André Massing
Dietmar Hömberg
NTNU

Optimization II

Problem sheet 1

1. Consider the boundary value problem

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x) \text { in }, \quad y(0)=y(1)=0
$$

with $p \in C^{1}[0,1], q \in C[0,1]$. Derive the weak formulation in the appropriate function space and show that it has a unique solution if $p^{\prime}-2 q>0$. Is this also true for $p^{\prime}-2 q=0$?
2. Show that
$F: C[0,1] \rightarrow C[0,1], \quad u \mapsto \int_{0}^{1}\left(u(t)^{2} e^{t-7}+(3 u(t)+13) \sqrt{t}-17 \tan \left(\ln \left(1+t^{2}\right)\right)\right) d t$
is Fréchet- differentiable and compute its derivative.
3. Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto x^{3}$. For which combinations of $p, q \in[1, \infty]$, is the Nemytzki-operator

$$
f: L^{p}(\Omega) \rightarrow L^{q}(\Omega), u \mapsto f(u)
$$

Fréchet- differentiable and why?
4. Show that $\sin : L^{p}(\Omega) \rightarrow L^{q}(\Omega)$ is F-differentiable if $p=q=\infty$ or $p>q \geq 1$.

