

TMA4183 Opt. II Spring 2016

Exercise set 8

Please read sections 4.3–4.4 in [Tr].

- 1 Exercise 4.4 (ii) in [Tr]: Show that Nemytskii operator $y(\cdot) \mapsto \sin(y(\cdot))$ is Frechet differentiable from $L^{p_1}(0,T)$ into $L^{p_2}(0,T)$ whenever $1 \le p_2 < p_1 \le \infty$.
- 2 Compact embedding of $H^1(\Omega)$ into $L^2(\Omega)$ (Rellich–Kondrachov Theorem, Theorem 7.4 in [Tr]) plays an important role in the proof of Theorem 4.15 (existence of optimal controls for semi-linear elliptic PDEs). There are many other examples of compact embeddings.

Let $-\infty < a < b < +\infty$, and consider the spaces of continuous functions $C^0[a, b]$ and Hölder continuous functions $C^{0,\gamma}[a, b]$, $0 < \gamma \leq 1$. These spaces are equipped with the norms

$$\begin{split} \|f\|_{C^0[a,b]} &= \sup_{x \in [0,T]} |f(x)|, \\ \|f\|_{C^{0,\gamma}[a,b]} &= \|f\|_{C^0[a,b]} + \sup_{x \neq y \in [a,b]} \frac{|f(x) - f(y)|}{|x - y|^{\gamma}}. \end{split}$$

We will use Arzela–Ascoli characterization of relative compactness in $C^0[a, b]$ (it is not difficult to prove): The set $S \subset C^0[a, b]$ is relatively compact if and only if it is *bounded* and *equicontinuous*. That is, there is M > 0 such that $\forall f \in S : ||f||_{C^0[a,b]} \leq M$, and for every $\epsilon > 0$ there is $\delta > 0$: $\forall f \in S, x, y \in [a, b] : |x - y| < \delta \implies$ $|f(x) - f(y)| < \epsilon$.

a) Show that every bounded subset in $C^{0,\gamma}[a,b]$ is bounded and equicontinuous in $C^0[a,b]$. Conclude that from any bounded sequence in $C^{0,\gamma}[a,b]$ one can extract a convergent sequence in $C^0[a,b]$.

Solution: Assume that $S \subset C^{0,\gamma}[a, b]$ is such that $\exists M > 0 : \forall f \in S, ||f||_{C^{0,\gamma}[a,b]} \leq M$. By definition $||f||_{C^0[a,b]} \leq ||f||_{C^{0,\gamma}[a,b]} \leq M$ and thus S is also a bounded set in $C^0[a,b]$. Furthermore from the definition of the norm we have that $|f(x) - f(y)| \leq |x - y|^{\gamma} ||f||_{C^{0,\gamma}[a,b]}$. Thus as long as $|x - y| < \delta$ it follows that $\forall f \in S : |f(x) - f(y)| < \delta^{\gamma} M$. Thus is sufficient to choose $\delta = (\varepsilon/M)^{1/\gamma}$ in the definition of equicontinuity.

b) Show that any sequence $f_n \in C^{0,\gamma}[a,b]$, which converges weakly to some limit $\overline{f} \in C^{0,\gamma}[a,b]$, must satisfy $||f_n - \overline{f}||_{C^0[a,b]} \to 0$.

Hint: show the inclusion $(C^0[a,b])' \subset (C^{0,\gamma}[a,b])'$ for the dual spaces; use the fact that weakly convergent sequences are bounded (this is known as the uniform boundedness principle in functional analysis); then use the proof by contradiction and **a**).

Solution: Suppose that $f_n \rightarrow \overline{f} \in C^{0,\gamma}[a, b]$. Weakly convergent sequences are bounded (uniform boundedness principle), and thus the set $\{f_n\}$ is relatively compact in $C^0[a, b]$ according to **a**) and Arzela-Ascolli theorem.

Let us now take $F \in (C^0[a, b])'$. Since $C^{0,\gamma}[a, b] \subset C^0[a, b]$ the function F is defined and linear on $C^{0,\gamma}[a, b]$; furthermore $|F(f)| \leq ||F||_{(C^0[a,b])'} ||f||_{C^0[a,b]} \leq ||F||_{(C^0[a,b])'} ||f||_{C^{0,\gamma}[a,b]}, \forall f \in C^{0,\gamma}[a,b]$. As a result, $F \in (C^{0,\gamma}[a,b])'$ and $(C^0[a,b])' \subset (C^{0,\gamma}[a,b])'$. Since we know that $\forall F \in (C^{0,\gamma}[a,b])' : F(f_n) \to F(\bar{f})$, therefore this happens for all $F \in (C^0[a,b])'$ and $f_n \to \bar{f}$ in $C^0[a,b]$ as well.

Finally, assume that $||f_n - \bar{f}||_{C^0[a,b]} \not\rightarrow 0$, that is, for some $\epsilon > 0$ there is a subsequence n' of n such that $||f_{n'} - \bar{f}||_{C^0[a,b]} \ge \epsilon$. Since $\{f_{n'}\}$ is a subset of $\{f_n\}$, a relatively compact set in $C^0[a,b]$, we can extract a further subsequence n'' from it, such that $||f_{n''} - \tilde{f}||_{C^0[a,b]} \rightarrow 0$, for some $\tilde{f} \in C^0[a,b]$. Owing to the assumptions on n', we have $\tilde{f} \neq \bar{f}$. Thus the subsequence $f_{n''}$ has two weak limits: \tilde{f} (strong convergence implies weak) and \bar{f} (as a subsequence of a weakly convergent sequence f_n). This contradicts the uniqueness of the weak limit (consequence of Hahn–Banach theorem).

3 Outline the necessary changes in the proof of Theorem 4.15 in order to establish the existence of optimal controls to the boundary control problem (4.49)–(4.51) in [Tr].

Solution: The basic strategy is to follow the proof of Theorem 4.15:

- 1. Construct a minimizing sequence of controls $u_n \in L^{\infty}(\Gamma)$
- 2. Note that there is a corresponding sequence of unique bounded states $y_n \in H^1(\Omega) \cap C(\overline{\Omega})$ (see Theorems 4.6–4.8 in [Tr]). This sequence is bounded (Theorem 4.8)! Note that the linear part of the operator (that is, $-\Delta y + y$ with Neumann boundary conditions) is coercive, so there is no need to split the non-linearity as done in the book for the distributed control, where only $-\nabla y$ with Neumann boundary conditions is considered.
- 3. $H^1(\Omega)$ is a Hilbert space and therefore the sequence y_n contains a subsequence (can call it y_n again), converging weakly to $\bar{y} \in H^1(\Omega)$.
- 4. As in Theorem 4.15, we can use Rellich-Kondrachov compact embedding theorem (Theorem 7.4 in [Tr]) to go from the weak convergence in $H^1(\Omega)$ to a strong convergence in $L^2(\Omega)$.
- 5. Unlike in Theorem 4.15, this is not sufficient to conclude that $\bar{y} = y(\bar{u})$ because the non-linearity "lives" on the boundary now! This is really the largest deviation from the proof of Theorem 4.15 in [Tr].

Let $T: H^1(\Omega) = W^{1,2}(\Omega) \to W^{1-1/2,2}(\Gamma) = H^{1/2}(\Gamma)$ be the trace operator (see for example Theorem 7.3 in [Tr]). Since T is a bounded linear operator, it follows that Ty_n converges weakly to $T\bar{y}$ in $H^{1/2}(\Gamma)$. Furthermore, $H^{1/2}(\Gamma)$ is compactly embedded into $L^2(\Gamma)$, see for example Theorem 7.1 in "The Hitchhiker's guide to the fractional Sobolev spaces". Thus the non-linearity $b(\cdot, Ty_n(\cdot))$ will converge to the limit $b(\cdot, T\bar{y}(\cdot))$ owing to the continuity of Nemytskii operator, see Lemma 4.11 [Tr].

6. The rest of the proof follows more-or-less exactly the reasoning on p. 210 [Tr]. That is, $\bar{y} = y(\bar{u})$ and J is sequentially lower semi-continuous with respect to the type of convergence that we need.