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Please read sections 4.1-4.2 in [Tr]. In this exercise we will prove the existence part in
a slightly weaker version of Browder—Minty’s theorem. The proof utilizes the following
topological result (Brower’s fixed point theorem).

Theorem 1. Let C' be a compact conver set and f : C — C a continuous function. Then
there is at least one point x € C' such that f(x) = x (fixed point of f).

Consider the following standard “counter-example” to Brower’s fixed point the-
orem in Hilbert spaces. Let H be a Hilbert space with an orthonormal basis
{e1,ea,...}. Let B be the closed unit ball in H and and consider a map f: B — B
sending a vector x with coordinates (z1,z2,...) into a vector y with coordinates
((1 - Hx‘ﬁi)l/Q?xl’ L2 - )

a)

b)

Show that f : B — B is continous.

Solution: From here on we will write vectors in terms of their coordinates.

We can represent f(z) = fi(z) + fa(z), where fi(z) = ((1 - [|z[|%)*/2,0,0,...)
and fa(z) = (0,1, x2,...).

f1 is a composition of the continuous functions (norm, square root) and a linear
map i : R — H defined as i(r) = (r,0,0,...). The latter map is an isometry
(and therefore is bounded/continuous).

f2 is also a linear isometry (and therefore is bounded/continuous).

It is easy to check that || f(z)||% = (1 — ||z|lg) + >_; |zi|* = 1, and therefore
#(B) C B.

Show that f has no fixed points in B.

Solution: If f(x) = x then z9 = x1, £3 = x9, ..., and as a result z; = z1,
i > 1. The only possible vector with “constant” coordinates in H is 0 (since
|3 = 3, |z:]* < o0). However f(0) = (1,0,...) # 0.

Which of the assumptions of Browder’s fixed point theorem is violated by this
example?

Solution: B is closed, convex, but not compact in an infinite-dimensional Hilbert
space.

Let V' be a reflexive separable Banach space, {w1, ws,...} be everywhere dense in
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V. Let further A : V — V'’ be a monotone, coercive, hemicontinuous, and bounded’
operator. Then for every f € V' there is y € V such that Ay = f.

We start with some auxiliary results about A.

a) Use hemicontinuity of A to show that if 0 < (Av — f)(v—y) for all v € V' then
Ay = f.
Solution: Let v =y + tw, where w € V is arbitrary. Then

0 < (A(y +tw) — )y +tw —y) = t[(A(y + tw) — f)(w)].

Since £w € V the inequality must actually be an equality. Finally, we use
hemicontinuity to observe that (A(y + tw))(w) — (A(y))(w) as t — 0.

b) Assume that lim, o ||yn — y|ly = 0. Show that Vv € V: lim,, o0 (A(yn))(v) =
(A(y))(v), that is, A(y,) — A(y) in V.2 Hint: use monotonicity and the
previous characterization of Ay = f.

Solution: Since the sequence {y,} is bounded in V and the operator A is
bounded, the sequence {A(yy)} is bounded in V'. Since V’ is a reflexive Banach
space, the latter sequence contains a weakly converging subsequence, let us say
A(yn) — g € V'. We want to show that g = A(y), or equivalently that Vv € V:
0 < (Av — g)(v — y). Indeed, let v € V be arbitrary. Then, owing to the
monotonicity:

0 < (Av — Ayw ) (v = ynr) = (Av)(v) = (Ayn)(v) — (Av)(Yn) + (Ayn') (Y-
The last term on the right hand side converges to g(y):

[(Ayn) (Wnr) — 9(W)| < [(Aynr) (Ynr — Y)| + |(Aynr — 9)(y)]
< NAyw v llyn = yllv + [(Ayns — 9)(y)| = 0,

where we used the boundedness of {Ay,,/}, convergence ||y, — y|ly — 0, and
finally the weak convergence Ay, — g. Returning to the previous inequality
this implies that

0 < (Av— Ay, ) (v —yn) — (Av)(v) — g(v) — (Av)(y) + 9(y) = (Av—g)(v —y).

It remains to show that the convergence A(y,,) — A(y) happens along the whole
sequence, not just a subsequence n/. This follows from the following standard
argument: asume that there is no convergence along some sequence (i.e., 3¢ > 0,
veV,n" liminf, o [(A(yn) — A(y))(v)| > €). Then this subsequence n”
satisfies all the assumptions that the original sequence does. Therefore from it
we can extract a further subsequence, say n’”’ such that A(y,~) — A(y), which
is a contradiction.

The remainder of the existence proof utilizes Galerkin method: let V,, = span(wy, wa, . ..

V., fn € V! is the restriction of f to V,,, and similarly A, : V,, — V! be defined as
Vo 2 v — A(v) restricted to V;,. We can describe this process in more details by
selecting a basis in V,.

Namely, let {e1,e2,...,enm} € Vj,, m < n be a basis in V,,. Define i, : R™ — V as
in((z1,...,2m)) = > peq xkek. Let further ¢/, : V! — R™ be defined as (i),(f))(z) =
fin(z)), or in other words > ;" (il (f)]kxe = D peq @i f(ek)-

A :V — V' is bounded if for every bounded set S C V there is a constant Cs > 0 such that

Vv € S : ||Av|ly: < Cs.
2Such operators A are called demicontinuous.

March 1, 2017 Page 2 of 4



Exercise set 6

c)

d)

f)

g)

Show that the problem of finding y, € V,, such that A,y, = f, in V, is
equivalent to finding « € R™ such that i),(A(in(z)) — f) = 0 in R™.

Solution: Since {eq,...,en} is a basis in V,, the problem of finding y,, € V;, such
that A,y, = f is equivalent to finding € R such that A, (i,(x)) = f,. Note
that V) 5 g = 0 iff g(v) = 0, Yv € V, iff g(in(x)) =0, Vo € R™ iff i/,(g) = 0
in R™. This brings us to the new equivalent problem i, (A, (in(x)) — fn) =
0. Finally, note that i/, (f,) = fu(in(z)) = f(in(z)) = i,,(f) and a similarly
i (An(in(x)) = i), (A(in(x)), per definition of f,, and A,,.

n

Let us define a function F,, : R™ — R™ by F,(z) = i/,(A(in(x)) — f). Show
that F;, is continuous.

Solution: Suppose that R™ 3 z, — & € R™. Since i, : R™ — V is linear and
bounded, we have vy = i, (xg) — iy (Z) = 0. Owing to the demicontinuity of A,
we have Avp — Ao in V', Finally, i/, has finite rank and as such maps weakly
converging sequences into strongly converging ones. Indeed, for all 1 < j < m:

[in (Av)]; = (Avi)(e;) = (AD)(e;) = [ir, (AD)];.
Use coercivity of A and continuity of F}, to show that for some r > 0 if ||z|gm >
r then the product 2T F,(x) > 0.

Solution: Consider the product 1 F,(z) = (A(in(z) — f)(in(x)). Let z be the
point of minimum attained by the continuous function =™ F},(x) on the sphere
Sk :={x € R" | ||z||gm = k} (the minimum is attained since the sphere is a
compact set in R™). Then ||zg|gm = k — 00 as k — oo.

We now note that [|in(2)|| > [li, || (v, gm) ||z ]lrm and therefore ||y (x)|lv — oo
when ||z||gm — 00. Since A is coercive, (A(in(z))(in(x))/||in(x)||y — oo when
[z ]|lzm — oo, whereas [ f(in(2))|/[lin(z)[lv < |[f]lv-

As a consequence, we must have inf,cg, 2V, (x) > xEFn(xk) >0forallk > K.

Use Brower’s fixed point theorem to show that for every n = 1,2,... the prob-
lem F,(r) = 0 admits a solution z, € R™ (hence also A,y, = f, where
Yn = in(xy,)) by considering fixed points of a map = +— —rF,(z)/||F.(z)||grm of
the ball B, := {z € R™ | ||z||gm < r} into itself (in fact, into its boundary),
where r > 0 is found in the previous part.

Solution: Assume that F,(z) # 0, Vo € R™. Then the function g,(z) :=
—rEy(z) /|| Frn(x)||gm is continuous and maps the convex compact set B, into
itself (in fact, into S,). Therefore, there must be a fixed point & € B, such
that & = —rF,(2)/||F.(2)||gm € S,. Consider now the product 2T F,(3) =
—r||Fn(2)|[gm < 0. According to the previous part it must be nonnegative,
which brings us into a contradiction with the assumption that F,(z) # 0,
Ve € R™.

Use coercivity of A to show that the sequence {yy} is bounded in V.
Solution: Suppose that ||y,| — oo. Then

+o00 = lim

o Tyl e gl e ol
IS R 11 A%
w35 fally = 05 [lgallv

which is a contradiction.
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Since {y,} is a bounded sequence and V is a reflexive Banach set, it contains a
weakly converging subsequence, say v, — ¢. Similarly, since A is bounded then the
sequence { Ay, } is bounded in V' (which is a reflexive Banach set in its own right)
and therefore also contains a weakly converging subsequence Ay,» — g € V' (and
still y,» — g)

h)

Use the separability of V' to show that g = f.

Solution: Let us take an arbitrary v € V. Owing to separability of V' we can
find a sequence v,, € V,, such that lim,,_, ||vy, — v||y = 0. Then we can write:

g(v) = lim (Ay,)(v) = lim (Aynr)(ver) + (Aypr) (0 — vpr)

n'’—oo n/'—o00
= ,l,lin (Apryn) (V) + (Aypr ) (v — V) = llllin Frrr () 4 T
= /1/11’11 f(vn”) + T = f(U),

n''—00

where the last equality holds owing to the continuity of f (recall f € V') if we
can show that r,» — 0.

To estimate r,,» we write:

hm |7“n//| < hm HAynHHV/”’U — 'Un”HV = 0
n'/

n//

owing to the fact that the first factor is bounded (the sequence y,,» is bounded
and the operator A is bounded) and the last factor converges to 0.

Utilize the previously established convergence(s) and monotonicity of A to show
that for an arbitrary v € V' we have the inequality 0 < (Av — f)(v —9) (and as
a result, A(y) = f).

Solution: Owing to the monotonicity of A:

0 < (Av — Aypr) (v — yur) = (Av)(v) — (Ayn”)( ) = (Av)(Ynr) + A(Yn) (Ynr)
= (Av)(v) = (Aynr)(v) = (A0)(Yn) + An(Ynr) (Ynr)
= (Av)(v) = (Aypr)(v) = (Av)(Yr) + fr(ynr)
= (Av)(v) = (Aypr)(v) = (Av)(Ynr) + f (ynr)
— (Av)(v) = f(v) = (Av)(H) + [(7) = (Av = [)(v — 7).
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