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1. Consider Problem (CP2) for optimal boundary control:
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a) Derive the weak formulation of the state equation and use the Lax-Milgram
Lemma to show that it has a unique solution specifying assumptions on

w and f.

b) Show that (CP2) admits a unique solution under suitable assumptions on
W,q (which ones?).

¢) Rigorously derive the necessary (and sufficient) first order optimality con-

ditions.

2. Consider the optimal control problem
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a) Use the Lagrangean to formally derive the optimality system.

b) Compute the adjoint ¢, eq and er such that the optimal state is g = 1 and
the optimal control is the cut-off rotational paraboloid
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with apex © = (%, %)T and
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3. Consider the simplified supraconductivity model
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subject to
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a) Derive formally the necessary optimality conditions using the Lagrangean.

b) Let v = 1 and y4 = 9. Derive an explicit expression for the optimal state
y and the adjoint p such that u = 2 is the optimal control.



