Reading material: Chapter 1 \& Section 2.1-2.2 from [Tröltsch].

51 We consider a(n artificial) finite-dimensional optimal control problem for $y \in \mathbb{R}^{2}$ with a control parameter $u \in \mathbb{R}$.
The state equation is:

$$
\begin{align*}
y_{1}+y_{2} & =u, \tag{1}\\
y_{2} & =2 u,
\end{align*}
$$

and the const functional is

$$
\begin{equation*}
J(y, u)=\frac{1}{2}\left[\left(y_{1}-1\right)^{2}+\left(y_{2}-2\right)^{2}\right]+\frac{\lambda}{2} u^{2}, \tag{2}
\end{equation*}
$$

where $\lambda>0$.
a) Derive the explicit expressions for the reduced cost functional and its gradient.

Solution: The control-to-state operator $y=S u$ is obtained by solving the state equations yeilding $S=[-1,2]^{T}$. The reduced cost function and its gradient are:

$$
\begin{aligned}
f(u) & =J(S u, u)=\frac{5+\lambda}{2} u^{2}-3 u+\frac{5}{2}, \\
f^{\prime}(u) & =(5+\lambda) u-3 .
\end{aligned}
$$

b) Formulate the adjoint problem and compute the reduced gradient with the help of the adjoint state.

Solution: The state equation in the matrix-vector form can be statet as

$$
\underbrace{\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)}_{=: A}\binom{y_{1}}{y_{2}}=\underbrace{\binom{1}{2}}_{=: B} u .
$$

He adjoint system is then $A^{T} p=\nabla_{y} J$, or

$$
\begin{aligned}
p_{1} & =y_{1}-1, \\
p_{1}+p_{2} & =y_{2}-2,
\end{aligned}
$$

thus $p_{2}=-y_{1}+y_{2}-1$. Finally, the reduced gradient is

$$
\begin{aligned}
f^{\prime}(u) & =B^{T} p+\nabla_{u} J=1\left(y_{1}-1\right)+2\left(-y_{1}+y_{2}-1\right)+\lambda u \\
& =-u-1+2(u+2 u-1)+\lambda u=(5+\lambda) u-3 .
\end{aligned}
$$

c) Assuming $U_{\mathrm{ad}}=\mathbb{R}$ state the first order necessary optimality conditions for this problem.

Solution: In the absense of restrictions on the control the first order necessary optimality conditions are

$$
\begin{aligned}
A y & =B u \\
A^{T} p & =\nabla_{y} J \\
\underbrace{B^{T} p+\nabla_{u} J}_{=f^{\prime}(u)} & =0 .
\end{aligned}
$$

These can even be solved, namely $u=3 /(5+\lambda)$ etc.

2 Consider the definition of a domain of class $C^{k, 1}$ on p. 26, Section 2.2 in [Tr$]$. Describe in detail the objects (cubes, functions h_{i}, etc) appearing in the definition when (a) $\Omega=$ unit square in \mathbb{R}^{2}; (b) $\Omega=$ unit ball in \mathbb{R}^{2}.
It is probably easiest to subdivide the boundary into four parts in both cases.

Solution:

For the unit circle one can for example decompose the boundary into four overlapping neighbourhoods, corresponding to the parts (in polar coordinates) $\pi / 6<\phi<\pi-$ $\pi / 6 ; \pi / 2+\pi / 6<\phi<3 \pi / 2-\pi / 6 ; \pi+\pi / 6<\phi<2 \pi-\pi / 6 ; 3 \pi / 2+\pi / 6<$ $\phi<2 \pi+\pi / 2-\pi / 6$. For the first part, the unit circle (near the boundary) is $-y_{2}>-h_{1}\left(y_{1}\right)=-\sqrt{1-y_{1}^{2}}$, inside the cube (interval) $-\sqrt{3} / 2<y_{1}<\sqrt{3} / 2$, where the local coordinates are simply $y_{i}=x_{i}$. in this way $h_{1} \in C^{k, 1}(-\sqrt{3} / 2, \sqrt{3} / 2)$ for all k.

For the third part of the boundary we can take the same coordinate system but we need a different inequality: $y_{2}>h_{3}\left(y_{1}\right)=-\sqrt{1-y_{1}^{2}}$, inside the cube (interval) $-\sqrt{3} / 2<y_{1}<\sqrt{3} / 2$.

Similarly for the other 2 cases.

In the case of a unit square $\left|x_{1}\right|<1,\left|x_{2}\right|<1$, we split the boundary into four open overlapping neighbourhoods centered around the corners. For the right/bottom corner we can use the coordinate system $y_{1}=x_{1}+x_{2}, y_{2}=x_{2}-x_{1}$ and $h\left(y_{1}\right)=\left|y_{1}\right|$ inside the cube $-2<y_{1}<2$. Then h is only Lipschitz (i.e., $k=0$).
Similar arguments for the other three corners.

3 a) Show that the weak derivative of $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as $f(x)=|x|$ is

$$
g(x)= \begin{cases}-1, & x<0 \\ 1, & x>0\end{cases}
$$

Note that it is not necessary to define g at 0 , which has measure 0 . Thus $f \in W^{1, p}(a, b)$ for an arbitrary $a<b$ and arbitrary $1 \leq p \leq \infty$.

Solution: Indeed for arbitrary $a<0<b$ and an arbitrary $\phi \in C_{0}^{\infty}(a, b)$ we have
$\int_{a}^{b}|x| \phi^{\prime}(x) \mathrm{d} x=-\int_{a}^{0} x \phi^{\prime}(x)+\int_{0}^{b} x \phi^{\prime}(x)=\int_{a}^{0} \phi(x)-\int_{0}^{b} \phi(x)=-1 \int_{a}^{b} g(x) \phi(x) \mathrm{d} x$,
where the second inequality is obtained by integrating by parts and noting that $\phi(a)=\phi(b)=0$ and $\left.x\right|_{0}=0$. Thus g is the weak derivative of f.
b) Show that f in the previous example is not twice weakly differentiable. (This example shows than not all functions are weakly differentiable.)
Hint: take an arbitrary $\phi \in C_{0}^{\infty}(\mathbb{R})$, such that $\phi(0) \neq 0$, and put $\phi_{k}(x)=$ $\phi(k x)$. Assume that equality (2.1) in the book holds for some integrable function (=potential weak derivative), and consider the limit of both sides of the equality for $k \rightarrow \infty$. Use the dominated Lebesgue convergence theorem to switch from the pointwise convergence of ϕ_{k} to the convergence of the integrals.

Solution: Assume that the weak second derivative of f exists and equals h, that is, for any $\phi \in C_{0}^{\infty}(\mathbb{R})$ we have

$$
\int f(x) \phi^{\prime \prime}(x)=\int h(x) \phi(x)
$$

Note that if $\operatorname{supp} \phi \subset[-N, N]$ then also $\operatorname{supp} \phi^{\prime} \subset[-N, N]$ and in particular $\phi^{\prime} \in C_{0}^{\infty}(\mathbb{R})$. Therefore, owing to (a) we get

$$
\int f(x) \phi^{\prime \prime}(x)=-\int g(x) \phi^{\prime}(x)
$$

thus the weak second derivative of f is the weak first derivative of g.
Let us now assume that $\phi(0) \neq 0$ and construct $\phi_{k}(x)=\phi(k x)$. Then $p h i_{k}(0)=$ $\phi(0) \neq 0$ and $\operatorname{supp} \phi_{k} \subset[-N / k, N / k]$. In particular, for any $x \neq 0$ we have $\phi_{k}(x)=\phi(k x)=0$ for $k>N /|x|$. Thus $\phi_{k}(x) \rightarrow 0$ as $k \rightarrow \infty$, pointwise, almost everywhere (in this case except at $x=0$).
Finally, we compute
$-\int g(x) \phi_{k}^{\prime}(x)=\int_{N / k}^{0} \phi_{k}^{\prime}(x)-\int_{0}^{N / k} \phi_{k}^{\prime}(x)=\phi_{k}(0)+\phi_{k}(0)=2 \phi_{k}(0)=2 \phi(0) \neq 0$.
On the other hand we know that $\left|\phi_{k}(x) h(x)\right| \leq\left\|\phi_{x}\right\|_{L^{\infty}(\mathbb{R})}|h(x)|$, and $|h(x)|$ is a Lebesgue integrable function on $[-N, N]$ (by our assumption). Therefore Lebesgue dominated convergence theorem applies and

$$
\int_{-N}^{N} h(x) \phi_{k}(x) \rightarrow \int_{-N}^{N} h(x) \cdot 0=0 \neq 2 \phi_{k}(0)=-\int_{-N}^{N} g(x) \phi_{k}^{\prime}(x)
$$

which is a contradiction.
c) Cet B be an open unit ball in \mathbb{R}^{n}, and define $f(x)=\|x\|^{-\gamma}, \gamma>0$. Note that the function "blows up" at 0 but is in $C^{\infty}(B \backslash\{0\})$. Let $g(x)=\nabla f(x)$ for $x \neq 0$. Derive the conditions on γ to show that g is the weak derivative of f in B. This example shows that some discontinuous/unbounded functions are weakly differentiable.

Hint: fix an arbitrary $\phi \in C_{0}^{\infty}(B)$. Then derive bounds on γ under which both f and g are integrable in B, and the following holds:

$$
\begin{aligned}
& \int_{B} f D_{i} \phi=\int_{B \backslash \varepsilon B} f D_{i} \phi+\underbrace{\int_{\varepsilon B} f D_{i} \phi}_{\rightarrow 0, \text { as } \varepsilon \rightarrow 0}, \\
& \int_{B} g_{i} \phi=\int_{B \backslash \varepsilon B} g_{i} \phi+\underbrace{\int_{\varepsilon B} g_{i} \phi}_{\rightarrow 0 \text { as } \varepsilon \rightarrow 0}, \\
& \left|\int_{B \backslash \varepsilon B} f D_{i} \phi+\int_{B \backslash \varepsilon B} g_{i} \phi\right|=\underbrace{\int_{\partial \varepsilon B} f \phi \nu_{i}}_{\rightarrow 0, \mathrm{as} \varepsilon \rightarrow 0},
\end{aligned}
$$

where ν is the unit normal to $B \backslash \varepsilon B$. Use spherical coordinates to estimate the "small" integrals.

Solution:

So the main problem is to remove the singularity at 0 , because the function is differentiable elsewhere. Indeed, let $g(x)=\nabla\|x\|^{-\gamma}=-\gamma\|x\|^{-\gamma-1} \nabla\|x\|=$ $-\gamma\|x\|^{-\gamma-2} x$ for $x \neq 0$. In particular $\left|g_{i}(x)\right| \leq\|g(x)\|=\gamma\|x\|^{-\gamma-1}$.
Let us fix an arbitrary $\phi \in C_{0}^{\infty}(B)$, and let us estimate the integrals around the singularity. We do this by using hyperspherical coordinates, and by C_{n} we denote the surphace of the unit sphere in \mathbb{R}^{n}.

$$
\begin{aligned}
\left|\int_{\varepsilon B} f D_{i} \phi\right| & \leq\left\|D_{i} \phi\right\|_{L^{\infty}(B)} \int_{\varepsilon B}|f|=\left\|D_{i} \phi\right\|_{L^{\infty}(B)} C_{n} \int_{0}^{\varepsilon} r^{n-1} r^{-\gamma} \\
& =\left\|D_{i} \phi\right\|_{L^{\infty}(B)} C_{n}\left[\frac{r^{n-\gamma}}{n-\gamma}\right]_{r=0}^{\varepsilon} \rightarrow 0
\end{aligned}
$$

as $\varepsilon \rightarrow 0$ for all $\gamma<n$.
Similarly

$$
\begin{aligned}
\left|\int_{\varepsilon B} g_{i} \phi\right| & \leq \gamma\|\phi\|_{L^{\infty}(B)} \int_{\varepsilon B}\|x\|^{-\gamma-1}=\gamma\|\phi\|_{L^{\infty}(B)} C_{n} \int_{0}^{\varepsilon} r^{n-1} r^{-\gamma-1} \\
& =\|\phi\|_{L^{\infty}(B)} \gamma C_{n}\left[\frac{r^{n-\gamma-1}}{n-\gamma-1}\right]_{r=0}^{\varepsilon} \rightarrow 0
\end{aligned}
$$

for all $\gamma<n-1$.
For the surface integral we get

$$
\left|\int_{\partial \varepsilon B} f \phi \nu_{i}\right| \leq\|\phi\|_{L^{\infty}(B)} \int_{\partial \varepsilon B}|f|=\left\|D_{i} \phi\right\|_{L^{\infty}(B)} C_{n} \varepsilon^{n-1} \varepsilon^{-\gamma} \rightarrow 0
$$

for all $\gamma<n-1$.
As a result we can write

$$
\begin{aligned}
\int_{B} f D_{i} \phi+\int_{B} g_{i} \phi & =\int_{B \backslash \varepsilon B} f D_{i} \phi+\int_{B \backslash \varepsilon B} g_{i} \phi+\int_{\varepsilon B} f D_{i} \phi+\int_{\varepsilon B} g_{i} \phi \\
& =\int_{B \backslash \varepsilon B} D_{i}[f \phi]+\int_{\varepsilon B} f D_{i} \phi+\int_{\varepsilon B} g_{i} \phi \\
& =-\int_{\partial \varepsilon B} f \phi \nu_{i}+\underbrace{\int_{\partial B} f \phi \nu_{i}}_{=0 \text { since } \phi \in C_{0}^{\infty}(B)}+\int_{\varepsilon B} f D_{i} \phi+\int_{\varepsilon B} g_{i} \phi \rightarrow 0 .
\end{aligned}
$$

Since the left hand side is independent from ε we must have the equality

$$
\int_{B} f D_{i} \phi=-\int_{B} g_{i} \phi,
$$

for any $\phi \in C_{0}^{\infty}(B)$, or that g is the weak derivative of f as long as $\gamma<n-1$. This does not exclude unbounded functions for $n>1$!
Of course if further regularity is required, for example that both f and g are square integrable, further restrictions on γ arise.

