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Please read sections 4.3—4.4 in [TY].

Exercise 4.4 (ii) in [Tr]: Show that Nemytskii operator y(-) — sin(y(-)) is Frechet
differentiable from LP'(0,7T") into LP2(0,T") whenever 1 < py < p; < 0.

Compact embedding of H'(2) into L?(2) (Rellich-Kondrachov Theorem, Theo-
rem 7.4 in [Tr]) plays an important role in the proof of Theorem 4.15 (existence of
optimal controls for semi-linear elliptic PDEs). There are many other examples of
compact embeddings.

Let —0o < a < b < +00, and consider the spaces of continuous functions C°|a, b]
and Holder continuous functions C%7[a,b], 0 < v < 1. These spaces are equipped
with the norms

[ fllcofap) = sup |f(2)],
z€[0,T]

|f(z) = f(y)]
ot = eyt osup e
1fllconfap) = I1fllcojap oy lE—yP

We will use Arzela—Ascoli characterization of relative compactness in C°[a,b] (it is
not difficult to prove): The set S C C°[a, b] is relatively compact if and only if it is
bounded and equicontinuous. That is, there is M > 0 such that Vf € S : || f||coja <
M, and for every € > 0 there is 6 > 0: Vf € S,z,y € [a,b] : |[x —y| < § =
[f(z) = fly)l <e

a) Show that every bounded subset in C%7[a, b] is bounded and equicontinuous in
CY[a, b]. Conclude that from any bounded sequence in C%7[a, b] one can extract
a convergent sequence in C%[a, b].

Solution: Assume that S C C%7[a,b] is such that IM > 0:Vf € S, || fllcorjay <
M. By definition ||flcojap < [|fllcorfay < M and thus S is also a bounded
set in C%[a,b]. Furthermore from the definition of the norm we have that
If(z) = f(W)] < |z =y fllconap. Thus as long as |z —y| < 4 it follows that
VfeS:|f(x)— f(y)| < 6YM. Thus is is sufficient to choose § = (¢/M)'/7 in
the definition of equicontinuity.

b) Show that any sequence f,, € C’O’V_[a, b], which converges weakly to some limit
[ € C®a,b], must satisty || fn — fllcofas — 0.
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Hint: show the inclusion (C°[a,b])’ C (C%7[a,b])’ for the dual spaces; use
the fact that weakly convergent sequences are bounded (this is known as the
uniform boundedness principle in functional analysis); then use the proof by
contradiction and a).

Solution: Suppose that f, — f € C%7[a,b]. Weakly convergent sequences are
bounded (uniform boundedness principle), and thus the set {f,} is relatively
compact in CY[a, b] according to a) and Arzela-Ascolli theorem.

Let us now take F € (C[a,b])’. Since C%7[a,b] C C°[a, b] the function F is de-
fined and linear on C%7[a,b]; furthermore [F(f)| < [|F||(coapyllfllcopy <
1F|[(cony | fllconas, Yf € C%a,b]. As a result, F € (C®7[a,b]) and
(C%a, b)) c (C°7]a,b]). Since we know that YF € (C%7[a,b]) : F(f,) —

F(f), therefore this happens for all F' € (C°[a,b])’ and f,, — f in C°[a,b] as
well.

Finally, assume that || f, — fllcof 7> 0, that is, for some € > 0 there is a
subsequence n' of n such that || f,x — fllcops > € Since {fy/} is a subset of
{fn}, a relatively compact set in C°[a, b], we can extract a further subsequence
n” from it, such that ||f,» — fHCO[a,b] — 0, for some f € C%a,b]. Owing to
the assumptions on n/, we have f # f. Thus the subsequence f,» has two
weak limits: f (strong convergence implies weak) and f (as a subsequence of a
weakly convergent sequence f,). This contradicts the uniqueness of the weak
limit (consequence of Hahn—-Banach theorem).

Outline the necessary changes in the proof of Theorem 4.15 in order to establish the
existence of optimal contrtols to the boundary control problem (4.49)—(4.51) in [Tx].

Solution: The basic strategy is to follow the proof of Theorem 4.15:

1.
2.

Construct a minimizing sequence of controls u,, € L>(T")

Note that there is a corresponding sequence of unique bounded states y, €
HY(Q)NC(Q) (see Theorems 4.6-4.8 in [Tr]). This sequence is bounded (The-
orem 4.8)! Note that the linear part of the operator (that is, —Ay + y with
Neumann boundary conditions) is coercive, so there is no need to split the non-
linearity as done in the book for the distributed control, where only —Vy with
Neumann boundary conditions is considered.

H'(Q) is a Hilbert space and therefore the sequence g, contains a subsequence
(can call it y, again), converging weakly to i € H'(Q).

As in Theorem 4.15, we can use Rellich-Kondrachov compact embedding the-
orem (Theorem 7.4 in [Tt]) to go from the weak convergence in H(Q) to a
strong convergence in L?(2).

. Unlike in Theorem 4.15, this is not sufficient to conclude that § = y(u) be-

cause the non-linearity “lives” on the boundary now! This is really the largest
deviation from the proof of Theorem 4.15 in [Tr].

Let T: HY(Q) = W'2(Q) — W'=1/22(I') = HY/2(T') be the trace operator (see
for example Theorem 7.3 in [Tr]). Since T is a bounded linear operator, it fol-
lows that Ty, converges weakly to 7% in H/?(I"). Furthermore, H'/?(T') is com-
pactly embedded into L?(I'), see for example Theorem 7.1 in “The Hitchhiker’s
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guide to the fractional Sobolev spaces”. Thus the non-linearity b(-, Ty, (-)) will
converge to the limit b(-,T'y(-)) owing to the continuity of Nemytskii operator,
see Lemma 4.11 [Tr].

. The rest of the proof follows more-or-less exactly the reasoning on p. 210 [Tr].
That is, ¥ = y(u) and J is sequentially lower semi-continous with respect to
the type of convergence that we need.
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