Optimization II
Lecture 9, Feb. 2

Revinion
$(c P 1) \min ^{\frac{1}{2} \int_{\Omega}\left(y-y_{d}\right)^{2} d x+\frac{\gamma}{2} \int_{\Omega} u^{2} d x}$
st.

$$
\begin{gathered}
\text { (SE) } \int_{\Omega} \nabla y \cdot \nabla \varphi d x=\int_{\Omega} u \varphi d x \quad \forall \varphi \in H_{0}^{\prime}(\Omega) \\
u \in u_{a d} \subset L^{2}(\Omega)
\end{gathered}
$$

(dowe, cowese, bounded)

$$
\text { - }(L \mu) \Rightarrow \text { fas ang } u \in U_{a d},(S E)
$$

han a unique sob $Y(u)$

- define condral.to-state greator

$$
G: u \mapsto Y(u), \quad L^{2}(\Omega) \rightarrow H_{0}^{\prime}(\Omega)
$$

- introcluce sol. greratar

$$
\begin{aligned}
S=E_{2} \circ G, \quad E_{2}: & H^{\prime}(\Omega) \rightarrow L^{2}(\Omega) \\
& (\text { cont. enoloding })
\end{aligned}
$$

- defire reduced cort fumctional

$$
\begin{aligned}
& f(u)=\jmath(S(n), u) \\
& f: U_{\text {ad }} \subset L^{2}(\Omega) \rightarrow \mathbb{R}
\end{aligned}
$$

then $\left(c p_{1}\right) \Leftrightarrow \min _{u \in \operatorname{Unad} f(n)(x)}$

- (CPI) has a cunque sal. $\bar{u} \in U_{\text {ad }}$
- Let ì le 10 to (*) and arrume f is F-diffe, then

$$
f^{\prime}(\bar{u})(u-\bar{u}) \geq 0 \quad \forall u_{t} u_{a d}
$$

where $f^{\prime}: L^{2}(\Omega) \rightarrow L\left(L^{2}(\Omega), \mathbb{R}\right)$

$$
\begin{aligned}
\text { - far } & f(u)=\frac{1}{2} \int_{\Omega}\left(S(u)-y_{d}\right)^{2} d x+\frac{\gamma}{2} \int_{\Omega} u^{2} d x \\
= & \frac{1}{2}\left\|S(u)-y_{d}\right\|_{L^{2}}^{2}+\frac{\gamma}{2}\|u\|_{L^{2}}^{2} \\
f^{\prime}(u) h & \left.=\left(S(u)-y_{d}\right) S h\right)_{L^{2}}+\gamma(u, h)_{L^{2}} \\
& =(\underbrace{S^{*}\left(S(u)-y_{d}\right)}_{P}, h)_{L^{2}}+\gamma(u, h)_{L^{2}} \\
& =(P+\gamma u, h)_{L^{2}}^{(P}
\end{aligned}
$$

where $p=S^{*}\left(\gamma-y_{d}\right)$ is the neal to

$$
\left\{\begin{aligned}
(A E)-\Delta P & =y-y_{d} & & \text { in } \Omega \\
P & =\sigma & & \text { on } \partial \Omega
\end{aligned}\right.
$$

Theorem 18: Let $\gamma \geq \sigma, U_{\text {ad }} \subset L^{2}(\Omega)$ closed and couvere and either bounded or $\gamma>\sigma$, $y_{d} \in L^{2}(\Omega)$, then $\bar{u} \in \mathcal{U}_{a d}$ is a sol to (CPI) with ordinal state \bar{y} if and ours if
(1) $a_{0}(\underbrace{y(\bar{u})}_{=\bar{y}}, \varphi)=\int_{\Omega} u \phi \quad \forall \varphi \in H_{0}^{\prime}(\Omega)$
(2) the esinter an adjoint $\bar{\nabla} \in H_{0}^{\prime}(\Omega)$ us unique vol to

$$
(A E) \quad a_{0}(\bar{P}, \varphi)=\int\left(\bar{y}-y_{\alpha}\right) \varphi d x \quad \forall \varphi \in H_{0}^{\prime}(\varepsilon)
$$

(3) $(\bar{p}+\gamma \bar{u}, u-\bar{u})_{L^{2}} \geq 0 \quad \forall u \in u_{a d}$
(variational inequality)
If $u_{\text {ad }}=L^{2}(\Omega)$, then take

$$
u-\bar{u}=-(\bar{p}+\gamma \bar{u})
$$

$$
\begin{aligned}
& \Rightarrow-\|\bar{p}+\gamma \bar{u}\|^{2} \geq 0 \\
& \Rightarrow \quad \bar{u}=-\frac{1}{\gamma} \bar{p}
\end{aligned}
$$

Corallang 19: Let $u_{\text {ad }}=L^{2}(\Omega)$ and $\gamma>0$, then \bar{u} in the sul to $(C P 1) \longleftrightarrow$

$$
\begin{aligned}
&(\bar{y}, \bar{p}) \in H_{0}^{\prime}(\Omega) \times H_{0}^{\prime}(\Omega) \text { sobeus } \\
& a_{0}(\bar{y}, \varphi)=-\frac{1}{\gamma} \int_{\Omega} \bar{p} \varphi d x \forall \varphi \in H_{0}^{\prime}(\Omega) \\
& a_{0}(\bar{p}, \varphi)=\int_{\Omega}\left(y-y_{d}\right) \varphi d x \quad \forall \varphi \in H_{0}^{\prime}(\Omega)
\end{aligned}
$$

Aemanb: An eary way of deriving the optimality rutim is by bing the Lagrangian, i.e.,

$$
\begin{aligned}
& \mathscr{L}(y, p, u)=J(y, u)-a_{0}(y, p)+(u, p) \\
& \quad=\frac{1}{2} \int_{\Omega}\left(y-y_{d}\right)^{2} d x+\frac{\gamma}{2} \int_{R} u^{2} d x-\int_{\Omega} \nabla y \cdot \nabla p d x+\int_{\Omega} u p d x
\end{aligned}
$$

As in firite dimenvious (of. lect. 2), ve will see that
(i) $\mathscr{L}_{y}(\bar{y}, \bar{p}, \bar{u}) h=\sigma \leadsto(A E)$
(2) $\mathscr{L}_{p}(\bar{y} \bar{\Gamma}, \bar{u}) h=0 \longrightarrow(S E)$
(3) $\mathcal{L}_{u}(\bar{y}, \bar{p}, \bar{u})(u-\bar{u}) \geq 0 \leadsto(V I)$
indeed,

$$
\begin{aligned}
& \mathcal{L}(y, p, u)=\frac{1}{2} \int_{\Omega}\left(y-y_{d}\right)^{2} d x+\frac{\gamma}{2} \int_{\Omega} r^{2} d x-\int_{\Omega} \nabla \nabla \cdot \nabla p d x+\int_{\Omega} u p d x \\
& \mathcal{L}_{p}(\bar{y}, \bar{p}, \bar{u}) h \stackrel{!}{=} \sigma \Rightarrow \quad \int_{\Omega} \nabla y \cdot \nabla h d x+\int_{\Omega} u h d x \quad \forall h \in H_{0}^{\prime}(\Omega) \\
& 0=-(S E) \\
& \mathcal{L}_{y}(\bar{y}, \bar{T}, \bar{u}) h \stackrel{!}{=} 0 \\
& O=\int_{\Omega}\left(y-y_{d}\right) h d x-\int_{\Omega} \nabla h \cdot \nabla p d x \\
& \forall h \in H_{0}^{\prime}(\Omega)
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{L}(y, p, u)=\frac{1}{2} \int_{\Omega}\left(y-y_{d}\right)^{2} d x+\frac{\gamma}{2} \int_{\Omega} u^{2} d x-\int_{\Omega} \nabla y \cdot \nabla p d x+\int_{\Omega} u p d x \\
& \mathcal{L}_{u}(\bar{y}, \bar{p}, \bar{u}) h=f^{\prime}(\bar{u}) h \\
& =\gamma \int_{\Omega} \bar{u} h d x+\int_{\Omega} h \bar{p} d x=\int_{\Omega}(\gamma \bar{u}+\bar{p}) h d x
\end{aligned}
$$

Now, we try to furother esegloit (VI) $(v I)(\bar{p}+\gamma \bar{u}, u-\bar{u})_{L^{2}} \geq 0$

$$
\Leftrightarrow(\bar{p}+\gamma \bar{u}, \bar{u})_{L^{2}} \leqslant(\bar{p}+\gamma \bar{u}, u)_{L^{2}}
$$

hence $(\bar{p}+\gamma \bar{u}, \bar{u})=\operatorname{mim}_{u \in u_{\text {ad }}}(\bar{p}+\gamma \bar{u}, u)_{L^{2}}$ Neset, we intraduce box courtraite:

$$
X_{a d}^{B}=\left\{u \in L^{2}(\pi) \mid \xi_{0}(x) \leqslant u(x) \leqslant \xi_{1}(x) \text {, a.e. in } \Omega\right\}
$$ with $\tau_{0}, \xi_{1} \in L^{\infty}$

then $U_{\text {ad }}^{B}$ is closed, convex and bounded in $L^{2}(\Omega)$

Now, we show, that (VI) can be discussed rouitsur̃e a.e. in Ω :
lemma 20. (VI) \Leftrightarrow

$$
\begin{aligned}
& (\bar{p}(x)+\gamma \bar{u}(x))(\xi-\bar{u}(x)) \geq 0 \\
& \forall \xi \in\left[\xi_{0}(x), \xi,(x)\right] \text { a.p. in } \Omega
\end{aligned}
$$

Proof: (define $z(x)=\bar{p}(x)+\gamma u(\bar{x})$,
z is Lebesgue sueaurable, hence almost all $x_{0} \in \Omega$ are iebergue pointer i.e., the holds

$$
\lim _{\rho \forall 0} \frac{1}{\mid B_{\Omega}\left(x_{0}\right)} \int_{\rho}\left(x_{0}\right)
$$

For S small lnough , $B_{g}\left(x_{0}\right) \subset \Omega$ now hoore

$$
u(x)= \begin{cases}\xi, & \text { in } B_{9}\left(x_{0}\right) \subset \Omega \\ \bar{u}, & \text { else }\end{cases}
$$

whene $\left\{\in\left\{f_{0}\left(x_{0}\right), f_{1}\left(x_{0}\right)\right]\right.$
then $u \in U_{a d}^{B}$ and

$$
\begin{array}{r}
0 \leq \frac{1}{\left|B_{g}\left(x_{0}\right)\right|} \int_{B_{\rho}\left(x_{0}\right)} z(x) \underbrace{u}_{=\xi}-\bar{u}(x)) d x \\
\downarrow \\
z\left(x_{0}\right)\left(\xi-\bar{u}\left(x_{0}\right)\right) \tag{1}
\end{array}
$$

Cordlany: $\bar{u} \in X_{\text {ad }}^{\text {B }}$ begptimal
\Leftrightarrow (1) or (2) is ratir fied
(1) $\min _{\xi \in\left[\xi_{0}(x), \varphi_{1}(x)\right]}(\bar{p}(x) \cdot \gamma \bar{u}(x)) \xi$

$$
=\left(\bar{p}(x)+\gamma^{\bar{u}}(x)\right) \bar{u}(x)
$$

(2)

$$
\begin{aligned}
\min _{\varphi \in\left\{\xi_{0}(x), \xi_{1}(x)\right]} & \left(p(x) \xi+\frac{\gamma}{2} \xi^{2}\right) \\
& =p(x) \bar{u}(x)+\frac{\gamma}{2} \bar{u}(x)^{2}
\end{aligned}
$$

