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Reading material: Chapter 1 & Section 2.1-2.2 from [Troltsch].

We consider a(n artificial) finite-dimensional optimal control problem for y € R?
with a control parameter u € R.

The state equation is:

Y1 +y2 = u,
_ (1)
y2 - 2“’7
and the const functional is
J = Y -1y Cop 4t 2
(,0) = 5[0 = 12 + (g2 = 2% + S0, @

where A > 0.
a) Derive the explicit expressions for the reduced cost functional and its gradient.

Solution: The control-to-state operator y = Swu is obtained by solving the state
equations yeilding S = [~1,2]7. The reduced cost function and its gradient are:
54+ 5 5

u® — 3u+ —,

Flw) = T(Su,u) = )

f(u)=(5+Nu-—3.

b) Formulate the adjoint problem and compute the reduced gradient with the help
of the adjoint state.

Solution: The state equation in the matrix-vector form can be statet as
1 1\ (1) (1
(1)) =()
T ——
He adjoint system is then ATp =V, J, or
L=y —1,
p1tp2=y2—2,
thus po = —y1 + y2 — 1. Finally, the reduced gradient is

f'(w)=B'p+Vud =1(y1 = 1) +2(—y1 +y2 — 1) + Mu
=—u—14+2u+2u—1)+ u=0B+Nu—3.

January 29, 2016 Page 1 of 5



Exercise set 1

c) Assuming U,q = R state the first order necessary optimality conditions for this
problem.

Solution: In the absense of restrictions on the control the first order necessary
optimality conditions are

Ay = Bu
Alp=v,J
BTp+vV,J =0.
(w)
=f'(u

These can even be solved, namely u = 3/(5 + \) etc.

Consider the definition of a domain of class C¥! on p. 26, Section 2.2 in [Tt].
Describe in detail the objects (cubes, functions h;, etc) appearing in the definition
when (a) 2 = unit square in R?; (b) Q = unit ball in R2.

It is probably easiest to subdivide the boundary into four parts in both cases.

Solution:

For the unit circle one can for example decompose the boundary into four overlapping
neighbourhoods, corresponding to the parts (in polar coordinates) 7/6 < ¢ < 7™ —
w/6; /2 4+ 7/6 < ¢ < 3n/2 —7/6; T+ 7/6 < ¢ < 2m —7/6; 3T/2 4+ 7/6 <
¢ < 2m 4+ w/2 — w/6. For the first part, the unit circle (near the boundary) is
—y2 > —h1(y1) = —/1 — 92, inside the cube (interval) —v/3/2 < y; < v/3/2, where
the local coordinates are simply y; = ;. in this way hy € C*1(—/3/2,1/3/2) for all
k.

For the third part of the boundary we can take the same coordinate system but
we need a different inequality: y2 > h3(y1) = —+/1 — y7, inside the cube (interval)
—V/3/2 < y1 < V3/2.

Similarly for the other 2 cases.

In the case of a unit square |z1]| < 1, |z2| < 1, we split the boundary into four open
overlapping neighbourhoods centered around the corners. For the right/bottom
corner we can use the coordinate system y; = x1 + 2, y2 = 2 — x1 and h(y1) = |y1]
inside the cube —2 < y; < 2. Then h is only Lipschitz (i.e., kK = 0).

Similar arguments for the other three corners.

a) Show that the weak derivative of f : R — R defined as f(z) = |z| is

g(x):{_l’ x <0,

1, x > 0.

Note that it is not necessary to define g at 0, which has measure 0. Thus
f € WP(a,b) for an arbitrary a < b and arbitrary 1 < p < cc.
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b)

Solution: Indeed for arbitrary a < 0 < b and an arbitrary ¢ € C3°(a,b) we
have

/ab |z|¢/ (z) dw = — /QO x¢'(m)+/0b ¢/ (z) = /QO cb(x)—/ob p(x) = —1 /abg(x)qb(m) dz,

where the second inequality is obtained by integrating by parts and noting that
¢(a) = ¢(b) =0 and z|op = 0. Thus g is the weak derivative of f.

Show that f in the previous example is not twice weakly differentiable. (This
example shows than not all functions are weakly differentiable.)

Hint: take an arbitrary ¢ € C§°(R), such that ¢(0) # 0, and put ¢x(z) =
¢(kx). Assume that equality (2.1) in the book holds for some integrable function
(=potential weak derivative), and consider the limit of both sides of the equality
for k — oco. Use the dominated Lebesgue convergence theorem to switch from
the pointwise convergence of ¢ to the convergence of the integrals.

Solution: Assume that the weak second derivative of f exists and equals h,
that is, for any ¢ € C§°(R) we have

[ 1@¢'@ = [ nwyota).

Note that if supp ¢ C [-N, N] then also supp ¢’ C [N, N] and in particular
¢ € C§°(R). Therefore, owing to (a) we get

[ 1@ @ =~ [ g@)s' @)

thus the weak second derivative of f is the weak first derivative of g.

Let us now assume that ¢(0) # 0 and construct ¢ (z) = ¢(kx). Then phir(0) =
#(0) # 0 and supp ¢ C [—~N/k, N/k]. In particular, for any x # 0 we have
orp(x) = ¢(kx) = 0 for k > N/|z|. Thus ¢r(x) — 0 as k — oo, pointwise,
almost everywhere (in this case except at x = 0).

Finally, we compute

0 N/k
- Jo@o@ = [ a@- [ 6l@) = 6u0)+0u(0) = 20400 = 20(0) £ 0.
On the other hand we know that |¢x(7)h(z)| < [[¢zlpeem)|h(®)], and [h(z)]
is a Lebesgue integrable function on [—N, N] (by our assumption). Therefore
Lebesgue dominated convergence theorem applies and

N N N
| @@ = [ nw-0=0z200)=- [ s@iie

which is a contradiction.

Cet B be an open unit ball in R", and define f(x) = ||z]~7, v > 0. Note that
the function “blows up” at 0 but is in C*(B \ {0}). Let g(z) = Vf(x) for
x # 0. Derive the conditions on « to show that g is the weak derivative of f
in B. This example shows that some discontinuous/unbounded functions are
weakly differentiable.
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Hint: fix an arbitrary ¢ € C§°(B). Then derive bounds on 7 under which both
f and g are integrable in B, and the following holds:

/B o= [ Do+ / D0,
= —

—0,as € - 0

/Bgz¢=/B\€Bgi¢+ /aBgz'(ﬁ ;
——

—0,as e — 0

= f¢yia

0eB

/B\aB sz'<I5+/B\839i¢

where v is the unit normal to B \ eB. Use spherical coordinates to estimate
the “small” integrals.

—0,as e — 0

Solution:

So the main problem is to remove the singularity at 0, because the function
is differentiable elsewhere. Indeed, let g(z) = V|jz||77 = —v|z| 7" V|z| =
—7[lz[[ 77"z for x # 0. In particular |g;(z)| < [lg(=)|| = yll=[ "

Let us fix an arbitrary ¢ € C§°(B), and let us estimate the integrals around
the singularity. We do this by using hyperspherical coordinates, and by C,, we
denote the surphace of the unit sphere in R".

/EBfDi(lS

€
< |Didll e ) / 11 = 1Dl C /0
£

rn ¢
= |’Di¢||L°°(B)Cn|: ] =0
n—="%1r=0

as ¢ — 0 for all v < n.
Similarly

‘/839%25

g
< Sl (m) /B ||t = 7||¢”L°°(B)Cn/0 Jn—l—y—1

,rnf’yfl €
= |9l Lo (B)YCn [} -0
) n—vy—1 r=0

for all v <n —1.
For the surface integral we get

a7

forall v <n —1.

< H¢HL°0(B)/E)B‘f‘ = || Ds¢| Lo (5)Cre™ te™Y = 0

As a result we can write

/fefDi¢+/jggi¢:/B\erDm+/jg\ngi¢+/ngDi¢+/ngi¢
= [, ol [ oo [ g0

[ tone [ gon + [ oot [ ao—o

=0 since ¢ € C§°(B)
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Since the left hand side is independent from & we must have the equality

/Bsz'éf):—/Bgiqb,

for any ¢ € C§°(B), or that g is the weak derivative of f as long as v <n — 1.
This does not exclude unbounded functions for n > 1!

Of course if further regularity is required, for example that both f and g are
square integrable, further restrictions on -y arise.
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