
Norwegian University of Science
and Technology
Department of Mathematical
Sciences

TMA4183 Opt. II

Spring 2016

Exercise set 6

Please read sections 4.1–4.2 in [Tr]. In this exercise we will prove the existence part in
a slightly weaker version of Browder–Minty’s theorem. The proof utilizes the following
topological result (Brower’s fixed point theorem).

Theorem 1. Let C be a compact convex set and f : C → C a continuous function. Then
there is at least one point x ∈ C such that f(x) = x (fixed point of f).

1 Consider the following standard “counter-example” to Brower’s fixed point the-
orem in Hilbert spaces. Let H be a Hilbert space with an orthonormal basis
{ e1, e2, . . . }. Let B be the closed unit ball in H and and consider a map f : B → B
sending a vector x with coordinates (x1, x2, . . . ) into a vector y with coordinates
((1− ‖x‖2H)1/2, x1, x2, . . . ).

a) Show that f : B → B is continous.

Solution: From here on we will write vectors in terms of their coordinates.

We can represent f(x) = f1(x) + f2(x), where f1(x) = ((1−‖x‖2H)1/2, 0, 0, . . . )
and f2(x) = (0, x1, x2, . . . ).

f1 is a composition of the continuous functions (norm, square root) and a linear
map i : R → H defined as i(r) = (r, 0, 0, . . . ). The latter map is an isometry
(and therefore is bounded/continuous).

f2 is also a linear isometry (and therefore is bounded/continuous).

It is easy to check that ‖f(x)‖2H = (1 − ‖x‖H) +
∑

i |xi|2 = 1, and therefore
f(B) ⊂ B.

b) Show that f has no fixed points in B.

Solution: If f(x) = x then x2 = x1, x3 = x2, . . . , and as a result xi = x1,
i ≥ 1. The only possible vector with “constant” coordinates in H is 0 (since
‖x‖2H =

∑
i |xi|2 <∞). However f(0) = (1, 0, . . . ) 6= 0.

c) Which of the assumptions of Browder’s fixed point theorem is violated by this
example?

Solution: B is closed, convex, but not compact in an infinite-dimensional Hilbert
space.

2 Let V be a reflexive separable Banach space, {w1, w2, . . . } be everywhere dense in
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V . Let further A : V → V ′ be a monotone, coercive, hemicontinuous, and bounded1

operator. Then for every f ∈ V ′ there is y ∈ V such that Ay = f .

We start with some auxiliary results about A.

a) Use hemicontinuity of A to show that if 0 ≤ (Av− f)(v− y) for all v ∈ V then
Ay = f .

Solution: Let v = y + tw, where w ∈ V is arbitrary. Then

0 ≤ (A(y + tw)− f)(y + tw − y) = t[(A(y + tw)− f)(w)].

Since ±w ∈ V the inequality must actually be an equality. Finally, we use
hemicontinuity to observe that (A(y + tw))(w)→ (A(y))(w) as t→ 0.

b) Assume that limn→∞ ‖yn − y‖V = 0. Show that ∀v ∈ V : limn→∞(A(yn))(v) =
(A(y))(v), that is, A(yn) ⇀ A(y) in V ′.2 Hint: use monotonicity and the
previous characterization of Ay = f .

Solution: Since the sequence {yn} is bounded in V and the operator A is
bounded, the sequence {A(yn)} is bounded in V ′. Since V ′ is a reflexive Banach
space, the latter sequence contains a weakly converging subsequence, let us say
A(yn′) ⇀ g ∈ V ′. We want to show that g = A(y), or equivalently that ∀v ∈ V :
0 ≤ (Av − g)(v − y). Indeed, let v ∈ V be arbitrary. Then, owing to the
monotonicity:

0 ≤ (Av −Ayn′)(v − yn′) = (Av)(v)− (Ayn′)(v)− (Av)(yn′) + (Ayn′)(yn′).

The last term on the right hand side converges to g(y):

|(Ayn′)(yn′)− g(y)| ≤ |(Ayn′)(yn′ − y)|+ |(Ayn′ − g)(y)|
≤ ‖Ayn′‖V ′‖yn′ − y‖V + |(Ayn′ − g)(y)| → 0,

where we used the boundedness of {Ayn′}, convergence ‖yn′ − y‖V → 0, and
finally the weak convergence Ayn′ ⇀ g. Returning to the previous inequality
this implies that

0 ≤ (Av−Ayn′)(v− yn′)→ (Av)(v)− g(v)− (Av)(y) + g(y) = (Av− g)(v− y).

It remains to show that the convergence A(yn) ⇀ A(y) happens along the whole
sequence, not just a subsequence n′. This follows from the following standard
argument: asume that there is no convergence along some sequence (i.e., ∃ε > 0,
v ∈ V , n′′: lim infn′′→∞ |(A(yn′′) − A(y))(v)| ≥ ε). Then this subsequence n′′

satisfies all the assumptions that the original sequence does. Therefore from it
we can extract a further subsequence, say n′′′ such that A(yn′′′) ⇀ A(y), which
is a contradiction.

The remainder of the existence proof utilizes Galerkin method: let Vn = span(w1, w2, . . . , wn) ⊂
V , fn ∈ V ′n is the restriction of f to Vn, and similarly An : Vn → V ′n be defined as
Vn 3 v 7→ A(v) restricted to Vn. We can describe this process in more details by
selecting a basis in Vn.

Namely, let {e1, e2, . . . , em} ∈ Vn, m ≤ n be a basis in Vn. Define in : Rm → V as
in((x1, . . . , xm)) =

∑m
k=1 xkek. Let further i′n : V ′ → Rm be defined as (i′n(f))(x) =

f(in(x)), or in other words
∑m

k=1[i
′
n(f)]kxk =

∑m
k=1 xkf(ek).

1A : V → V ′ is bounded if for every bounded set S ⊂ V there is a constant CS > 0 such that
∀v ∈ S : ‖Av‖V ′ ≤ CS .

2Such operators A are called demicontinuous.
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c) Show that the problem of finding yn ∈ Vn such that Anyn = fn in V ′n is
equivalent to finding x ∈ Rm such that i′n(A(in(x))− f) = 0 in Rm.

Solution: Since {e1, . . . , em} is a basis in Vn, the problem of finding yn ∈ Vn such
that Anyn = fn is equivalent to finding x ∈ Rm such that An(in(x)) = fn. Note
that V ′n 3 g = 0 iff g(v) = 0, ∀v ∈ Vn iff g(in(x)) = 0, ∀x ∈ Rm iff i′n(g) = 0
in Rm. This brings us to the new equivalent problem i′n(An(in(x)) − fn) =
0. Finally, note that i′n(fn) = fn(in(x)) = f(in(x)) = i′n(f) and a similarly
i′n(An(in(x)) = i′n(A(in(x)), per definition of fn and An.

d) Let us define a function Fn : Rm → Rm by Fn(x) = i′n(A(in(x)) − f). Show
that Fn is continuous.

Solution: Suppose that Rm 3 xk → x̄ ∈ Rn. Since in : Rm → V is linear and
bounded, we have vk = in(xk)→ in(x̄) = v̄. Owing to the demicontinuity of A,
we have Avk ⇀ Av̄ in V ′. Finally, i′n has finite rank and as such maps weakly
converging sequences into strongly converging ones. Indeed, for all 1 ≤ j ≤ m:

[i′n(Avk)]j = (Avk)(ej)→ (Av̄)(ej) = [i′n(Av̄)]j .

e) Use coercivity of A and continuity of Fn to show that for some r > 0 if ‖x‖Rm ≥
r then the product xTFn(x) ≥ 0.

Solution: Consider the product xTFn(x) = (A(in(x)− f)(in(x)). Let xk be the
point of minimum attained by the continuous function xTFn(x) on the sphere
Sk := {x ∈ Rm | ‖x‖Rm = k } (the minimum is attained since the sphere is a
compact set in Rm). Then ‖xk‖Rm = k →∞ as k →∞.

We now note that ‖in(x)‖ ≥ ‖i−1n ‖L(Vn,Rm)‖x‖Rm and therefore ‖in(x)‖V →∞
when ‖x‖Rm →∞. Since A is coercive, (A(in(x))(in(x))/‖in(x)‖V →∞ when
‖x‖Rm →∞, whereas |f(in(x))|/‖in(x)‖V ≤ ‖f‖V ′ .

As a consequence, we must have infx∈Sk
xTFn(x) ≥ xTk Fn(xk) ≥ 0 for all k ≥ K.

f) Use Brower’s fixed point theorem to show that for every n = 1, 2, . . . the prob-
lem Fn(x) = 0 admits a solution xn ∈ Rm (hence also Anyn = fn where
yn = in(xn)) by considering fixed points of a map x 7→ −rFn(x)/‖Fn(x)‖Rm of
the ball Br := {x ∈ Rm | ‖x‖Rm ≤ r } into itself (in fact, into its boundary),
where r > 0 is found in the previous part.

Solution: Assume that Fn(x) 6= 0, ∀x ∈ Rm. Then the function gn(x) :=
−rFn(x)/‖Fn(x)‖Rm is continuous and maps the convex compact set Br into
itself (in fact, into Sr). Therefore, there must be a fixed point x̂ ∈ Br such
that x̂ = −rFn(x̂)/‖Fn(x̂)‖Rm ∈ Sr. Consider now the product x̂TFn(x̂) =
−r‖Fn(x̂)‖Rm < 0. According to the previous part it must be nonnegative,
which brings us into a contradiction with the assumption that Fn(x) 6= 0,
∀x ∈ Rm.

g) Use coercivity of A to show that the sequence {yn} is bounded in V .

Solution: Suppose that ‖yn‖ → ∞. Then

+∞ = lim
n→∞

(Ayn)(yn)

‖yn‖V
= lim

n→∞

(Anyn)(yn)

‖yn‖V
= lim

n→∞

fn(yn)

‖yn‖V

= lim
n→∞

f(yn)

‖yn‖V
≤ lim

n→∞

‖f‖V ′‖yn‖V
‖yn‖V

,

which is a contradiction.
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Since {yn} is a bounded sequence and V is a reflexive Banach set, it contains a
weakly converging subsequence, say yn′ ⇀ ȳ. Similarly, since A is bounded then the
sequence {Ayn′} is bounded in V ′ (which is a reflexive Banach set in its own right)
and therefore also contains a weakly converging subsequence Ayn′′ ⇀ g ∈ V ′ (and
still yn′′ ⇀ ȳ).

h) Use the separability of V to show that g = f .

Solution: Let us take an arbitrary v ∈ V . Owing to separability of V we can
find a sequence vn ∈ Vn such that limn→∞ ‖vn − v‖V = 0. Then we can write:

g(v) = lim
n′′→∞

(Ayn′′)(v) = lim
n′′→∞

(Ayn′′)(vn′′) + (Ayn′′)(v − vn′′)

= lim
n′′→∞

(An′′yn′′)(vn′′) + (Ayn′′)(v − vn′′) = lim
n′′→∞

fn′′(vn′′) + rn′′

= lim
n′′→∞

f(vn′′) + rn′′ = f(v),

where the last equality holds owing to the continuity of f (recall f ∈ V ′) if we
can show that rn′′ → 0.

To estimate rn′′ we write:

lim
n′′→∞

|rn′′ | ≤ lim
n′′→∞

‖Ayn′′‖V ′‖v − vn′′‖V = 0,

owing to the fact that the first factor is bounded (the sequence yn′′ is bounded
and the operator A is bounded) and the last factor converges to 0.

i) Utilize the previously established convergence(s) and monotonicity of A to show
that for an arbitrary v ∈ V we have the inequality 0 ≤ (Av− f)(v− ȳ) (and as
a result, A(ȳ) = f).

Solution: Owing to the monotonicity of A:

0 ≤ (Av −Ayn′′)(v − yn′′) = (Av)(v)− (Ayn′′)(v)− (Av)(yn′′) + A(yn′′)(yn′′)

= (Av)(v)− (Ayn′′)(v)− (Av)(yn′′) + An(yn′′)(yn′′)

= (Av)(v)− (Ayn′′)(v)− (Av)(yn′′) + fn(yn′′)

= (Av)(v)− (Ayn′′)(v)− (Av)(yn′′) + f(yn′′)

→ (Av)(v)− f(v)− (Av)(ȳ) + f(ȳ) = (Av − f)(v − ȳ).
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