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Exercise set Project

Model problem

We consider the following model control problem of a semi-linear elliptic PDE:

minimize
(u,y)

J(y, u),

subject to u ∈ Uad,

−∆y + ud(y) = f, in Ω,

y = 0, on Γ.

(1)

where

• Ω is a Lipschitz bounded domain in R2 with boundary Γ = ∂Ω,

• Uad = {u ∈ L2(Ω) | ua(x) ≤ u(x) ≤ ub(x), a.e. in Ω } for some given functions
ua, ub ∈ L∞(Ω) such that δ̂ ≤ ua(x) ≤ ub(x) for some constant δ̂ > 01 and almost
all x ∈ Ω,

• the right hand side f ∈ L2(Ω),

• the non-linearity d(y) = My/(ε̂2+y2)1/2, whereM > 0 and ε̂ > 0 are given constants,

• and finally J(y, u) =
∫

Ω φ(x, y(x)) dx+
∫

Ω ψ(x, u(x)) dx. The functions φ and ψ are
assumed to satisfy the assumptions 4.14 (ii) described on p. 206 in [Tr].

The explanation for this model is as follows. The Laplace operator −∆y models a steady-
state diffusion process, such as for example steady-state temperature or concentration.
The non-linearity d(y) approaches the (weak) derivative of M |y| as ε̂ → 0, effectively
modifying the “heat source” f to be ≈ f − uM when y > 0 and ≈ f + uM when y < 0.
In turn, if uM is large and positive this enforces the condition y ≈ 0. As a result, for
“bang-bang” type controls u(x) ∈ {ua(x), ub(x)} where ua ≈ 0, ub ≈ 1 we will enforce
the condition y ≈ 0 in the regions where u = ub, whereas the diffusion will be nearly
unaffected in the regions where u = ua.

1The reason for assuming δ̂ > 0 is that we need the control-to-state operator to be differentiable in an
open set including Uad. Proving this for δ̂ = 0 is somewhat more difficult.
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Parameters for numerical experiments

Throughout the project we will assume the following: Ω = (0, 1)2, ua = 1.0·10−4, ub = 1.0,
ε̂ = 1.0 · 10−1, M = 1.0, φ(x, y(x)) = (y(x)− yd(x))2/2 for a suitable function yd ∈ L2(Ω),
ψ(x, u(x)) = λu(x)/2 for some constant λ > 0. Thus it only remains to specify f , yd, and
λ to arrive at a specific instance of (1).

If you want to experiment, you could try using smaller values of ε̂ and larger values of M .
This makes the problem more difficult to solve numerically.

Project steps

1 Write down the weak form of the state PDE in (1).

2 Sketch a proof of existence and uniqueness of solutions y ∈ H1(Ω) ∩ C(Ω̄) for every
admissible control u ∈ Uad (for example, see exercise 1 from set 7). Furthermore,
show that there is a uniform bound on the norm of the states for all admissible
controls: ∃C > 0 : ∀u ∈ Uad, ‖y‖H1(Ω) ≤ C‖f‖L2(Ω).

3 Consider a sequence of controls uk ∈ Uad and a sequence of functions yk ∈ L2(Ω).
Assume that uk ⇀ ū, weakly in L2(Ω), and yk → ȳ, strongly in L2(Ω). Show that
ukd(yk) ⇀ ūd(ȳ), weakly in L2(Ω).

Hint: see the paragraph immediately after the proof of Lemma 4.11, p. 198 in [Tr]
and Exercise 5 a) from set 3.

4 Outline the necessary changes in the proof of Theorem 4.15 (p. 208, [Tr]) to establish
the existence of optimal controls to problem (1).

Hint: use the result established in part 3. See exercise 3 in set 8 for “inspiration”.

5 Sketch the proof of Frechet differentiability of the control-to-state operator G :
L2(Ω)→ H1(Ω) ∩ C(Ω̄).

Hint: for a pair of controls u1, u2 ∈ Uad and the corresponding pair of states y1, y2 ∈
H1(Ω) ∩ C(Ω̄), the difference y1 − y2 solves the system

−∆(y1 − y2) + u2[d(y1)− d(y2)] = −(u1 − u2)d(y1).

Let us now consider u1 to be a perturbation of u2. Then the right hand side will be
small, because d(·) is uniformly bounded. See Section 4.5 in [Tr] for the details.
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6 Use the formal Lagrange method to derive the optimality conditions and the adjoint
equation. Find the expression for the gradient of the reduced cost function in terms
of the state and the adjoint state.

7 Assuming that ∂yφ(·, y(·)) ∈ L2(Ω), argue that the adjoint system admits a unique
solution in H1(Ω) for any u ∈ Uad.

8 Implement a numerical procedure for solving the state PDE in (1), given u ∈ Uad

and f ∈ L2(Ω). Verify its convergence on a sequence of refined grids using a method
of manufactured solutions (i.e., select y ∈ H1(Ω) satisfying the boundary conditions,
and based on this information compute the right hand side f).

Note that the state equation is non-linear, and therefore an iterative procedure is
required. Furthermore, the state equations will have to be solved repeatdly, therefore
a quickly locally convergent method would be helpful. I recommend implementing
Newton’s method (with damped steps, if necessary).

9 Finally, implement a projected gradient algorithm with backtracking linesearch for
solving the control problem (1).

Try to come up with a test case satisfying the first order (necessary) optimality
conditions for verifying the correctness of your implementation: see exercise set 5num

for an example.
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