Reed-Muller codes

KG

April 7, 2011

1 Preliminaries

Let V be the set of all functions from \mathbf{F}_{2}^{m} to \mathbf{F}_{2}. We define the sum, product and scalar multiplication in the usual way: for any $f_{1}, f_{2} \in V, z \in \mathbf{F}_{2}^{m}$ and $a \in \mathbf{F}_{2}$,

$$
\begin{aligned}
\left(f_{1}+f_{2}\right)(z) & =f_{1}(z)+f_{2}(z) \\
\left(f_{1} f_{2}\right)(z) & =f_{1}(z) f_{2}(z) \text { and } \\
\left(a f_{1}\right)(z) & =a\left(f_{1}(z)\right)
\end{aligned}
$$

It is easy to verify that V is an \mathbf{F}_{2}-vector space and a ring. Furthermore, since there are $2^{2^{m}}$ elements in V, it must be a 2^{m}-dimensional vector space.

We define the support of a function in V to be the set of points where the function is non-zero:

$$
\text { Supp } f=\left\{z \in \mathbf{F}_{2}^{m} \mid f(z) \neq 0\right\}
$$

The weight of a function is the size of its support, $\operatorname{wt}(f)=|\operatorname{Supp} f|$. We note that $f_{1} f_{2}=0$ if and only if $\operatorname{Supp} f_{1} \cap \operatorname{Supp} f_{2}=\emptyset$.

Next, consider the ring of polynomials in m variables, $\mathbf{F}_{2}\left[x_{1}, \ldots, x_{m}\right]$. Any polynomial $p \in \mathbf{F}_{2}\left[x_{1}, \ldots, x_{m}\right]$ defines a function from \mathbf{F}_{2}^{m} to \mathbf{F}_{2} by replacing the variables x_{1}, \ldots, x_{m} with the coordinates of the vector $z=\left(z_{1}, \ldots, z_{m}\right)$ and evaluating the sum:

$$
\left(\sum_{r_{1}, \ldots, r_{m}} a_{r_{1}, \ldots, r_{m}} x_{1}^{r_{1}} \cdots x_{m}^{r_{m}}\right)(z)=\sum_{r_{1}, \ldots, r_{m}} a_{r_{1}, \ldots, r_{m}} z_{1}^{r_{1}} \cdots z_{m}^{r_{m}}
$$

Again, it is clear that this map $\mathbf{F}_{2}\left[x_{1}, \ldots, x_{m}\right] \rightarrow V$ is a ring homomorphism. We shall identify the polynomial with its corresponding function.

Note that the non-zero polynomial $x_{i}^{r}-x_{i}$ corresponds to the zero function when $r>0$. This means that for any polynomial, there exists a second polynomial of degree at most m that defines the same function.
Example 1. Let $m=4$. The monomials $x_{1}^{7} x_{2} x_{4}$ and $x_{1} x_{2} x_{4}$ define the same function.

Let M_{m} be the set of monomials in $\mathbf{F}_{2}\left[x_{1}, \ldots, x_{m}\right]$ where each variable appears at most once.
Example 2. For $m=1,2,3$ we have:

$$
\begin{aligned}
& M_{1}=\left\{1, x_{1}\right\} \\
& M_{2}=\left\{1, x_{1}, x_{2}, x_{1} x_{2}\right\}, \text { and } \\
& M_{3}=\left\{1, x_{1}, x_{2}, x_{3}, x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}, x_{1} x_{2} x_{3}\right\} .
\end{aligned}
$$

We know that there are 2^{m} elements in M_{m}, since each element corresponds to a subset of $\{1,2, \ldots, m\}$ and there are 2^{m} such subsets.

Proposition 1. M_{m} is a basis for V.
Proof. Since M_{m} has 2^{m} elements and the dimension of V is 2^{m}, we only need to prove that they are linearly independent.

The claim is clearly true for M_{1}. Suppose it holds for M_{i-1}. Let $\Delta \in \mathbf{F}_{2}^{m}$ have a 1 in its i th coordinate and zeros everywhere else. Then for any $f \in M_{i-1}$ and any $z \in \mathbf{F}_{2}^{m}, f(z)=f(z+\Delta)$.

Now note that any linear combination c of elements of M_{i} can be written as

$$
c=\sum_{f \in M_{i-1}} a_{f} f+x_{i} \sum_{f \in M_{i-1}} a_{f}^{\prime} f .
$$

Suppose that $c=0$ in V. For any z where the i th coordinate is zero, we have that

$$
0=c(z)=\sum_{f \in M_{m-1}} a_{f} f(z)
$$

By the properties of Δ above, $\sum_{f \in M_{m-1}} a_{f} f(z)=0$ holds for any z, which implies $\sum_{f \in M_{m-1}} a_{f} f=0$ in V, which again implies that $a_{f}=0$ for all $f \in$ M_{i-1}, by the hypothesis.

Then, by considering elements of \mathbf{F}_{2}^{m} where the i th coordinate is 1, we get that $a_{f}^{\prime}=0$ for all $f \in M_{i-1}$, and consequently that the elements of M_{i} are linearly independent. The claim follows by induction.

2 The Underlying Code

Let $M(r, m)$ be the monomials in M_{m} of degree at most r. Let $\mathcal{R} \mathcal{M}^{\prime}(r, m)$ be the subspace of V spanned by $M(r, m)$. It follows immediately that the dimension k of $\mathcal{R} \mathcal{M}^{\prime}(r, m)$ is $\binom{m}{0}+\binom{m}{1}+\cdots+\binom{m}{r}$.

Fix any ordering of the k monomials in $M(r, m)$. We encode $y \in \mathbf{F}_{2}^{k}$ as

$$
c=\sum_{i=1}^{k} y_{i} f_{i}
$$

3 Further preliminaries

We define a map $\phi: V \mapsto \mathbf{F}_{2}$ by

$$
\phi(f)=\sum_{z \in \mathbf{F}_{2}^{m}} f(z)
$$

It is easy to verify that ϕ is a vector space homomorphism. We shall describe its kernel and cokernel by describing its action on the basis M_{m}.

Proposition 2. For any monomial $f \in M_{m}$,

$$
\phi(f)= \begin{cases}1 & \operatorname{deg} f=m, \text { and } \\ 0 & \operatorname{deg} f<m\end{cases}
$$

Proof. It is clear that $\phi\left(x_{1} \cdots x_{m}\right)=1$.
If $\operatorname{deg} f<m$, let x_{i} be a variable not included in the monomial. Let $\Delta \in \mathbf{F}_{2}^{m}$ have a 1 in its i th coordinate, and zeros everywhere else. Then for any $z \in \mathbf{F}_{2}^{m}$, $f(z)=f(z+\Delta)$, and

$$
\begin{aligned}
\sum_{z \in \mathbf{F}_{2}^{m}} f(z) & =\sum_{z \in \mathbf{F}_{2}^{m}, z_{i}=0} f(z)+\sum_{z \in \mathbf{F}_{2}^{m}, z_{i}=1} f(z) \\
& =\sum_{z \in \mathbf{F}_{2}^{m}, z_{i}=0} f(z)+\sum_{z \in \mathbf{F}_{2}^{m}, z_{i}=0} f(z+\Delta) \\
& =2 \sum_{z \in \mathbf{F}_{2}^{m}, z_{i}=0} f(z)=0
\end{aligned}
$$

which proves the claim.
This obviously extends to any linear combination of monomials.
Corollary 3. Let c be a linear combination of monomials from M_{m}. Then

$$
\phi(c)= \begin{cases}1 & \operatorname{deg} c=m, \text { and } \\ 0 & \operatorname{deg} c<m\end{cases}
$$

To any monomial $f \in M_{m}$ we associate the function set

$$
S_{f}=\left\{\prod_{x_{i} \nmid f}\left(x_{i}+\alpha_{i}\right) \mid \alpha_{i} \in \mathbf{F}_{2}\right\}
$$

Example 3. For $f=x_{1} x_{2} \in M_{4}, x_{3} \nmid f$ and $x_{4} \nmid f$ and we get that

$$
S_{f}=\left\{x_{3} x_{4},\left(x_{3}+1\right) x_{4}, x_{3}\left(x_{4}+1\right),\left(x_{3}+1\right)\left(x_{4}+1\right)\right\}
$$

For each variable x_{i} that does not appear in f, we have two choices for α_{i}. Therefore, there are at most $2^{m-\operatorname{deg} f}$ functions in S_{f}. Also, different choices for the coefficients α_{i} give different linear combinations of monomials, which means that there are exactly $2^{m-\operatorname{deg} f}$ distinct functions in S_{f}.

Proposition 4. Let $f \in M_{m}$ and $s, s^{\prime} \in S_{f}, s \neq s^{\prime}$. Then $s s^{\prime}=0$.
Proof. Since s and s^{\prime} are distinct, there must be some x_{i} such that $x_{i} \mid s$ and $\left(x_{i}+1\right) \mid s^{\prime}$, or vice versa. Considered as polynomials, $x_{i}\left(x_{i}+1\right)$ must divide the polynomial product $s s^{\prime}$, that is, $s s^{\prime}=x_{i}\left(x_{i}+1\right) s^{\prime \prime}$ for some $s^{\prime \prime}$.

Note that as a function, $x_{i}^{2}+x_{i}=0$. Therefore

$$
s s^{\prime}=\left(x_{i}^{2}+x_{i}\right) s^{\prime \prime}=0
$$

in V which proves the claim.
The above proposition says that distinct functions in S_{f} have disjoint support.

Proposition 5. Let $f, f^{\prime} \in M_{m}$ be such that $\operatorname{deg} f^{\prime} \leq \operatorname{deg} f=r$ and $f \neq f^{\prime}$. Then for any $s \in S_{f}, \phi(s f)=1$ and $\phi\left(s f^{\prime}\right)=0$.

Proof. Suppose without loss of generality that $f=x_{1} \cdots x_{r}$. Then, as a polynomial, s is the monomial $x_{r+1} \cdots x_{m}$ and lower-degree terms. This means that $s f$ is the monomial $x_{1} \ldots x_{m}$ and lower-degree terms and therefore $\phi(s f)=1$.

Now we construct a polynomial p from the polynomial $s f^{\prime}$ by replacing each monomial term by the corresponding monomial where each variable appears at most once. It is clear that $\operatorname{deg} p \leq \operatorname{deg} s f^{\prime}$ and that p is a linear combination of monomials from M_{m}. Furthermore, since each reduced monomial still represents the same function as the original monomial, p represents the same function as $s f^{\prime}$ and $\phi(p)=\phi\left(s f^{\prime}\right)$.

If $\operatorname{deg} f^{\prime}<\operatorname{deg} f$, then $\operatorname{deg} p \leq \operatorname{deg} s f^{\prime}=\operatorname{deg} s+\operatorname{deg} f^{\prime}<\operatorname{deg} s+\operatorname{deg} f=m$, hence $\phi(p)=0$.

If $\operatorname{deg} f^{\prime}=\operatorname{deg} f$, we know that f^{\prime} and $x_{r+1} \cdots x_{m}$ must have some variable in common. Therefore, the only term in $s f^{\prime}$ of degree m is replaced by a lowerdegree term in p, hence $\operatorname{deg} p<m$. Hence, $\phi(p)=0$.

Proposition 6. Let $f \in M_{m}$ and $e \in V$. Then $\phi(s e)=1$ for less than $\operatorname{wt}(e)$ functions in S_{f}.

Proof. Since the functions in S_{f} all have disjoint supports, the support of e can have non-trivial intersection with the support of at most wt (e) functions in S_{f}. Therefore, $\phi(s e)=1$ for at most $\mathrm{wt}(e)$ functions in S_{f}.

4 Minimum Distance and Decoding

Recall that with $M(r, m)=\left\{f_{1}, \ldots, f_{k}\right\}$, we encode $y \in \mathbf{F}_{2}^{k}$ as

$$
c=\sum_{i=1}^{k} y_{i} f_{i}
$$

For any f_{j} with $\operatorname{deg} f_{j}=r$ and any $s \in S_{f_{j}}$, we see that

$$
\phi(s c)=\sum_{i=1}^{k} y_{i} \phi\left(s f_{i}\right)=y_{j} .
$$

Suppose our ordering of the monomials in $M(r, m)$ satisfies $\operatorname{deg} f_{i} \leq \operatorname{deg} f_{i+1}$, $1 \leq i<m$. Then we decode $\hat{c} \in V$ as follows:

1. Start with $j=k$ and $\hat{c}_{j}=\hat{c}$.
2. Compute 2^{m-r} estimates $\hat{y}_{j, s}=\phi\left(s \hat{c}_{j}\right)$ for distinct functions $s \in S_{f_{j}}$. Set y_{j} to be equal to the majority vote among the estimates $\hat{y}_{j, s}$.
3. If $j=1$, we have decoded $y=\left(y_{1}, \ldots, y_{k}\right)$. Stop.
4. Set $\hat{c}_{j-1} \leftarrow \hat{c}_{j}-y_{j} f_{j}$.
5. Decrease j and continue from Step 2.

Suppose we have $\hat{c}_{j}=e+\sum_{i=1}^{j} y_{i} f_{i}$, where $\mathrm{wt}(e)<2^{m-r-1}$. For each estimate we get

$$
\hat{y}_{j, s}=\phi(s \hat{c})=y_{j}+\phi(s e) .
$$

As we have seen, since there are at least 2^{m-r} functions in $S_{f_{j}}$, more than half the estimates for y_{j} must be correct. Therefore, the majority vote will correctly determine y_{j}, and $\hat{c}_{j-1}=e+\sum_{i=1}^{j-1} y_{i} f_{i}$.

To summarize, if \hat{c} differs from the encoding of y in less than 2^{m-r-1} points, that is, if $\operatorname{wt}\left(\hat{c}-\sum_{i=1}^{k} y_{i} f_{i}\right)<2^{m-r-1}$, the above algorithm will output y.

5 The Code

Fix an ordering of the elements of \mathbf{F}_{2}^{m}, say $\mathbf{F}_{2}^{m}=\left\{z_{1}, \ldots, z_{2^{m}}\right\}$. Define the map $\nu: V \rightarrow \mathbf{F}_{2}^{2^{m}}$ by

$$
f \mapsto\left(f\left(z_{1}\right), \ldots, f\left(z_{2^{m}}\right)\right)
$$

It is easy to verify that ν is a vector space isomorphism. We can also observe that

$$
\begin{aligned}
\mathrm{wt}(f) & =\mathrm{wt}(\nu(f)) \\
\phi\left(f_{1} f_{2}\right) & =\nu\left(f_{1}\right) \cdot \nu\left(f_{2}\right),
\end{aligned}
$$

where wt $: \mathbf{F}_{2}^{2^{m}} \rightarrow \mathbb{Z}$ is the usual Hamming weight, and \cdot denotes the usual dot product.

The vector space isomorphism maps our monomial basis of $\mathcal{R} \mathcal{M}^{\prime}(r, m)$ to a basis of a subspace $\mathcal{R} \mathcal{M}(r, m)$ of $\mathbf{F}_{2}^{2^{m}}$. For the previously described decoding algorithm, we can observe that $\phi(s \hat{c})$ corresponds to $\nu(s) \cdot \hat{c}$, where $\hat{c} \in \mathbf{F}_{2}^{2^{m}}$, otherwise the decoding algorithm is essentially unchanged.

We have proved the following.
Theorem 7. The code $\mathcal{R} \mathcal{M}(r, m)$ is a linear $\left(2^{m}, k, 2^{m-r}\right)$-code, where $k=$ $\sum_{i=0}^{r}\binom{m}{i}$.

