Weierstrass Institute for Applied Analysis and Stochastics

Optimization II
 - basic facts from functional analysis

Dietmar Hömberg

- Notation - Multiindices

$$
\begin{aligned}
& \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \alpha_{i} \in \mathbb{N}_{0} \\
& |\alpha|=\sum_{i=1}^{n} \alpha_{i} \quad, x^{\alpha}=x_{1}^{\alpha_{1}} \cdot \ldots \cdot x_{n}^{\alpha_{n}}, x \in \mathbb{R}^{n} \\
& D^{\alpha} \phi=\left(\frac{\partial}{\partial x}\right)^{\alpha} \phi=\left(\frac{\partial}{\partial x_{1}}\right)^{\alpha_{1}} \ldots\left(\frac{\partial}{\partial x_{n}}\right)^{\alpha_{n}} \phi
\end{aligned}
$$

- Motivation: Let $y \in C^{1}[0,1]$ and $\phi \in C_{0}^{\infty}(0,1)$, then

$$
\int_{0}^{1} y^{\prime} \phi d x=-\int_{0}^{1} y \phi^{\prime} d x+\underbrace{\left.y \phi\right|_{0} ^{1}}_{=0}=-\int_{0}^{1} y \phi^{\prime} d x
$$

- Definition
$y \in L_{l o c}^{1}(\Omega)$ has a weak derivative $D^{\alpha} y$, if there exists a function $g \in L_{l o c}^{1}(\Omega)$ such that

$$
\int_{\Omega} g(x) \phi(x) d x=(-1)^{|\alpha|} \int_{\Omega} y(x) \phi^{(\alpha)}(x) d x \quad \text { for all } \phi \in C_{0}^{\infty}(\Omega)
$$

Then $g=D^{\alpha} y$ is called weak derivative of y.

- Example: Let $f(x)=1-|x|$ then f is weakly differentiable with derivative

$$
g(x)=\left\{\begin{array}{ll}
1, & x<0 \\
-1, & x>0
\end{array} .\right.
$$

- Proof:

$$
\begin{aligned}
\int_{-1}^{1} f(x) \phi^{\prime}(x) d x & =\int_{-1}^{0}(1+x) \phi^{\prime}(x) d x+\int_{0}^{1}(1-x) \phi^{\prime}(x) d x \\
& =-\int_{-1}^{0} \phi(x) d x+\left.f \phi\right|_{-1} ^{0}+\int_{0}^{1} \phi(x) d x+\left.f \phi\right|_{0} ^{1} \\
& =-\int_{-1}^{1} g(x) \phi(x) d x
\end{aligned}
$$

- Definition

$$
H^{m}(\Omega)=\left\{u \in L^{2}(\Omega) \mid \partial^{\alpha} u \in L^{2}(\Omega) \text { for all } \alpha \text { with }|\alpha| \leq m\right\}
$$

- Remark H is a Hilbert space with scalar product

$$
(u, v)_{m, \Omega}=\sum_{0 \leq|\alpha| \leq m} \int_{\Omega} \partial^{\alpha} u(x) \partial^{\alpha} v(x) d x
$$

- Important case:

$$
H^{1}(\Omega)=\left\{u \mid(u, u)_{1, \Omega}^{1 / 2}<\infty\right\}
$$

with scalar product

$$
(u, v)_{1, \Omega}=\int_{\Omega} u v d x+\int_{\Omega} \nabla u \cdot \nabla v d x
$$

and norm

$$
\|u\|_{H^{1}(\Omega)}=(u, u)_{1, \Omega}^{1 / 2}=\left(\int_{\Omega} u^{2} d x+\int_{\Omega}|\nabla u|^{2} d x\right)^{1 / 2}
$$

- Theorem Let $\Omega \subset \mathbb{R}^{n}$ a domain with Lipschitz boundary, then there holds
- $H^{s}(\Omega) \subset C^{k}(\bar{\Omega})$, if $s>k+\frac{n}{2}$.
- For $s>k+\frac{n}{2}$ there exists a constant $C>0$, such that

$$
\|u\|_{C^{k}(\bar{\Omega})} \leq C\|u\|_{H^{s}(\Omega)} \quad \text { (continuous embedding) }
$$

- The embedding is even compact.
- Examples
- $n=1$, i.e., $\Omega=(a, b), s=1>0+\frac{1}{2}$ then

$$
H^{1}(a, b) \subset C[a, b]
$$

- $n=2, s=1 \ngtr 0+1$ no continuous embedding of $H^{1}(\Omega)$ in $C(\bar{\Omega})$.
- $n=3, s=2>0+\frac{3}{2}$, hence $H^{2}(\Omega) \hookrightarrow C(\bar{\Omega})$.
- Theorem

Let $\Omega \subset \mathbb{R}^{n}$ be a Lipschitz domain, then there exists a linear, surjective, continuous mapping (the trace operator)

$$
T: H^{1}(\Omega) \rightarrow L^{2}(\partial \Omega)
$$

with

$$
T u=\left.u\right|_{\partial \Omega}
$$

and there exists a constant $C>0$ such that

$$
\|u\|_{L^{2}(\partial \Omega)} \leq C\|u\|_{H^{1}(\Omega)}
$$

- Important case:

$$
H_{0}^{1}(\Omega)=\left\{v \in H^{1}(\Omega)|T(v)=v|_{\partial \Omega}=0\right\}
$$

- Lemma Let Ω be an open Lipschitz domain and $\Gamma_{1} \subset \partial \Omega$ measurable with $\left|\Gamma_{1}\right|>0$. Then there exists a constant c independent of $y \in H^{1}(\Omega)$, such that

$$
\|y\|_{H^{1}(\Omega)}^{2} \leq c\left(\int_{\Omega}|\nabla y|^{2} d x+\int_{\Gamma_{1}} y^{2} d s\right)
$$

- Theorem

Let $\Omega \subset \mathbb{R}^{n}$ be a in Lipschitz domain and $u, v \in H^{1}(\Omega)$. Then, there holds

$$
\int_{\Omega} u(x) \partial_{i} v(x) d x=-\int_{\Omega} \partial_{i} u(x) v(x) d x+\int_{\partial \Omega} u(s) v(s) \nu_{i}(s) d s
$$

for $1 \leq i \leq n$, where ν_{i} is the i-th component of the outer normal ν.

- Definition Let $a(.,):. V \times V \rightarrow \mathbb{R}$ be a bilinear form on a normed linear space V.
- It is called bounded (or continuous), if there exists a $C>0$ such that

$$
|a(v, w)| \leq C\|v\|_{V}\|w\|_{V} \quad \text { for all } v, w \in V
$$

- It is called corecive, if there exists an $\alpha>0$ such that

$$
a(v, v) \geq \alpha\|v\|_{V}^{2} \quad \text { for all } v \in V
$$

- Theorem (Lax-Milgram Let $(V,(.,)$.$) be a Hilbert space, a(.,$.$) a coercive and$ continuous bilinear form and $F \in V^{*}$ (i.e., a linear, continuous mapping $V \rightarrow \mathbb{R}$), then there exists one and only one $y \in V$ such that

$$
a(y, v)=F(v) \quad \text { für alle } v \in V .
$$

- Equivalence of boundedness and continuity

A linear operator between normed spaces is bounded if and only if it is continuous.

- Riesz Representation Theorem If X is a Hilbert space, then

$$
J(x)(y):=(y, x)_{X} \quad \text { for } x, y \in X
$$

defines an isometric linear isomorphism $J: X \rightarrow X^{\prime}$.

- Young's Inequality

For $\delta>0$ and real numbers a, b, there holds

$$
a b \leq \delta a^{2}+\frac{1}{4 \delta} b^{2}
$$

- Hölder's Inequality

Let $p, q \in[1, \infty]$ with $\frac{1}{p}+\frac{1}{q}=1$, then there holds

$$
\|f g\|_{L^{1}(\Omega)} \leq\|f\|_{L^{p}(\Omega)}\|g\|_{L^{q}(\Omega)}
$$

