$[\mathrm{Tr}]=$ Fredi Tröltzsch, "Optimal control of PDEs: Theory, Methods, and Applications"

1 Lecture 1

Chapter 1: Introduction, examples of optimal control problems, basic concepts in finite-dimensional case.

Keywords: control, state, solution operator (control-to-state operator), reduced cost functional, reduced problem, reduced gradient, adjoint state, adjoint problem, first order necessary optimality conditions, formal Lagrange method, minimizing sequence

2 Lecture 2

Section 2.1: Normed and inner product spaces and their complete versions (Banach and Hilbert spaces); examples of function spaces $\left(C^{k}, L^{p}\right)$ Section 2.4: Linear functionals.

Keywords: dual space, bidual, reflexive spaces.
Main results: projection onto a closed convex set (below), Riesz representation theorem as its consequence (Exercise set 1).

Theorem 1. Let H be a Hilbert space, $C \subseteq H$ be a non-empty closed subset, and $\hat{x} \in H$. Then there is a unique point $\bar{x} \in C$ such that

$$
\begin{equation*}
\|\hat{x}-\bar{x}\|^{2}=\min _{y \in C}\|\hat{x}-y\|^{2} \tag{1}
\end{equation*}
$$

Proof. Strategy: (1) show existence; (2) show uniqueness. (1.1) Take a minimizing sequence for (1); (1.2) Show that it is Cauchy; (1.3) Its limit is a solution.

To simplify the notation we assume $\hat{x}=0$ (this corresponds to translating the coordinate system in H to \hat{x} and does not change any properties of C or (1).
(1.1) Let $0 \leq I:=\inf _{y \in C}\|y\|^{2}$ and select a minimizing sequence $\left\{y_{k}\right\}_{k=1}^{\infty}$, $y_{i} \in C$, that is $I=\lim _{k \rightarrow \infty}\left\|y_{k}\right\|^{2}$.
(1.2) Using the fact that the norm in H is given by the inner product we can write, $\forall a, b \in H$:

$$
\|a \pm b\|^{2}=(a \pm b, a \pm b)=\|a\|^{2}+\|b\|^{2} \pm 2(a, b),
$$

and therefore

$$
\begin{gathered}
\|a-b\|^{2}=2\|a\|^{2}+2\|b\|^{2}-\|a+b\|^{2}, \quad \text { or } \\
\frac{1}{2}\|a-b\|^{2}=\|a\|^{2}+\|b\|^{2}-2\left\|\frac{a+b}{2}\right\|^{2} .
\end{gathered}
$$

Now we apply this equality to our minimizing sequence:

$$
0 \leq \frac{1}{2}\left\|y_{n}-y_{m}\right\|^{2}=\left\|y_{n}\right\|^{2}+\left\|y_{m}\right\|^{2}-2\left\|\frac{y_{n}+y_{m}}{2}\right\|^{2} \leq\left\|y_{n}\right\|^{2}+\left\|y_{m}\right\|^{2}-2 I
$$

where the last inequality holds because $\left(y_{n}+y_{m}\right) / 2 \in C$ (C is a convex set) and $I=\inf _{y \in C}\|y\|^{2}$. Thus the right hand side of this inequality converges to 0 when $n, m \rightarrow \infty$ and therefore the sequence $\left\{y_{k}\right\}$ is Cauchy.
(1.3) H is a complete space therefore there is $\bar{x} \in H$ such that $\bar{x}=$ $\lim _{k \rightarrow \infty} y_{k}$. Since C is closed we have that $\bar{x} \in C$. Since $\|\cdot\|$ is a continuous function, it holds that $I=\lim _{k \rightarrow \infty}\left\|y_{k}\right\|^{2}=\|\bar{x}\|^{2}$ and as result $\|\bar{x}\|^{2}=$ $\min _{y \in C}\|y\|^{2}$.
(2) Uniqueness: let $\bar{x}_{1}, \bar{x}_{2} \in C$ be such that $I=\left\|\bar{x}_{1}\right\|^{2}=\left\|\bar{x}_{2}\right\|^{2}$ yet $\bar{x}_{1} \neq \bar{x}_{2}$. Then $\bar{x}_{1}+\bar{x}_{2} \in C$ and therefore

$$
I \leq\left\|\frac{\bar{x}_{1}+\bar{x}_{2}}{2}\right\|^{2}=\frac{1}{2}\left(\left\|\bar{x}_{1}\right\|^{2}+\left\|\bar{x}_{2}\right\|^{2}-\frac{1}{2}\left\|\bar{x}_{1}-\bar{x}_{2}\right\|^{2}\right)<I
$$

which is a contradiction.

3 Lecture 3

Section 2.4.2: Weak convergence in Banach spaces.
Main result: Theorem 2.10 (every bounded sequence in a reflexive Ba nach space contains a weakly converging subsequence).

We have proved a slightly weaker result:
Theorem 2. Let X be a reflexive Banach space, and assume that its dual X^{\prime} is separable; namely let $\left\{f_{i}\right\}_{i=1}^{\infty}$ be a countable everywhere dense subset in X^{\prime}. Let $\left\{x_{k}\right\}_{k=1}^{\infty}$ be a bounded sequece in X. Then there is a subsequence $\left\{x_{k}^{\prime}\right\}$ of $\left\{x_{k}\right\}$, which converges weakly in X.

Proof. Diagonal process.
Let $M>0$ be an upper bound on the norms of x_{k}, i.e. $\forall k:\left\|x_{k}\right\| \leq M$.
Then the sequence of real numbers $\left\{f_{1}\left(x_{k}\right)\right\}_{k=1}^{\infty}$ is bounded; namely $\mid f_{1}\left(x_{k}\right) \leq\left\|f_{1}\right\|_{X^{\prime}}\left\|x_{k}\right\|_{X} \leq M\left\|f_{1}\right\|_{X^{\prime}}$. Therefore it contains a convergent subsequence (this is Heine-Borel theorem). Let us denote the corresponding subsequence of $\left\{x_{k}\right\}$ as $\left\{x_{k}^{(1)}\right\}$.

Similarly the sequence of real numbers $\left\{f_{2}\left(x_{k}^{(1)}\right)\right\}_{k=1}^{\infty}$ is bounded; namely $\mid f_{2}\left(x_{k}^{(1)}\right) \leq\left\|f_{2}\right\|_{X^{\prime}}\left\|x_{k}\right\|_{X} \leq M\left\|f_{2}\right\|_{X^{\prime}}$. Therefore it contains a convergent subsequence. Let us denote the corresponding subsequence of $\left\{x_{k}^{(1)}\right\}$ as $\left\{x_{k}^{(2)}\right\}$.

We can proceed like this indefinitely. Let us consider the diagonal subsequence: $\left\{x_{k}^{(k)}\right\}_{k=1}^{\infty}$.

Note that the "tail" of the diagonal sequence, $\left\{x_{k}^{(k)}\right\}_{k=N}^{\infty}$ is a subsequence of $\left\{x_{k}^{(i)}\right\}_{k=1}^{\infty}$ for all $i \leq N$. As a consequence of thisn, the sequence of real numbers $\left\{f_{i}\left(x_{k}^{(k)}\right)\right\}_{k=1}^{\infty}$ is Cauchy for all $i=1,2, \ldots$. Let us define a function $F\left(f_{i}\right)=\lim _{k \rightarrow \infty} f_{i}\left(x_{k}^{(k)}\right)$. Clearly F is linear, and it is also bounded: $\forall i$, $\left|F\left(f_{i}\right)\right| \leq M\left\|f_{i}\right\|_{X^{\prime}}$.

First will show that F can be extended to be an element of $X^{\prime \prime}$ (we can do this directly without using Hanh-Banach theorem in the present situation). Indeed, take an arbitrary $f \in X^{\prime}$, and consider an arbitrary sequence $\left\{f_{i}\right\}_{i=1}^{\infty}$ converging to f where f_{i} are elements of our everywhere dense subset. Then

$$
\left|F\left(f_{i}\right)-F\left(f_{j}\right)\right|=\left|F\left(f_{i}-f_{j}\right)\right| \leq \lim _{k \rightarrow \infty}\left|\left(f_{i}-f_{j}\right)\left(x_{k}^{(k)}\right)\right| \leq M\left\|f_{i}-f_{j}\right\|_{X^{\prime}}
$$

Thus the sequence of numbers $\left\{F\left(f_{i}\right)\right\}$ is Cauchy and we can define $F(f)=$ $\lim _{i \rightarrow \infty} F\left(f_{i}\right)$. Furthermore, $|F(f)| \leq M\|f\|_{X^{\prime}}$ for all $f \in X^{\prime}$ and therefore $F \in X^{\prime \prime}$.

Since X is reflexive, there is $\bar{x} \in X$ such that $\forall f \in X^{\prime}: F(f)=f(\bar{x})$. We will now show that $x_{k}^{(k)} \rightharpoonup \bar{x}$. Let $\varepsilon>0$ be arbitrary. For an arbitrary $f \in X^{\prime}$ let us select and fix f_{i} from the everywhere dense set such that $\left\|f-f_{i}\right\|_{X^{\prime}} \leq \varepsilon$. We now use a classical 3ε-type argument:

$$
\begin{aligned}
\left|f\left(\bar{x}-x_{k}^{(k)}\right)\right| & \leq\left|\left(f-f_{i}\right)(\bar{x})\right|+\left|\left(f-f_{i}\right)\left(x_{k}^{(k)}\right)\right|+\left|f_{i}(\bar{x})-f_{i}\left(x_{k}^{(k)}\right)\right| \\
& \leq \varepsilon\|\bar{x}\|_{X}+\varepsilon M+\left|F\left(f_{i}\right)-f_{i}\left(x_{k}^{(k)}\right)\right|
\end{aligned}
$$

The last term becomes arbitrarily small when we let $k \rightarrow \infty$. Thus $\forall f \in X^{\prime}$ we have $f(x)=\lim _{k \rightarrow \infty} f\left(x_{k}^{(k)}\right)$.

$4 \quad$ Lecture 4

Section 2.4.2: Weak convergence, closedness, and compactness in Banach spaces.

Keywords: epigraph of a function, lower-semicontinuity
Main results: Hanh-Banach separation theorem. Theorems 2.11 and 2.12. Weierstrass' theorem (existence of optimal solutions):

Theorem 3. Let X be a reflexive Banach space, $C \subset X$ be nonempty, closed, bounded, and convex; and $f: X \rightarrow \mathbb{R}$ be lower semi-continuous and convex. Then there is $\bar{x} \in C$ such that

$$
f(\bar{x})=\inf _{x \in C} f(x) .
$$

Proof. Sketch: (1) Take a minimizing sequence $x_{k} \in C$; (2) X is sequentially weakly compact (Theorem 2.11) therefore (up to a subsequence) $x_{k} \rightharpoonup \hat{x} \in$
C; (3) f is weakly sequentially lower semi-continuous (Theorem 2.12), and therefore

$$
\inf _{x \in C} f(x) \leq f(\bar{x}) \leq \lim _{k \rightarrow \infty} f\left(x_{k}\right)=\inf _{x \in C} f(x) .
$$

5 Lecture 5

Section 2.2: Sobolev spaces.
Section 2.3: Weak solutions to elliptic equations.
Keywords: Weak derivative, trace theorem (Theorem 2.1), regular (Lipschitz) domain, Lax-Milgram lemma (Lemma 2.2), Friedrichs inequality (Lemma 2.3)

Note that we have considered a version of Lax-Milgram lemma, where we have assumed that the bilinear form is symmetric. In this case the bilinear form defines an equivalent inner product on our space, and existence of solutions to the variational statement is given by Riesz representation theorem.

