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Abstract

We propose a partial-differential-equation-constrained (PDE-constrained) approach to the discontinuous Petrov–Galerkin
(DPG) of Demkowicz and Gopalakrishnan (2010, 2011). This view opens the door to invite all the state-of-the-art PDE-constrained
techniques to be part of the DPG framework, and hence enabling one to solve large-scale and difficult (nonlinear) problems
efficiently. That is, our proposed method preserves all the attractive features of the DPG framework while enjoying all advances
from the PDE-constrained optimization community. The proposed approach can be considered as a Rayleigh–Ritz method for the
DPG minimum residual statement. It is equipped with a trust region inexact Newton conjugate gradient (TRINCG) method which
prevents over-solving when optimization iterates are far away from the optimal solution but converges quadratically otherwise for
sufficiently smooth residual. The PDE-constrained approach together with the TRINCG solver is therefore a robust iterative method
for the DPG framework. It is robust in the sense that the approximate solution is improved after each optimization iterate until the
algorithm converges to a local minimum of the residual. As numerically shown, it is also scalable in the sense that the number
of Newton iterations remains constant as either the mesh or the solution order is refined. Moreover, the proposed approach solves
neither the optimal test functions nor the original PDE directly, though the discretization of the latter is still necessary. The gradient
and Hessian-vector product, which are required by the TRINCG solver, are explicitly derived for both abstract variational problems
and viscous Burger equation. This reveals a fact that the complexity of each Newton iteration scales like O (N × nCG), where N
and nCG are the number of unknowns and the number of conjugate iterations, respectively. Optimal h- and p- convergences of the
proposed approach are demonstrated for Laplace and Helmholtz equations. Numerical results for the viscous Burger equation and
the Euler equation of gas dynamics are very promising.
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1. Introduction

The discontinuous Petrov–Galerkin (DPG) framework of Demkowicz and Gopalakrishnan [1,2] has been emerging
as a new numerical methodology for partial differential equations (PDEs). There have been successful attempts to
apply the DPG framework to a wide range of PDEs including scalar transport [1–3], Laplace [4], convection–diffusion
[2,4], Helmholtz [5–7], Burgers and Navier–Stokes [8], and linear elasticity [9] equations. The recent work in [10]
has also proposed an abstract DPG framework for Friedrichs’ system of PDEs that unifies most of the existing DPG
methods. In particular, the abstract DPG is well-posed, namely the existence, uniqueness, and stability of solution are
guaranteed. It is important to point out that there are related works on the DPG method in [11–13], but we will focus
on the DPG method of Demkowicz and Gopalakrishnan [1,2].

By construction, DPG methods appear to depend on the mesh. Indeed, a DPG method starts by partitioning the
domain of interest into non-overlapping elements. Variational formulations are posed for each element separately and
then summed up to form a global variational statement. Elemental solutions are connected by hybrid variables, also
known as fluxes or traces, that live on the skeleton of the mesh. Thus, the DPG variational formulation, particularly
the number of DPG unknowns, depends on the mesh under consideration. Nevertheless, it can be shown that the DPG
inf–sup constant is independent of the mesh (see, e.g., [14,10]). As a result, the DPG stability does not deteriorate as
the mesh is refined.

The DPG method is a minimum residual method and can be viewed as a generalization of least squares
approaches [15,16]. This suggests that one can equip the DPG method with the Euler–Lagrange approach in which one
solves the optimality equation, under which the residual is minimized, for the DPG solution. The optimality condition
can be solved by direct solvers, which is the approach taken by Demkowicz et al. [1,2,4–9,14,17], or by iterative ones
[18,19].

In this paper, we propose a Rayleigh–Ritz approach to the DPG framework. In particular, we pose the DPG
minimum residual statement as an equivalent PDE-constrained optimization problem. This opens the door to invite all
the state-of-the-art PDE-constrained optimization techniques to be part of the DPG framework, and hence enabling
us to solve large-scale and difficult (nonlinear) problems efficiently. To this end, we first review the standard DPG
unconstrained minimum residual approach, particularly tailored to the viscous Burger equation in Section 2. The
details of a PDE-constrained minimum residual approach to the DPG method is presented in Section 3. We shall
show that no matter how complicated and/or nonlinear the original first order PDE under consideration is the forward
equation is local, i.e. can be solved element-by-element, and is always a linear second order elliptic PDE dictated
by the norm in test space. It turns out that we do not need to solve the original PDE directly though we still have to
discretize it. In fact, its resulting discretized residual is the forcing for the forward equation in the PDE-constrained
framework. We derive the gradient and Hessian-vector product explicitly since they are necessary for a trust region
inexact Newton conjugate gradient method that is described in detail in Section 8. We also show that the adjoint
equation is trivial; particularly, the adjoint and forward solutions are the negative of each other. That is, the adjoint
equation can be eliminated explicitly.

Next, a connection between our PDE-constrained DPG and the standard unconstrained DPG methods will be
studied in Section 4. We shall show that the former can be viewed as an iterative solver for the DPG framework. In
Section 5 we explicitly derive the gradient and Hessian-vector production for the Burger equation. We also briefly
discuss how to straightforwardly and approximately enforce conservation within our optimization framework, and
this is done in Section 6. Section 7 presents a conforming discretization of the PDE-constrained DPG formulation.
A main result of this section is that within our PDE-constrained DPG method the commutation of the optimize-
then-discretize and the discretize-then-optimize approaches is trivially satisfied. This is desirable (see Remark 2), but
typically feasible only for elliptic PDEs, in the PDE-constrained optimization literature. Section 8 lays out a state-of-
the-art trust region inexact Newton conjugate gradient solver for our DPG method, and Section 9 presents numerical
results for Laplace, Helmholtz, viscous Burger, and Euler equations. Finally, the paper is concluded in Section 10.

2. The discontinuous Petrov–Galerkin method with optimal test functions (DPG)

In this section, let us introduce the DPG framework by constructing a DPG method for the following nonlinear
two-dimensional1 viscous Burger equation [20]

1 Extension to three-dimensional cases is straightforward.
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1
2

∂u2

∂x
+

∂u

∂y
= ε


∂2u

∂x2 +
∂2u

∂y2


in Ω , (1)

with inflow boundary condition u = u− on Γ− and outflow boundary Γ+ := ∂Ω \ Γ−. Here, ε is the viscosity
coefficient, which can be zero, and Ω a bounded open subset of R2 with Lipschitz boundary. We first convert (1) into
the first order system of partial differential equations (PDEs)

1
2

∂u2

∂x
+

∂u

∂y
− ε∇ · q = 0 in Ω , (2a)

q−∇u = 0 in Ω . (2b)

Then, we test (2a) with v, (2b) with τ , and add the resulting equations to have
1
2

∂u2

∂x
+

∂u

∂y
− ε∇ · q, v


Ω
+ (q−∇u, τ )Ω = 0, (3)

where we have introduced the notation (·, ·)K as the L2-inner product of two (possibly vector-valued) functions on
a given domain K . Now, let us partition the domain Ω into Nel non-overlapping elements K j , j = 1, . . . , Nel with

Lipschitz boundaries such that Ωh := ∪
Nel
j=1 K j and Ω = Ωh . Here, h is defined as h := max j∈{1,...,Nel} diam


K j

.

We denote the skeleton of the mesh by Γh := ∪
Nel
j=1 ∂K j ; the set of all (uniquely defined) faces/edges e, each of

which comes with a normal vector ne
=


ne

x , ne
y


. For the sake of convenience, we also define Γ−h := Γh \ Γ+,

Γ+K j
:= ∂K j \ Γ− and similarly Γ−K j

:= ∂K j \ Γ+.
Now, integrating (3) by parts we have

K j

−
1
2


u2,

∂v

∂x


K j

−


u,

∂v

∂y


K j

+ ε (q,∇v)K j
+


1
2

u2nx + uny, v


Γ+K j

− ε ⟨q · n, v⟩ΓK j
+ (q, τ )K j

+ (u,∇ · τ )K j
− ⟨u, τ · n⟩Γ+K j

= −


1
2

u2
−nx + u−ny, v


Γ−K j

+ ⟨u−, τ · n⟩Γ−K j
, (4)

where ⟨·, ·⟩Γ denotes the duality pairing on a given set Γ with nontrivial one-dimensional Lebesgue measure. The
next step in the DPG methodology is to seek solutions (u, q) with u, u2

∈ L2 (Ω) and2 q ∈ L2 (Ω). If we do that, the
trace of u and numerical flux q · n on the element boundary are, however, not meaningful. To avoid this undesirable
fact, let us introduce single-valued hybrid variables û and q̂ on the mesh skeleton.

Next, we seek

u, q, û, q̂


∈ U := L2 (Ω)× L2 (Ω)× H

1
2

Γ−h


× H−

1
2 (Γh) such that

K j

−
1
2


u2,

∂v

∂x


K j

−


u,

∂v

∂y


K j

+ ε (q,∇v)K j
+


1
2

û2nx + ûny, v


Γ+K j

− ε

q̂ sgn (n) , v


ΓK j
+ (q, τ )K j

+ (u,∇ · τ )K j
−

û, τ · n


Γ+K j
= ⟨u−, τ · n⟩Γ−K j

−


1
2

u2
−nx + u−ny, v


Γ−K j

, ∀ (v, τ ) ∈ H1 (Ωh)× H (div,Ωh) , (5)

with the broken spaces H1 (Ωh) and H (div,Ωh) defined as

H1 (Ωh) =

v ∈ L2 (Ω) : v|K j

∈ H1 K j


,

H (div,Ωh) =

τ ∈ L2 (Ω) : τ |K j

∈ H

div, K j


,

2 Rigorously, q ∈


L2 (Ω)
2

but we use q ∈ L2 (Ω) throughout the paper for simplicity in writing.
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and

sgn (n) :=


1 if n = ne

−1 if n = −ne.

It should be mentioned that the well-posedness of the analogous formulation for a large family of Friedrichs’ systems
of linear first order PDEs has been shown in [10]. Nevertheless, it is not clear to us whether the nonlinear formulation
(5) in general has a solution. Instead of struggling with the well-posedness for nonlinear problems, which may be
impossible in general, we proceed with the procedure for finding a solution assuming that there is at least one.
Introducing V := H1 (Ωh)× H (div,Ωh) we rewrite (5) in the abstract form

B

u, q, û, q̂


, (v, τ )


V ′×V := b


u, q, û, q̂


, (v, τ )


= ℓ ((v, τ )) =: ⟨ℓ, (v, τ )⟩V ′×V ,

with b (·, ·) and ℓ (·) obviously defined as the left- and the right-hand sides of (5). In addition, we denote by V ′ the
topological dual of V . Next, one may realize, at least psychologically, that “there are more unknowns than the number
of equations” since we have introduced two new unknown variables û and q̂ without adding more equations. This
immediately suggests that one should seek a solution using the popular least squares approach. This is essentially the
main idea behind the DPG method with optimal test functions. In particular, we minimize the residual in the dual
space V ′ using least squares, i.e.,

inf
U

J :=
1
2
∥B (U )− ℓ∥2V ′ , (6)

where we have defined the group variable U :=

u, q, û, q̂


. At this point, one can set the first variation of J to zero

(see, e.g., [17]) to arrive at the DPG formulation with optimal test functions, which is then discretized and solved. This
is the standard approach in the DPG literature (see, e.g., [1–9,14,17]). More explicitly, taking the Gâteaux derivative
of J , D J , with respect to U in the direction Ũ and then setting it to zero we obtain the standard DPG equation

B (U )− ℓ, R−1
V D B


U; Ũ


V ′×V

= 0, ∀ Ũ ∈ U, (7)

which is equivalent to

b


U , VŨ

= ℓ


VŨ

, ∀ Ũ ∈ U,

where VŨ := R−1
V D B


U; Ũ


is known as the nonlinear optimal test function corresponding to Ũ [20] (because it is

a function of U and it makes the residual minimal at the same time, assuming that the Hessian is positive definite).
Here, RV is the Riesz map that takes a function in V to its unique corresponding functional in V ′.

3. DPG as a PDE-constrained optimization problem (oDPG)

Here, we take a radically different approach, namely, a constrained optimization approach as opposed to the
standard unconstrained approach in Section 2. We first define V as the Riesz representation of the residual B (U )− ℓ

in V and denote by (·, ·)V the inner product of two functions in V , and then, by the isometry and definition of the
Riesz map, our unconstrained optimization problem (6) becomes

inf
U

J :=
1
2
∥V∥2V , (8a)

subject to

(V, W)V = ⟨B (U ) , W⟩V ′×V − ⟨ℓ, W⟩V ′×V , ∀W ∈ V, (8b)

which is a constrained minimization problem.

Remark 1. In the context of PDE-constrained optimization, the unknown solution U =

u, q, û, q̂


is known as

the (control) parameter while the constraint (8b) is called the forward equation. It is interesting to realize that no
matter how complicated and/or nonlinear the original first order PDE under consideration is the forward equation
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restricted on each element K j is always a linear PDE in V and the differential order is dictated by the norm in V .
For example, for the inviscid Burger equation, and hence for any conservation laws, the forward PDE is always the
diffusion–reaction problem on K j since the test space is always H1 (Ωh). It follows that we can use the standard
continuous finite element to solve the forward equation in an element-by-element fashion. It is interesting to point out
that though we do not need to solve the original Burger equation directly, we still have to discretize it. In fact, the
resulting discretized residual of the original PDE is the forcing for the forward equation.

We solve our constrained optimization problem using the “reduced space approach”, i.e. U is essentially the only
optimization variable (as opposed to the full space approach in which both U and V are optimization variables), via
the standard adjoint method [21]. To this end, we define the Lagrangian

L =
1
2
∥V∥2V + (V, W)V − ⟨B (U ) , W⟩V ′×V + ⟨ℓ, W⟩V ′×V .

Taking the first variation of the Lagrangian with respect to W in the direction W̃ and arguing that the variation W̃ is
arbitrary yield the forward equation (8b).

Now taking the first variation the Lagrangian with respect to V in the direction Ṽ and arguing that the variation Ṽ
is arbitrary yield the so-called adjoint equation

Ṽ, V


V
+


Ṽ, W


V
= 0 ∀ Ṽ ∈ V . (9)

It follows that the adjoint equation is simply W = −V . Finally, taking the first variation the Lagrangian with respect
to U in the direction Ũ (satisfying U + Ũ ∈ U ) yields the gradient in the direction Ũ

G


U; Ũ

:= −


D B


U; Ũ


, W


V ′×V

,

where D B


U; Ũ


denotes the first variation of B (U ) in the direction Ũ , while D B (U ) is a linear operator from U

to V ′. Eliminating the adjoint equation (9) we can rewrite the gradient as

G


U; Ũ

=


D B


U; Ũ


, V

V ′×V

. (10)

The procedure for computing the cost and the gradient is now clear. We first solve the forward equation (8b) for V ,
which is then used to compute the cost functional (8a) and the gradient (10) in a given direction Ũ .

We shall describe in Section 8 a trust region inexact Newton conjugate gradient (Newton-CG) method to solve the
PDE-constrained optimization problem (8). It is therefore necessary to compute the Hessian of the cost functional
(8a). The Hessian acting in the directions Ũ and U̇ (satisfying U + U̇ ∈ U ) is obtained by simply taking the first
variation of the gradient with respect to U and V in the direction U̇ and V̇ (satisfying V + V̇ ∈ V ):

H


U; Ũ , U̇

=


D B


U; Ũ


, V̇

V ′×V

+


D2 B


U; Ũ , U̇


, V

V ′×V

. (11)

As mentioned at the beginning of this section, the reduced space approach is employed, and hence the variations V̇
cannot be arbitrary. In fact, it is only admissible if the forward equation (8b) is satisfied. As a direct consequence, the
first variation of (8b) with respect to U and V in the directions U̇ and V̇ must vanish, that is, V̇ is the solution of the
following incremental forward equation:

V̇, W


V =

D B


U; U̇


, W


V ′×V , ∀W ∈ V . (12)

As a result, once the cost and gradient in a given direction Ũ is computed, one solves the incremental forward equation
(12) for V̇ and then evaluates the Hessian as in (11).

At this point, one may think that our approach seems to be much more complicated and disadvantageous compared
to the standard unconstrained approach. This is not true. On the contrary, our approach opens the door to invite all the
state-of-the-art PDE-constrained techniques to be part of the DPG framework, and hence enabling us to solve large-
scale and difficult (nonlinear) problems. More on the advantage of the proposed approach is discussed in Section 5.
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4. Connection between DPG and oDPG

As can be seen, the standard DPG with optimal test function described at the end of Section 2 seems to be different
from our PDE-constrained approach, namely oDPG, in Section 3. In particular, we do not have the concept of optimal
test function in the oDPG approach and we do not solve the original PDE directly either. In this section we would like
to address the relationship between the standard DPG method and oDPG.

By construction, the cost function (8a) of oDPG is exactly the same as the cost function (6) of the standard DPG.
We next show that the gradient of the DPG method, namely, the left-hand side of (7) is identical to the oDPG gradient
(10). Using the definition of the Riesz map RV , the forward equation is equivalent to

RV V = B (U )− ℓ in V ′,

which can be then substituted in (10) to give

G


U; Ũ

=


D B


U; Ũ


, R−1

V (B (U )− ℓ)

V ′×V

,

which, in turn, is exactly the left-hand side of (7) using the property of the Riesz map and its inverse. In order to solve
(7), one typically uses the Newton–Raphson method in which the Jacobian of the left-hand side is constructed. This
is exactly the Hessian in the oDPG approach.

In summary, though both standard DPG and oDPG solve the same variational problem in exact arithmetic, the
former follows the Euler–Lagrange method while the latter can be considered as a Rayleigh–Ritz approach. As
shall be shown in Section 8, our optimization solver requires the evaluation of the cost, gradient, and Hessian-
vector product for a given value of U . This amounts to solving the forward equation (8b) and incremental forward
equation (12) for V and Ṽ locally, element-by-element, by inverting elemental Riesz maps on K j . The construction
of gradient and Hessian-vector product for the field variables u, q is also local on each element, while it requires
immediate neighboring information for û, q̂. That is, the oDPG approach does not construct any global matrix (e.g. the
Jacobian/Hessian) explicitly. Instead, it exploits the power of the adjoint technique to compute the Hessian-vector
product exactly but implicitly without ever forming the Hessian matrix. This important point is best illustrated on the
viscous Burger equation in Section 5.

5. Explicit gradient and Hessian-vector product for the Burger equation

In this section, the abstract gradient and Hessian-vector product in Section 3 will be specified for the viscous Burger
equation. To be efficient in actual implementation, we choose test functions that are localized on each element. Taking
W = (w, 0) such that suppw ⊆ K j , the forward equation (8b) reads

(v, w)H1(K j) = −
1
2


u2,

∂w

∂x


K j

−


u,

∂w

∂y


K j

+ ε (q,∇w)K j

+


1
2

û2nx + ûny, w


ΓK j

− ε

q̂ sgn (n) , w


ΓK j

. (13)

On the other hand, taking W = (0, σ ) such that suppσ ⊆ K j , the forward equation (8b) becomes

(τ , σ )H(div,K j) = (q, σ )K j
+ (u,∇ · σ )K j

−

û, σ · n


ΓK j

. (14)

Thus, given U one can solve for the residual representation V in an element-by-element fashion by inverting symmetric
positive definite Gram matrices generated by H1


K j


and H

div, K j


.

Next, taking Ũ = (ũ, 0, 0, 0) in (10) such that ũ has local support in K j gives the gradient of the cost function (8a)
with respect to u in the direction ũ

⟨D J , ũ⟩ := G


U; Ũ

= −


uũ,

∂v

∂x


K j

−


ũ,

∂v

∂y


K j

+ (ũ,∇ · τ )K j
, (15)



26 T. Bui-Thanh, O. Ghattas / Comput. Methods Appl. Mech. Engrg. 278 (2014) 20–40

where we have omitted the subscript V ′ × V in the definition of the Gâteaux derivative of the cost J for simplicity in
writing. The gradient with respect to q in the direction q̃ such that q̃ has local support in K j can be obtained by taking
Ũ =


0, q̃, 0, 0


:

D J , q̃

:= G


U; Ũ


= ε


q̃,∇v


K j
+

q̃, τ


K j

. (16)

Similarly, the gradient with respect to û in the direction ˜̂u such that ˜̂u has local support in Γ+K j
reads

D J , ˜̂u

:= G


U; Ũ


=


û ˜̂u, [[vnx ]]


Γ+K j

+


˜̂u, [[vny]]


Γ+K j

−


˜̂u, [[τ · n]]


Γ+K j

, (17)

where we have used the standard jump operator for any quantity (·) across and edge e as [[(·)]] := (·)+ + (·)− with

superscripts ± indicating the (relative) “left” and “right” values of (·). Now, taking Ũ =


0, 0, 0, ˜̂q


such that ˜̂q has

local support in ΓK j gives the gradient of the cost function (8a) with respect to q̂ in the direction ˜̂q
D J , ˜̂q


:= G


U; Ũ


= −ε


˜̂q , [[vn]]


ΓK j

. (18)

The Hessian acting in directions Ũ and U̇ :=


u̇, q̇, ˙̂u, ˙̂q


, written abstractly in (11), has the same number of

components as the gradient. In particular, for the first gradient component in (15), the corresponding Hessian-vector
product is given by

D ⟨D J , ũ⟩ , U̇

= −


uũ,

∂v̇

∂x


K j

−


ũ,

∂v̇

∂y


K j

+ (ũ,∇ · τ̇ )K j
−


u̇ũ,

∂v

∂x


K j

,

for the second gradient component in (16) the corresponding Hessian is
D

D J , q̃


, U̇

= ε


q̃,∇v̇


K j
+

q̃, τ̇


K j

,

for the third gradient component in (17) the corresponding Hessian reads
D

D J , ˜̂u


, U̇

=


û ˜̂u, [[v̇nx ]]


Γ+K j

+


˜̂u, [[v̇ny]]


Γ+K j

−


˜̂u, [[τ̇ · n]]


Γ+K j

+


˙̂u ˜̂u, [[vnx ]]


Γ+K j

,

and for the fourth gradient component in (18) the corresponding Hessian is given by
D

D J , ˜̂q


, U̇

= −ε


˜̂q , [[v̇n]]


ΓK j

,

where V̇ = (v̇, τ̇ ).
Again, the variation V̇ = (v̇, τ̇ ) cannot be arbitrary but satisfies the incremental forward equation. Similar to the

forward equations (13) and (14), the incremental counterpart also has two sets, the first of which is the first variation
of (13) and can be shown to be

(v̇, w)H1(K j) = −


u̇u,

∂w

∂x


K j

−


u̇,

∂w

∂y


K j

+ ε (q̇,∇w)K j

+


˙̂uûnx +

˙̂uny, w

ΓK j \Γ

−
− ε


˙̂q sgn (n) , w


ΓK j

, ∀w ∈ H1 K j

,

while the second of which is the first variation of (14), i.e.,

(τ̇ , σ )H(div,K j) = (q̇, σ )K j
+ (u̇,∇ · σ )K j

−


˙̂u, σ · n


ΓK j \Γ

−
, ∀σ ∈ H


div, K j


.

This completes the explicit description of the gradient and Hessian-vector product for the viscous Burger equation.
As can be seen, computing the cost, gradient, and Hessian-vector product is local in an element-by-element and

edge-by-edge fashion. For gradient and Hessian-vector product with respect to hybrid variables û and q̂ on an edge
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e, only two neighboring elements sharing that edge are involved in the computation. Consequently, global matrices or
matrix–vector products are never formed in our approach. If we denote by mel the number of unknowns corresponding
to u on each element K j and by med the number of unknowns corresponding to û on each edge e, then it is
clear from above that the complexity of constructing the cost, gradient, and a Hessian-vector product behaves like
O

m3

el × Nel + m2
ed × Ned


. Since the total number of unknowns scales as N = O (mel × Nel + med × Ned), the

complexity is linear in the number of unknowns N assuming mel × Nel ≫ m2
el and med × Ned ≫ med .

6. Enforcing conservation

Note that the oDPG method is general not conservative. The reason is that it is equivalent to the DPG method
which is not conservative since constant function, i.e. 1, may not be a member of the optimal test functions VŨ :=

R−1
V D B


U; Ũ


. However, this can be enforced explicitly. Ideally it is desirable to have the following identity

1
2

û2nx + ûny, 1

ΓK j

− ε

q̂ sgn (n) , 1


ΓK j
= 0, ∀K j , (19)

which is a weak statement (by setting the test function to be constant) of the following pointwise conservation:

∇ ·


1
2

u2, u


− εq


= 0.

Perhaps, the easiest way to approximately enforce (19) is to use the penalty method. In this approach, we augment
the cost function (8a) by an amount of λ

2 C2 so that the augmented cost functional reads

J ′ := J +
λ

2
C2,

where λ is some penalty constant and

C :=

K j


1
2

û2nx + ûny, 1

ΓK j

− ε

q̂ sgn (n) , 1


ΓK j

. (20)

The advantage of this approach is that the whole reduced space framework in Section 5 is not changed except for a
small modification of the gradient and Hessian due to the contribution of λ

2 C2. The disadvantage is clearly that the
conservation is not exactly satisfied.

7. Discretization

We have introduced the oDPG method on the infinite dimensional level in Section 3. Let us now approximate
infinite dimensional spaces U and V by finite dimensional piecewise polynomial spaces Uh and Vh on which we solve
the constrained variational problem (8a)–(8b). We define

Uh :=


Uh =


uh, qh, ûh, q̂h

 uh |K j
∈ P p K j


, qh |K j

∈


P p K j
2

, K j ∈ Ωh

ûh

e ∈ P p (e) , q̂h


e ∈ P p (e) , e ∈ Γh


,

Vh :=


Vh = (vh, τ h) : vh |K j

∈ P p+∆p K j

, τ h |K j

∈


P p+∆p K j

2
, K j ∈ Ωh


.

It should be mentioned that, for simplicity of the exposition, we have used uniform polynomial order p ≥ 0 and
enriched order ∆p ≥ 1 for all elements; the extension to nonuniform p and ∆p is straightforward.

Using the standard finite element ansatz applied to the group variable Uh we have

Uh :=

N
n=1

U n
h Φn,
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where Φn are either modal or nodal basis functions, the total of which is N ; hence, U n
h are either modal or nodal

coefficients. The discretized counterpart of the infinite dimensional PDE-constrained optimization problem (8) reads

min
Uh

Jh :=
1
2
∥Vh∥

2
Vh

, (21a)

subject to

(Vh, Wh)Vh
= ⟨B (Uh) , Wh⟩Vh

′
×Vh
− ⟨ℓ, Wh⟩Vh

′
×Vh

, ∀Wh ∈ Vh . (21b)

Using (10), the gradient of Jh with respect to U n
h can be written as

Gh


Uh;U n
h


= ⟨D B (Uh;Φn) , Vh⟩Vh

′
×Vh

.

Now, applying (11), the nth component of the product of the Hessian matrix with an arbitrary (nodal or modal) vector
U̇ n

h


n reads

Hn
h


Uh;U n

h , U̇h

=

D B


Uh;U n

h


, V̇h


Vh
′
×Vh
+


D2 B


Uh;U n

h , U̇h

, Vh


Vh
′
×Vh

,

where U̇h :=


n U̇ n
h Φn and V̇h satisfies the discretized incremental forward equation

V̇h, Wh


Vh
=

D B


Uh; U̇h


, Wh


Vh
′
×Vh

, ∀Wh ∈ Vh .

Remark 2. There are two discretization approaches in the PDE-constrained literature (see, e.g., [22]), namely,
discretize-then-optimize and optimize-then-discretize. In the former approach, one first discretizes the cost functional
and the forward equation, and then optimizes the discretized optimization problem to find the gradient and Hessian.
This method always guarantees that the resulting gradient and Hessian are exact gradient and Hessian of the discrete
cost functional, the so-called gradient consistency. In the latter approach, on the other hand, one first optimizes
the infinite dimensional optimization problem to find gradient and Hessian, and then discretizes the resulting cost,
gradient, and Hessian. The discretized gradient and Hessian in this case are close but generally not exactly those of the
discretized cost functional, though they do converge to the exact ones as the mesh size approaches zero. Nevertheless,
when both approaches commute with each other, the gradient consistency is in fact satisfied, and this typically happens
for discretizations that lead to symmetric matrices. Our above discretization for oDPG falls into the optimize-then-
discretize category. Since the DPG stiffness matrix is symmetric (see, e.g., [2]), the commutation, and hence the
gradient consistency, is guaranteed.

8. A trust region inexact Newton-CG solver

Section 7 equips us with the discretized cost, gradient, and Hessian-vector product. Therefore, we are in the position
to use any existing first order (requires gradient) or second order (requires Hessian) optimization techniques. Of our
interest are Newton-like optimization methods that converge quadratically as optimization iterates are sufficiently
close to a local minimum. However, care must be taken since our problem is inherently large-scale. For example in
the above Burger equation, if p = 2 and a triangular mesh is used, we have N = 3×6Nel+2×3Ned unknowns, where
Ned is the number of edges in the skeleton Γh . Consequently, it is necessary to use a scalable large-scale optimization
technique for our oDPG problem. We use the state-of-the-art trust region inexact Newton-CG (TRINCG) method
which we now describe.

We consider the following generic unconstrained optimization problem

min
z∈RN

F (z) ,

which we like to solve using sequential quadratic programming. In this approach, at the kth iteration, one needs to
solve the following sub-optimization problem

min
s∈RN


ϕk (s) : ∥s∥ ≤ ∆k


, (22)



T. Bui-Thanh, O. Ghattas / Comput. Methods Appl. Mech. Engrg. 278 (2014) 20–40 29

where ∆k is the current trust region radius whose updating rule is given in Algorithm 3, and ϕk (s) the merit function
given by

ϕk (s) = sT
∇F


zk

+

1
2

sT
∇

2 F


zk


s.

A sketch of our TRINCG solver is given in Algorithm 1 for which Step 3 is the key. In this step, we solve the
trust region subproblem (22) inexactly as in Algorithm 2. In particular, if an iterate is far from the closest minimum,
and hence the gradient is typically large, the inexact CG solver returns quickly to avoid unnecessary work. Closer
to the optimum, the gradient is smaller and the number of CG iterations also increases in general to attain quadratic
convergence. This is possible due to the fact that the method combines the rapid locally-quadratic convergence rate
properties of Newton’s method, the effectiveness of trust region globalization for treating ill-conditioned problems,
and the Eisenstat–Walker idea of preventing over-solving. In other words, the inexact solver automatically adapts to
minimize the work. The TRINCG algorithm is defined to converge if eitherF


zk
+ s


− F


zk
 ≤ εF


1+ F


zk


, or ∥s∥2 ≤ εX , or
∇F


zk
 ≤ εG ,

is true, where εF , εX and εG are prescribed tolerances for the cost functional value, optimization variables, and the
gradient, respectively.

Algorithm 1 TRINCG solver
1: while not converged do
2: At the current Newton step zk , compute the gradient ∇F


zk

.

3: Solve the subproblem (22) using inexact-CG Algorithm 2.
4: Compute the ratio between the actual and the predicted reductions

ared := F


zk
+ s


− F


zk


, pred := ϕk (s) , ρ :=
ared

pred
.

5: Update zk+1
← zk and adjust the trust region radius ∆k+1

← ∆k via Algorithm 3.
6: end while

Algorithm 2 Inexact Newton-CG

Ensure: εCG ,∇F and a subroutine for the action of Hessian ∇2 F with an arbitrary vector.
1: Set r = ∇F , and η = min {εCG , ∥r∥} × ∥r∥.
2: Solve the Newton equation ∇2 F s = −∇F using the standard CG method and return as follows:
3: if negative curvature direction is detected then
4: Follow the negative curvature direction and set s up to the trust region boundary.
5: return s
6: else if the residual of the Newton equation is less than or equal to η then
7: return s
8: else if the number of CG iterations is equal to N then
9: return s

10: end if

It should be pointed out that for linear PDE, the TRINCG is exactly the standard CG method if the tolerance η is
machine zero and the number of CG iterations is N .

9. Numerical results

In this section, we demonstrate our TRINCG solver for the oDPG formulation on linear problems including the
Laplace and Helmholtz equations. It will be shown that h-convergence is optimal and p-convergence is exponential.
We then present some numerical results for the TRINCG solver on two-dimensional nonlinear viscous Burger equation
and two-dimensional Euler equation.
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Algorithm 3 Trust region radius computation
Ensure: µ = 1.e − 1, β = 0.25, ν = 0.75, γ0 = 0.0625, γ1 = 0.5, γ2 = 2,∆max and BT max

1: if (ρ > µ and ared < 0) or ared < 0 then
2: if ρ ≤ β and ∥s∥2 < γ1∆k then
3: ∆k+1

= γ1∆k

4: else if ρ > ν then
5: if ∥s∥2 ≥ 0.8∆k then
6: ∆k+1

= min

γ2∆k,∆max


7: else
8: ∆k+1

= min

max


∆k, γ2 ∥s∥2


,∆max


9: end if

10: end if
11: else
12: kBT = 0
13: while ared ≥ 0 and kBT ≤ BT max do
14: if ρ ≤ 0 then
15: ∆k+1

= γ0 min

∆k, ∥s∥2


16: else
17: ∆k+1

= γ1 min

∆k, ∥s∥2


18: end if
19: Solve the trust region problem (22).
20: Compute ared, pred and ρ

21: kBT = kBT + 1
22: end while
23: end if
24: Update zk+1

= zk
+ s

9.1. Laplace equation

We consider the Laplace equation with Dirichlet boundary condition

−∆u = f in Ω ,

u = g on ∂Ω ,

which can be viewed as a simplification of the viscous Burger equation (1) in which the advection term is zero and
ε = 1. Here, Ω = [0, 1]2. The forcing f and the Dirichlet boundary value g are chosen such that the exact solution
reads

u = sin (5x) cos (7y) .

The tolerances are chosen as follows:

εF = 1× 10−12, εX = 10−12, εG = 10−12,

and the initial guess is chosen as U = 0.
Fig. 1(a) shows the h-convergence in which we plot the error in the L2-norm, i.e., ∥u − uh∥L2(Ωh), versus h =

{0.05, 0.1, 0.2} in the log–log scale for solution order in the range p = {2, 3, 4} and ∆p = 1. As expected, we obtain
the optimal convergence order of p + 1. We also show the p-convergence in Fig. 1(b) for three different mesh sizes
h = {0.05, 0.1, 0.2} in the linear-log scale, and in this case the convergence is exponential. Note that the solution is
marginally improved for ∆p ≥ 2, and hence not shown here.

In order to see how the oDPG solution evolves during the optimization process, we plot the solution after one
iteration together with the mesh in Fig. 2(a), the solution after four iterations in Fig. 2(b), and the solution after nine
iterations in Fig. 2(c) (indistinguishable with the exact solution). In this case, we take p = 4 and ∆p = 1. Note that
the (relative) change in the cost function is less than εF after nine iterations. The total of unknowns in Uh is 2700.
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(a) h-convergence. (b) p-convergence.

Fig. 1. h- and p-convergences for the Laplace equation: Fig. 1(a) Log–log scale plot of the error of oDPG method in the L2-norm,
i.e., ∥u − uh∥L2(Ωh). The mesh is refined in h for different polynomial orders from p = 2 to p = 4. The convergence is shown for three

different mesh sizes h = {0.05, 0.1, 0.2}. Fig. 1(b) Linear-log scale plot of the error of oDPG method in the L2-norm. The solution p is refined,
and the convergence is shown for three different mesh sizes h ∈ {0.05, 0.1, 0.2}.

(a) One iteration. (b) Four iterations. (c) Nine iterations.

Fig. 2. Solution of the Laplace equation using the oDPG method with p = 4 and ∆p = 1. Fig. 2(a) is uh after one iteration. Fig. 2(b) is uh after
four iterations. Fig. 2(c) is uh after nine iterations.

9.2. Helmholtz equation

In this section, the Helmholtz equation is considered

−∆u − k2u = f in Ω ,

u = g on ∂Ω ,

which can be viewed as a variant of the viscous Burger equation (1) in which the advection term is replaced by −k2u
and ε = 1. Similar to the Laplace case, we take Ω = [0, 1]2. The forcing f and the Dirichlet boundary value g are
chosen such that the exact solution reads

u = cos


tan−1


y

x + 1


J1


5


(x + 1)2
+ y2


,

where J1 is the standard Bessel function. The tolerances are chosen as

εF = 10−12, εX = 10−12, εG = 10−12.

Similar to the Laplace case, we choose U = 0 for the initial guess.
We choose p = 4 and ∆p = 1 (giving a total of 2700 unknowns) and show the solution uh after one iteration, four

iterations, and eight iterations (indistinguishable with the exact solution) in Fig. 3. It turns out that the optimization
stops after eight iterations when the criteria on the relative change in the cost function are met and the actual cost value
(the residual square) in this case is 2.98× 10−9; the ℓ2-norm of the discrete gradient is 2.8× 10−9. We also show h-
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(a) One iteration. (b) Four iterations. (c) Eight iterations.

Fig. 3. Solution of the Helmholtz equation using the oDPG method with p = 4 and ∆p = 1. Fig. 3(a) is uh after one iteration. Fig. 3(b) is uh
after four iterations. Fig. 3(c) is uh after eight iterations.

(a) h-convergence. (b) p-convergence.

Fig. 4. h- and p-convergences for the Helmholtz equation: Fig. 4(a) Log–log scale plot of the error of oDPG method in the L2-norm,
i.e., ∥u − uh∥L2(Ωh). Fig. 4(b) Linear-log scale plot of the error of oDPG method in the L2-norm.

and p-convergences in Fig. 4. As can be seen, we obtain optimal convergence order in h and exponential convergence
in p.

9.3. Burger equation

We next consider the viscous Burger equation with smooth exact solution. A forcing is added to the right-hand side
of (1) such that the exact solution is given by

ue =
er1(x−1) − er2(x−1)

e−r1 − e−r2
sin (πy) , (23)

which has a mild boundary layer at x = 1. Here,

r1 = −
−1+

√
1+ 0.04π2

0.2
, and r2 = −

−1−
√

1+ 0.04π2

0.2
.

The domain under consideration is Ω = [0, 1]2. In order to enforce the Dirichlet boundary on ∂Ω , we set û equal to
the exact solution along ∂Ω .

The tolerances for the optimization solver are chosen as follows

εF = 10−14, εX = 10−14, εG = 10−14,

and the initial guess is chosen to be U = 0. Fig. 5 shows a typical evolution of the oDPG solution as the number of
Newton iterations increases. In particular, we have used p = 3, ∆p = 1, h = 0.2, and ε = 10−1. For this case, the
oDPG solution is almost indistinguishable to the exact solution after 14 iterations; the residual norm is 2.87 × 10−5

and the ℓ2-norm of the discrete gradient is 1.66× 10−9.
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(a) Solution after 2 iterations. (b) Solution after 5
iterations.

(c) Solution after 12
iterations.

Fig. 5. Solution of the viscous Burger equation using the oDPG method with p = 3 and ∆p = 1 and exact solution (23). Fig. 5(a) is the solution
after 2 iterations. Fig. 5(b) is the solution after 5 iterations. Fig. 5(c) is the solution after 11 iterations.

(a) h-convergence. (b) p-convergence.

Fig. 6. h- and p-convergences for the viscous Burger equation with ε = 10−1: Fig. 6(a) Log–log scale plot of the error of oDPG method in the
L2-norm, i.e., ∥u − uh∥L2(Ωh). The mesh is refined in h for different polynomial orders from p = 1 to p = 3. The convergence is shown for three

different mesh sizes h = {0.05, 0.1, 0.2}. Fig. 6(b) Linear-log scale plot of the error of oDPG method in the L2-norm. The solution p is refined,
and the convergence is shown for three different mesh sizes h ∈ {0.05, 0.1, 0.2}.

Table 1
The number of Newton iterations of oDPG method as the solution order
and mesh are refined, viscous Burger equation with ε = 10−1.

h 0.2 0.1 0.05

p = 1 11 13 15
p = 2 14 13 12
p = 3 13 14 13

The first question that we would like to address is how the number of Newton iterations varies as either the mesh or
solution order is refined. To that end, we take ε = 10−1. As can be seen from Table 1, the number of Newton iterations
is essentially constant as the mesh is refined and/or the solution order increases. This mesh-independent property of
our optimization, and hence iterative oDPG, solver is very desirable for high-fidelity large-scale problems. That is,
our oDPG solver scales well with the solution resolution.

We next study h- and p-convergences. To that end, we choose two values for ε: 10−1 and 1. Fig. 6 shows, for
ε = 10−1, that h-convergence is suboptimal by one order, though p-convergence is still exponential. We observe
similar behavior for ε = 1 in Fig. 7. Note that we have used ∆p = 1 since ∆p ≥ 2 is just marginally better.
Again, for all cases, the stopping criteria on relative change in the cost functional (residual) are met first. For all cases,
we observe that the ℓ2-norm of the discrete gradient is O


10−10


when the optimization stops. It follows that the

suboptimality is not due to premature convergence.
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(a) h-convergence. (b) p-convergence.

Fig. 7. h- and p-convergences for the viscous Burger equation with ε = 1: Fig. 7(a) Log–log scale plot of the error of oDPG method in the
L2-norm, i.e., ∥u − uh∥L2(Ωh). The mesh is refined in h for different polynomial orders from p = 1 to p = 3. The convergence is shown for three

different mesh sizes h = {0.05, 0.1, 0.2}. Fig. 7(b) Linear-log scale plot of the error of oDPG method in the L2-norm. The solution p is refined,
and the convergence is shown for three different mesh sizes h ∈ {0.05, 0.1, 0.2}.

Table 2
Asymptotic conservation of the DPG method for p = 3,∆p = 1 and
h = {0.05, 0.1, 0.2}, viscous Burger equation with ε = 10−1.

h 0.2 0.1 0.05

Converged cost (λ = 0) 7.67e − 07 1.63e − 08 2.71e − 10
Initial cost (λ = 108) 6.67e − 06 2.10e − 08 2.73e − 10
C 2.43e − 07 6.86e − 09 1.38e − 10

It should be pointed out that we do not enforce the conservation for the results in Figs. 6 and 7, and one may think
that conservation may be helpful in recovering the optimal convergence. To address this, for example in the cases of
p = 3,∆p = 1, h = {0.05, 0.1, 0.2} and ε = 10−1, we use the converged solutions with λ = 0 as initial guesses for
the oDPG method with λ = 108. As can be observed from Table 2, the DPG method is not exactly conservative since
C in (20) is not zero. However, C is the same order of (in fact smaller than) the residual norm at the converged DPG
solutions (compared rows two, three, and fourth in Table 2). Furthermore, the conservation is improved as the mesh
is refined, namely, the DPG is asymptotically conservative. We observe that for all h, our optimization solver takes at
most five iterations to converge for λ = 108, and at the converged solution the cost and the L2-norm ∥u − uh∥L2(Ωh)

are almost exactly the same as the converged solution for λ = 0. This implies that penalizing conservation discrepancy
as we suggested does not improve the convergence rate. We also try to increase λ. However, since C2 is machine zero,
the penalty term λC2 is essentially zero and hence does not contribute to the previous converged cost (with λ = 0).
As a result, the optimization solver immediately exits, i.e., the converged solution does not change. We conclude that
penalizing the conservation in DPG seems to be redundant, especially for a well-resolved DPG solution or machine
zero C2.

To remove the possibility of losing optimal convergence rate due to insufficiently resolving the boundary layer in
the solution, let us now consider a case with very smooth solution, namely, u = sin (x). We consider ε = 102 and
ε = 1, and study the h-convergence for these two cases. As can be seen in Fig. 8(a), the optimal convergence is
achieved for ε = 102, but not for ε = 1 as shown in Fig. 8(b).

Therefore, the loss of optimal convergence rate is due to ε as it decreases. This is not surprising. Indeed, while the
broken H1-norm for the test space is natural and straightforward (especially for conservation laws in the conservative
form), it is not robust with respect to ε. As such, it is deficiency-prone as ε decreases. This has been studied in the
previous work [23,17] in which the provable robust norms involve ε. It could be that ε < 1 corresponds to convection-
dominated and our test norm does not seem to provide the optimal convergence for convection-dominated flow. To
further support this hypothesis, we carry out numerical experiments with linear convection–diffusion problem with
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(a) ε = 102. (b) ε = 1.

Fig. 8. h-convergences for the viscous Burger equation with smooth solution u = sin (x) with ε = 102 (Fig. 8(a)) and ε = 1 (Fig. 8(b)). Both
figures show the Log–log scale plot of the error of oDPG method in the L2-norm, i.e., ∥u − uh∥L2(Ωh). The mesh is refined in h for different
polynomial orders from p = 1 to p = 3. The convergence is shown for three different mesh sizes h = {0.05, 0.1, 0.2}.

(a) ε = 102. (b) ε = 1.

Fig. 9. h-convergences for the linear convection–diffusion equation with smooth solution u = sin (x) with ε = 102 (Fig. 9(a)) and ε = 1 (Fig. 9(b)).
Both figures show the Log–log scale plot of the error of oDPG method in the L2-norm, i.e., ∥u − uh∥L2(Ωh). The mesh is refined in h for different
polynomial orders from p = 1 to p = 3. The convergence is shown for three different mesh sizes h = {0.05, 0.1, 0.2}.

smooth solution u = sin(x), again with ε = 102 and ε = 1. As shown in Fig. 9, we obtain similar results as those in
Fig. 8, i.e., optimal convergence for ε = 102, but suboptimal for ε = 1. Our iterative DPG framework, the main focus
of the paper, is clearly applicable for other norms (quasi-optimal or weighted test norms) [23,17], but for simplicity
we restrict ourselves to the broken H1-norm for the test space.

It should also be pointed out that, even for linear PDEs, the provable optimal convergence rate requires the
traces/fluxes be discretized in P p+1 space, one order higher than u and q [4]. Our current implementation does not
support different order discretization, and hence testing whether this is the cause of the loss of convergence (unlikely
since optimal convergence rate has been obtained with ε = 102) is out of the scope of the current paper, whose main
aim is to introduce a new and natural iterative solver for the DPG method.

9.4. Euler equation

We next consider the steady Euler equation in the conservative form

∂F
∂x
+

∂G
∂y
= f, (24)
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where

F = F (q) :=


ρu

ρu2
+ P

ρuv

u (E + P)

 , G = G (q) :=


ρv

ρuv

ρv2
+ P

v (E + P)

 , q :=


ρ

ρu
ρv

E

 ,

where the pressure P is given by the state equation

E =
P

γ − 1
+

1
2ρ


(ρu)2

+ (ρv)2

,

with γ = 1.4 for monoatomic gas. The domain under consideration is Ω = [0, 10] × [−5, 5]. Following the same
exercise as for the viscous Burger equation, we multiply the Euler equation (24) with the test function

τ := [r, ru, rv, re]T ,

integrate the resulting equation by parts, and introduce single-valued hybrid variables

q̂ :=
ρ,ρu,ρv, E

on the skeleton, and hence obtain
B

q, q̂


, τ

V ′×V := b


q, q̂


, τ

= ℓ (τ ) =: ⟨ℓ, τ ⟩V ′×V .

Here, the left-hand side is

b


q, q̂

, τ

=


j

−


ρu,

∂r

∂x


K j

−


ρv,

∂r

∂y


K j

+
ρunx +ρvny, r


Γ+K j

−


ρu2
+ P,

∂ru

∂x


K j

−


ρuv,

∂ru

∂y


K j

+

ρu2ρ + P


nx +
ρuρvρ ny, ru


Γ+K j

−


ρuv,

∂rv

∂x


K j

−


ρv2
+ P,

∂rv

∂y


K j

+

ρuρvρ nx +

ρv2ρ + P


ny, rv


Γ+K j

−


u (E + P) ,

∂re

∂x


K j

−


v (E + P) ,

∂re

∂y


K j

+

ρuρ E + P nx +
ρvρ E + P ny, rv


Γ+K j

,

and the right-hand side

ℓ (τ ) =


j

(f, τ )K j
−
ρunx +ρvny, r


Γ−K j
−

ρu2ρ + P


nx +
ρuρvρ ny, ru


Γ−K j

−

ρuρvρ nx +

ρv2ρ + P


ny, rv


Γ−K j

−

ρuρ E + P nx +
ρvρ E + P ny, rv


Γ−K j

,

with

E = P
γ − 1

+
1

2ρ ρu2
+ρv2


.

Unlike the viscous Burger equation, we now seek solution

q, q̂


∈ U := L2 (Ω) × H−

1
2 (Γh) and the test space

V := H1 (Ωh). The rest of the steps, namely, computing the adjoint, gradient, Hessian-vector product, and discretiza-
tion are similar to those of viscous Burger equation, and hence omitted.
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(a) 20 iterations. (b) 40 iterations. (c) 60 iterations. (d) ρ exact.

Fig. 10. Solution of the Euler equation using the oDPG method with p = 4 and ∆p = 2: Fig. 10(a) is ρh after 20 iterations, Fig. 10(b) is ρh after
40 iterations, Fig. 10(c) is ρh after 60 iterations, and Fig. 10(d) is the exact ρ.

(a) 20 iterations. (b) 40 iterations. (c) 60 iterations. (d) ρu exact.

Fig. 11. Solution of the Euler equation using the oDPG method with p = 4 and ∆p = 2: Fig. 11(a) is ρu after 20 iterations, Fig. 11(b) after 40
iterations, and Fig. 11(c) after 60 iterations, and Fig. 11(d) is the exact ρu.

For the numerical example, we choose the forcing function f so that the exact solution is the following vortex

ρ =


1−

(γ − 1)

16γπ2 β2e2

1−R2 1

γ−1

,

u = 1− βe

1−R2 (y − y0)

2π
,

v = βe

1−R2 (x − x0)

2π
,

P = ργ ,

with R2
= (x − 0.5− x0)

2
+ (y − y0)

2 , x0 = 0.5, y0 = 0, and β = 5.
For Euler equations, we observe that ∆p = 2 gives significantly more accurate results than ∆p = 1 while ∆p ≥ 3

yields marginally better results than those with ∆p = 2. Thus, to the end of this section, we take ∆p = 2. The
solution order is chosen to be p = 4. In order to challenge our trust region optimization solver, the initial guess is
specified as the following

ρ = 1, ρ = 1,

ρu = 1, ρu = 1,

ρv = 0, ρv = 0,

P = ργ , P = ργ ,

E = P/(γ − 1)+ 0.5(ρu2
+ ρv2)/ρ, E = P/(γ − 1)+ 0.5(ρu2

+ρv2)/ρ,

which is by no means “close” to the exact solution. Similar to other examples, we enforce Dirichlet boundary on the
entire boundary ∂Ω by setting ρ,ρu,ρv, E equal to the exact solutions at all times. Figs. 10–13 show the solutions
ρ, ρu, ρv, E after 20, 40, and 60 iterations. It can be seen, though the initial flow is horizontal, the computed flow
starts to roll up towards to the exact solution after 20 iterations. The solutions after 40 iterations are very similar to
the exact solutions while those after 60 iterations are almost identical to the exact ones.

For the Euler example, Fig. 14 shows that the oDPG solutions converge towards the exact solution very fast
initially, e.g., for the first 60 Newton iterations, but they converge very slowly after that. In particular, the cost function,
namely the residual, decreases very slowly after 60 Newton iterations. Indeed, the tolerance for relative cost change
of εF = 10−14 is met at the 159th iteration though the ℓ2-norm of the discrete gradient is 1.348e − 6. Furthermore,
above 155 Newton iterations, Newton steps are full but quite small (on the order of O


10−2


). This suggests that the
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(a) 20 iterations. (b) 40 iterations. (c) 60 iterations. (d) ρv exact.

Fig. 12. Solution of the Euler equation using the oDPG method with p = 4 and ∆p = 2: Fig. 12(a) is ρvh after 20 iterations, Fig. 12(b) is ρvh
after 40 iterations, and Fig. 12(c) is ρvh after 60 iterations, and Fig. 12(d) is the exact ρv.

(a) 20 iterations. (b) 40 iterations. (c) 60 iterations. (d) E exact.

Fig. 13. Solution of the Euler equation using the oDPG method with p = 4 and ∆p = 2: Fig. 13(a) is Eh after 20 iterations, Fig. 13(b) is Eh after
40 iterations, Fig. 13(c) is Eh after 60 iterations, and Fig. 13(d) is the exact E .

Fig. 14. Solution of the Euler equation using the oDPG method with p = 4 and ∆p = 2: history of cost function values.

optimization problem may be difficult, i.e., the cost functional be quite flat. However, how to address this difficulty is
beyond the scope of the paper.

10. Conclusions

We have presented a PDE-constrained optimization approach to the DPG framework of Demkowicz and
Gopalakrishnan [1,2]. The proposed approach can be considered as a Rayleigh–Ritz approach for the DPG minimum
residual statement. It is equipped with a trust region inexact Newton conjugate gradient method which prevents over-
solving when optimization iterates are far away from the optimal solution but converges quadratically otherwise. The
PDE-constrained approach is promising since it allows one to solve the DPG framework in an iterative manner using
any of the state-of-the-art PDE-constrained techniques, and hence in principle enabling the user to solve large-scale
and difficult (nonlinear) problems efficiently. We have used the viscous Burger equation as the model to derive the
PDE-constrained DPG approach and showed that the proposed approach gives the same solution as that of the standard
Euler–Lagrange DPG counterpart in exact arithmetic. In practice, our proposed approach neither solves the optimal
test function equation or the original PDEs directly. However, it does require one to discretize the original PDE since
the resulting residual is the forcing for the forward equation. We have showed that the adjoint equation turns out to be
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the same as the forward one, and hence eliminated. We also derive the gradient and Hessian-vector product for both
abstract variational framework and the viscous Burger equation. The results show that the computing gradient and a
Hessian-vector product using the adjoint technique are scalable and efficient since these tasks are local on elements
or edges with linear complexity in total. Numerical results show that optimality in both h- and p-convergences is
attainable for linear PDE such as Laplace and Helmholtz equations when the tolerances are set to be sufficiently
small. We have also applied our method on nonlinear PDEs including the viscous Burger equation and the Euler
equation of gas dynamics, and the results are very encouraging.

Our ongoing work aims at addressing the following research directions:

• We have observed that one order of h-convergence is lost for the viscous Burger equation. It could be due to the
nonlinearity though we have not yet uncovered the truth. Furthermore, it is quite challenging to solve the Euler
equation and this is perhaps due to the flatness of the cost function. In particular, the full Newton step is taken but
essentially there is negligible improvement in the cost function. Work is in progress to address these issues.
• We have showed that the complexity of computing gradient or a Hessian-vector product scales linearly in the

number of DPG unknowns N . We also observe that the number of Newton iterations is independent of mesh and
solution order refinements.3 However, for each Newton iteration, the number of CG iterations can be up to N .
In fact, our numerical experiences indicate that this happens and in this case the corresponding Newton iteration
requires O


N 2


operations, which is quite expensive. Ongoing research is to design a preconditioner so that the
number of CG iterations is independent of N as well. This is very desirable since the total complexity of TRINCG
would scale linearly in N in this case. Clearly, first forming the Hessian matrix and then designing a preconditioner,
i.e. incomplete LU decomposition, would defeat the matrix-free nature of the method. On the other hand, the
challenge here is how to construct an efficient preconditioner for our matrix-free method.
• There are a few aspects that are not addressed in the paper for the sake of simplicity. First, the domain under

consideration is very simple, e.g., with polygon boundary, though our framework is applicable for domains with
curved boundaries. Second, time-dependent problems are not treated. One simple approach (see, e.g., [10]) is first
to perform implicit time discretization and then to apply our oDPG method. Last, but not least, we have carried
out numerical simulations for two-dimensional problems in Matlab though our PDE-constrained DPG framework
should be reasonably straightforward to be applied to large-scale three-dimensional problems similar to those
in [24].
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