Reed-Muller codes

KG

April 7, 2011

1 Preliminaries

Let V be the set of all functions from \mathbf{F}_2^m to \mathbf{F}_2 . We define the sum, product and scalar multiplication in the usual way: for any $f_1, f_2 \in V, z \in \mathbf{F}_2^m$ and $a \in \mathbf{F}_2$,

$$(f_1 + f_2)(z) = f_1(z) + f_2(z),$$

 $(f_1f_2)(z) = f_1(z)f_2(z)$ and
 $(af_1)(z) = a(f_1(z)).$

It is easy to verify that V is an \mathbf{F}_2 -vector space and a ring. Furthermore, since there are 2^{2^m} elements in V, it must be a 2^m -dimensional vector space.

We define the support of a function in V to be the set of points where the function is non-zero:

$$\operatorname{Supp} f = \{ z \in \mathbf{F}_2^m \mid f(z) \neq 0 \}.$$

The weight of a function is the size of its support, $wt(f) = |\operatorname{Supp} f|$. We note that $f_1 f_2 = 0$ if and only if $\operatorname{Supp} f_1 \cap \operatorname{Supp} f_2 = \emptyset$.

Next, consider the ring of polynomials in m variables, $\mathbf{F}_2[x_1, \ldots, x_m]$. Any polynomial $p \in \mathbf{F}_2[x_1, \ldots, x_m]$ defines a function from \mathbf{F}_2^m to \mathbf{F}_2 by replacing the variables x_1, \ldots, x_m with the coordinates of the vector $z = (z_1, \ldots, z_m)$ and evaluating the sum:

$$\left(\sum_{r_1,\dots,r_m} a_{r_1,\dots,r_m} x_1^{r_1} \cdots x_m^{r_m}\right)(z) = \sum_{r_1,\dots,r_m} a_{r_1,\dots,r_m} z_1^{r_1} \cdots z_m^{r_m}.$$

Again, it is clear that this map $\mathbf{F}_2[x_1, \ldots, x_m] \to V$ is a ring homomorphism. We shall identify the polynomial with its corresponding function.

Note that the non-zero polynomial $x_i^r - x_i$ corresponds to the zero function when r > 0. This means that for any polynomial, there exists a second polynomial of degree at most m that defines the same function.

Example 1. Let m = 4. The monomials $x_1^7 x_2 x_4$ and $x_1 x_2 x_4$ define the same function.

Let M_m be the set of monomials in $\mathbf{F}_2[x_1, \ldots, x_m]$ where each variable appears at most once.

Example 2. For m = 1, 2, 3 we have:

$$\begin{split} M_1 &= \{1, x_1\}, \\ M_2 &= \{1, x_1, x_2, x_1 x_2\}, \text{ and} \\ M_3 &= \{1, x_1, x_2, x_3, x_1 x_2, x_1 x_3, x_2 x_3, x_1 x_2 x_3\} \end{split}$$

We know that there are 2^m elements in M_m , since each element corresponds to a subset of $\{1, 2, \ldots, m\}$ and there are 2^m such subsets.

Proposition 1. M_m is a basis for V.

Proof. Since M_m has 2^m elements and the dimension of V is 2^m , we only need to prove that they are linearly independent.

The claim is clearly true for M_1 . Suppose it holds for M_{i-1} . Let $\Delta \in \mathbf{F}_2^m$ have a 1 in its *i*th coordinate and zeros everywhere else. Then for any $f \in M_{i-1}$ and any $z \in \mathbf{F}_2^m$, $f(z) = f(z + \Delta)$.

Now note that any linear combination c of elements of M_i can be written as

$$c = \sum_{f \in M_{i-1}} a_f f + x_i \sum_{f \in M_{i-1}} a'_f f.$$

Suppose that c = 0 in V. For any z where the *i*th coordinate is zero, we have that

$$0 = c(z) = \sum_{f \in M_{m-1}} a_f f(z).$$

By the properties of Δ above, $\sum_{f \in M_{m-1}} a_f f(z) = 0$ holds for any z, which implies $\sum_{f \in M_{m-1}} a_f f = 0$ in V, which again implies that $a_f = 0$ for all $f \in M_{i-1}$, by the hypothesis.

Then, by considering elements of \mathbf{F}_2^m where the *i*th coordinate is 1, we get that $a'_f = 0$ for all $f \in M_{i-1}$, and consequently that the elements of M_i are linearly independent. The claim follows by induction.

2 The Underlying Code

Let M(r,m) be the monomials in M_m of degree at most r. Let $\mathcal{RM}'(r,m)$ be the subspace of V spanned by M(r,m). It follows immediately that the dimension k of $\mathcal{RM}'(r,m)$ is $\binom{m}{0} + \binom{m}{1} + \cdots + \binom{m}{r}$.

Fix any ordering of the k monomials in M(r,m). We encode $y \in \mathbf{F}_2^k$ as

$$c = \sum_{i=1}^{k} y_i f_i.$$

3 Further preliminaries

We define a map $\phi: V \mapsto \mathbf{F}_2$ by

$$\phi(f) = \sum_{z \in \mathbf{F}_2^m} f(z).$$

It is easy to verify that ϕ is a vector space homomorphism. We shall describe its kernel and cokernel by describing its action on the basis M_m .

Proposition 2. For any monomial $f \in M_m$,

$$\phi(f) = \begin{cases} 1 & \deg f = m, \text{ and} \\ 0 & \deg f < m. \end{cases}$$

Proof. It is clear that $\phi(x_1 \cdots x_m) = 1$.

If deg f < m, let x_i be a variable not included in the monomial. Let $\Delta \in \mathbf{F}_2^m$ have a 1 in its *i*th coordinate, and zeros everywhere else. Then for any $z \in \mathbf{F}_2^m$, $f(z) = f(z + \Delta)$, and

$$\sum_{z \in \mathbf{F}_2^m} f(z) = \sum_{z \in \mathbf{F}_2^m, z_i = 0} f(z) + \sum_{z \in \mathbf{F}_2^m, z_i = 1} f(z)$$
$$= \sum_{z \in \mathbf{F}_2^m, z_i = 0} f(z) + \sum_{z \in \mathbf{F}_2^m, z_i = 0} f(z + \Delta)$$
$$= 2 \sum_{z \in \mathbf{F}_2^m, z_i = 0} f(z) = 0,$$

which proves the claim.

This obviously extends to any linear combination of monomials.

Corollary 3. Let c be a linear combination of monomials from M_m . Then

$$\phi(c) = \begin{cases} 1 & \deg c = m, and \\ 0 & \deg c < m. \end{cases}$$

To any monomial $f \in M_m$ we associate the function set

$$S_f = \{\prod_{x_i \nmid f} (x_i + \alpha_i) \mid \alpha_i \in \mathbf{F}_2\}.$$

Example 3. For $f = x_1 x_2 \in M_4$, $x_3 \nmid f$ and $x_4 \nmid f$ and we get that

$$S_f = \{x_3x_4, (x_3+1)x_4, x_3(x_4+1), (x_3+1)(x_4+1)\}.$$

For each variable x_i that does not appear in f, we have two choices for α_i . Therefore, there are at most $2^{m-\deg f}$ functions in S_f . Also, different choices for the coefficients α_i give different linear combinations of monomials, which means that there are exactly $2^{m-\deg f}$ distinct functions in S_f . **Proposition 4.** Let $f \in M_m$ and $s, s' \in S_f$, $s \neq s'$. Then ss' = 0.

Proof. Since s and s' are distinct, there must be some x_i such that $x_i | s$ and $(x_i + 1) | s'$, or vice versa. Considered as polynomials, $x_i(x_i + 1)$ must divide the polynomial product ss', that is, $ss' = x_i(x_i + 1)s''$ for some s''.

Note that as a function, $x_i^2 + x_i = 0$. Therefore

$$ss' = (x_i^2 + x_i)s'' = 0$$

in V which proves the claim.

The above proposition says that distinct functions in S_f have disjoint support.

Proposition 5. Let $f, f' \in M_m$ be such that deg $f' \leq \deg f = r$ and $f \neq f'$. Then for any $s \in S_f$, $\phi(sf) = 1$ and $\phi(sf') = 0$.

Proof. Suppose without loss of generality that $f = x_1 \cdots x_r$. Then, as a polynomial, s is the monomial $x_{r+1} \cdots x_m$ and lower-degree terms. This means that sf is the monomial $x_1 \ldots x_m$ and lower-degree terms and therefore $\phi(sf) = 1$.

Now we construct a polynomial p from the polynomial sf' by replacing each monomial term by the corresponding monomial where each variable appears at most once. It is clear that deg $p \leq \deg sf'$ and that p is a linear combination of monomials from M_m . Furthermore, since each reduced monomial still represents the same function as the original monomial, p represents the same function as sf' and $\phi(p) = \phi(sf')$.

If deg $f' < \deg f$, then deg $p \le \deg sf' = \deg s + \deg f' < \deg s + \deg f = m$, hence $\phi(p) = 0$.

If deg $f' = \deg f$, we know that f' and $x_{r+1} \cdots x_m$ must have some variable in common. Therefore, the only term in sf' of degree m is replaced by a lowerdegree term in p, hence deg p < m. Hence, $\phi(p) = 0$.

Proposition 6. Let $f \in M_m$ and $e \in V$. Then $\phi(se) = 1$ for less than wt(e) functions in S_f .

Proof. Since the functions in S_f all have disjoint supports, the support of e can have non-trivial intersection with the support of at most wt(e) functions in S_f . Therefore, $\phi(se) = 1$ for at most wt(e) functions in S_f .

4 Minimum Distance and Decoding

Recall that with $M(r,m) = \{f_1, \ldots, f_k\}$, we encode $y \in \mathbf{F}_2^k$ as

$$c = \sum_{i=1}^{k} y_i f_i.$$

4

For any f_j with deg $f_j = r$ and any $s \in S_{f_j}$, we see that

$$\phi(sc) = \sum_{i=1}^{k} y_i \phi(sf_i) = y_j.$$

Suppose our ordering of the monomials in M(r, m) satisfies deg $f_i \leq \deg f_{i+1}$, $1 \leq i < m$. Then we decode $\hat{c} \in V$ as follows:

- 1. Start with j = k and $\hat{c}_j = \hat{c}$.
- 2. Compute 2^{m-r} estimates $\hat{y}_{j,s} = \phi(s\hat{c}_j)$ for distinct functions $s \in S_{f_j}$. Set y_j to be equal to the majority vote among the estimates $\hat{y}_{j,s}$.
- 3. If j = 1, we have decoded $y = (y_1, \ldots, y_k)$. Stop.
- 4. Set $\hat{c}_{j-1} \leftarrow \hat{c}_j y_j f_j$.
- 5. Decrease j and continue from Step 2.

Suppose we have $\hat{c}_j = e + \sum_{i=1}^j y_i f_i$, where wt(e) < 2^{m-r-1} . For each estimate we get

$$\hat{y}_{j,s} = \phi(s\hat{c}) = y_j + \phi(se).$$

As we have seen, since there are at least 2^{m-r} functions in S_{f_j} , more than half the estimates for y_j must be correct. Therefore, the majority vote will correctly determine y_i , and $\hat{c}_{i-1} = e + \sum_{j=1}^{j-1} y_j f_j$.

determine y_j , and $\hat{c}_{j-1} = e + \sum_{i=1}^{j-1} y_i f_i$. To summarize, if \hat{c} differs from the encoding of y in less than 2^{m-r-1} points, that is, if wt $(\hat{c} - \sum_{i=1}^k y_i f_i) < 2^{m-r-1}$, the above algorithm will output y.

5 The Code

Fix an ordering of the elements of \mathbf{F}_2^m , say $\mathbf{F}_2^m = \{z_1, \ldots, z_{2^m}\}$. Define the map $\nu: V \to \mathbf{F}_2^{2^m}$ by

$$f \mapsto (f(z_1), \ldots, f(z_{2^m})).$$

It is easy to verify that ν is a vector space isomorphism. We can also observe that

$$wt(f) = wt(\nu(f)),$$

$$\phi(f_1 f_2) = \nu(f_1) \cdot \nu(f_2),$$

where wt : $\mathbf{F}_2^{2^m} \to \mathbb{Z}$ is the usual Hamming weight, and \cdot denotes the usual dot product.

The vector space isomorphism maps our monomial basis of $\mathcal{RM}'(r,m)$ to a basis of a subspace $\mathcal{RM}(r,m)$ of $\mathbf{F}_2^{2^m}$. For the previously described decoding algorithm, we can observe that $\phi(s\hat{c})$ corresponds to $\nu(s) \cdot \hat{c}$, where $\hat{c} \in \mathbf{F}_2^{2^m}$, otherwise the decoding algorithm is essentially unchanged.

We have proved the following.

Theorem 7. The code $\mathcal{RM}(r,m)$ is a linear $(2^m, k, 2^{m-r})$ -code, where $k = \sum_{i=0}^{r} {m \choose i}$.