, the only term in sf ′ of degree m is replaced by a lower-
degree term in p, hence deg p < m. Hence, φ(p) = 0.

Proposition 6. Let f ∈ Mm and e ∈ V . Then φ(se) = 1 for less than wt(e)
functions in Sf .

Proof. Since the functions in Sf all have disjoint supports, the support of e can
have non-trivial intersection with the support of at most wt(e) functions in Sf .
Therefore, φ(se) = 1 for at most wt(e) functions in Sf .

4 Minimum Distance and Decoding

Recall that with M(r,m) = {f1, . . . , fk}, we encode y ∈ Fk
2 as

c =

k∑
i=1

yifi.
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For any fj with deg fj = r and any s ∈ Sfj , we see that

φ(sc) =

k∑
i=1

yiφ(sfi) = yj .

Suppose our ordering of the monomials inM(r,m) satisfies deg fi ≤ deg fi+1,
1 ≤ i < m. Then we decode ĉ ∈ V as follows:

1. Start with j = k and ĉj = ĉ.

2. Compute 2m−r estimates ŷj,s = φ(sĉj) for distinct functions s ∈ Sfj . Set
yj to be equal to the majority vote among the estimates ŷj,s.

3. If j = 1, we have decoded y = (y1, . . . , yk). Stop.

4. Set ĉj−1 ← ĉj − yjfj .

5. Decrease j and continue from Step 2.

Suppose we have ĉj = e +
∑j

i=1 yifi, where wt(e) < 2m−r−1. For each
estimate we get

ŷj,s = φ(sĉ) = yj + φ(se).

As we have seen, since there are at least 2m−r functions in Sfj , more than half
the estimates for yj must be correct. Therefore, the majority vote will correctly

determine yj , and ĉj−1 = e+
∑j−1

i=1 yifi.
To summarize, if ĉ differs from the encoding of y in less than 2m−r−1 points,

that is, if wt(ĉ−
∑k

i=1 yifi) < 2m−r−1, the above algorithm will output y.

5 The Code

Fix an ordering of the elements of Fm
2 , say Fm

2 = {z1, . . . , z2m}. Define the map
ν : V → F2m

2 by
f 7→ (f(z1), . . . , f(z2m)).

It is easy to verify that ν is a vector space isomorphism. We can also observe
that

wt(f) = wt(ν(f)),

φ(f1f2) = ν(f1) · ν(f2),

where wt : F2m

2 → Z is the usual Hamming weight, and · denotes the usual dot
product.

The vector space isomorphism maps our monomial basis of RM′(r,m) to a
basis of a subspace RM(r,m) of F2m

2 . For the previously described decoding
algorithm, we can observe that φ(sĉ) corresponds to ν(s) · ĉ, where ĉ ∈ F2m

2 ,
otherwise the decoding algorithm is essentially unchanged.

We have proved the following.

Theorem 7. The code RM(r,m) is a linear (2m, k, 2m−r)-code, where k =∑r
i=0

(
m
i

)
.
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