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Exercise #7

February 28, 2023

Problem 1.

Consider the constrained optimization problem

min
(𝑥,𝑦)

− 𝑥2 − (𝑦 − 1)2 such that

{
𝑦 ≥ 𝐶𝑥2,

𝑦 ≤ 2,

where 𝐶 > 0 is some positive parameter.

a) Show that the point (0, 0) is a KKT point for all parameters 𝐶 > 0 and that the LICQ is satis�ed at (0, 0).

b) Formulate the second order necessary and su�cient optimality conditions for the point (0, 0). For which parameters
𝐶 are these conditions satis�ed? For which parameters 𝐶 is the point (0, 0) a local minimum?

Solution.

a) Introducing
𝑓 (𝑥, 𝑦) = −𝑥2 − (𝑦 − 1)2, 𝑐1 (𝑥, 𝑦) = 𝑦 −𝐶𝑥2, and 𝑐2 (𝑥, 𝑦) = 2 − 𝑦,

the minimisation problem becomes

min
𝑥,𝑦

𝑓 (𝑥, 𝑦) subject to 𝑐1 (𝑥, 𝑦) ≥ 0 and 𝑐2 (𝑥, 𝑦) ≥ 0.

Let also
L(𝑥, 𝑦, 𝜆1, 𝜆2) = 𝑓 (𝑥, 𝑦) − 𝜆1𝑐1 (𝑥, 𝑦) − 𝜆2𝑐2 (𝑥, 𝑦)

be the Lagrangian, with multipliers 𝜆1 and 𝜆2.

Focusing on the KKT conditions, it is clear that (0, 0) is feasible. Moreover, from the complementarity conditions

𝜆1𝑐1 (0, 0) = 0 and 𝜆2𝑐2 (0, 0) = 0,

we require 𝜆2 = 0 because 𝑐2 is inactive. (Note: 𝑐1 is active, so the �rst condition holds.) Computing

∇𝑥,𝑦L(𝑥, 𝑦, 𝜆1, 0) = ∇𝑓 (𝑥, 𝑦) − 𝜆1∇𝑐1 (𝑥, 𝑦) =
[
−2𝑥 (1 − 𝜆1𝐶)
−2(𝑦 − 1) − 𝜆1

]
and demanding that this gradient vanishes at (𝑥, 𝑦) = (0, 0), then give 𝜆1 = 2, with no restriction on𝐶 . Hence, (0, 0)
is a KKT point for all 𝐶 > 0. Additionally, since 𝑐1 is the only active constraint and ∇𝑐1 (0, 0) = (0, 1) ≠ 0, it follows
that the LICQ is satis�ed as well.
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b) Let C be the critical cone at (0, 0) with Lagrange multipliers (𝜆1, 𝜆2) = (2, 0). Then (0, 0), which satis�es the KKT
conditions, is a local minimiser of the constrained problem only if (necessary condition) the Hessian

∇2
(𝑥,𝑦)L(0, 0, 2, 0) =

[
−2(1 − 2𝐶) 0

0 −2

]
of the Lagrangian is positive semi-de�nite on C, that is,

𝑤>∇2
(𝑥,𝑦)L(0, 0, 2, 0)𝑤 ≥ 0 for all 𝑤 ∈ C.

If (su�cient condition), however, this Hessian is positive de�nite on C, then (0, 0) is a (strict) local minimiser.

Since 𝑐1 is the only active constraint and 𝜆1 > 0, we �nd that

C =
{
(𝑤1,𝑤2) ∈ R2 : ∇𝑐1 (0, 0)>𝑤 = 0

}
=

{
(𝑤1, 0) ∈ R2 : 𝑤1 ∈ R

}
.

Therefore, with𝑤 = (𝑤1, 0) ∈ C,

𝑤>∇2
(𝑥,𝑦)L(0, 0, 2, 0)𝑤 = −2(1 − 2𝐶)𝑤2

1 ,

which is nonnegative if and only if𝐶 ≥ 1/2, and strictly positive for all𝑤 ∈ C \ {0} if and only if𝐶 > 1/2. Thus (0, 0)
is a (strict) local minimum whenever 𝐶 > 1/2, but cannot be a minimiser if 0 < 𝐶 < 1/2. It remains to exam-
ine𝐶 = 1/2. To this end, we consider, for example, points (𝑥, 𝑦) approaching (0, 0) along 𝑐1 (𝑥, 𝑦) = 0, that is, points
for which 𝑦 = 𝑥2/2 → 0. This yields

𝑓
(
𝑥, 12𝑥

2) = −𝑥2 −
( 1
2𝑥

2 − 1
)2

= − 1
4𝑥

4 − 1,

which is strictly less than 𝑓 (0, 0) = −1 for all 𝑥 ≠ 0. In particular, (0, 0) is not a local minimiser when 𝐶 = 1/2.

Problem 2.

Consider the constrained optimisation problem

min
(𝑥,𝑦)

1
2
(𝑥2 + 𝑦2) subject to 𝑥𝑦 = 1.

a) Find (by whatever means) the solutions of this problem. In addition, �nd the values of the corresponding Lagrange
multipliers.

b) Formulate the unconstrained optimisation problem that results from the application of the quadratic penalty method
with parameter 𝜇 > 0. Solve these problems for all possible parameters 𝜇 and verify that the solutions converge to
the solutions of the constrained optimization problem as 𝜇 → ∞.

c) Formulate the augmented Lagrangian for this constrained optimization problem and �nd (for all possible parameters
𝜆 ∈ R and 𝜇 > 0) the global solutions of this (unconstrained) optimization problem. For which parameters does one
recover the solution of the original constrained problem?

Solution.

a) One strategy: let 𝑓 (𝑥, 𝑦) = 1
2 (𝑥

2 + 𝑦2) and 𝑐 (𝑥, 𝑦) = 𝑥𝑦 − 1. By completing the square, we get that

𝑓 (𝑥, 𝑦) = 1
2 (𝑥 − 𝑦)2 + 𝑥𝑦 = 1

2 (𝑥 − 𝑦)2 + 1,

whose global minimisers evidently satisfy 𝑥 = 𝑦 . And from the constraint 𝑥𝑦 = 1, this gives solutions (−1,−1)
and (1, 1). Furthermore, at optima,∇𝑓 must be parallel to∇𝑐 , or,∇𝑓 = 𝜆∇𝑐 for some Lagrangemultiplier 𝜆 ∈ R. Since
∇𝑓 (−1,−1) = (−1,−1) and ∇𝑐 (−1,−1) = (−1,−1), this gives 𝜆 = 1. At (1, 1), we similarly �nd a corresponding 𝜆 = 1.
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(Another option is to set up and solve the KKT conditions, plus argue, for example, via second order su�cient
conditions that these points are indeed minima.)

b) Constructively, the quadratic penalty method with parameter 𝜇 > 0 seeks to minimise

𝑄 (𝑥, 𝑦 ; 𝜇) := 𝑓 (𝑥, 𝑦) + 𝜇

2
𝑐 (𝑥, 𝑦)2 = 1

2
(
𝑥2 + 𝑦2

)
+ 𝜇

2
(𝑥𝑦 − 1)2

unconstrained over all (𝑥, 𝑦) ∈ R2. Note that 𝑄 is smooth and coercive and thus admits a global minimum, which
also must be a stationary point. Calculating

∇𝑄 (𝑥, 𝑦 ; 𝜇) =
[
𝑥 + 𝜇 (𝑥𝑦 − 1)𝑦
𝑦 + 𝜇 (𝑥𝑦 − 1)𝑥

]
,

we �nd that the �rst component of ∇𝑄 vanishes whenever

𝑥 =
𝜇𝑦

1 + 𝜇𝑦2
.

Inserted into the second component of the equation ∇𝑄 = 0, this yields

𝑦

[
1 − 𝜇2

(1 + 𝜇𝑦2)2

]
= 0. (★)

If 𝑦 = 0, then 𝑥 = 0 also, so (0, 0) is a stationary point. Examining the Hessian of𝑄 at (0, 0) shows that ∇2𝑄 (0, 0; 𝜇)
is positive de�nite when 𝜇 < 1, and negative de�nite when 𝜇 > 1. Thus (0, 0) is a strict local minimiser when 𝜇 < 1
and a strict local maximiser when 𝜇 > 1. If 𝜇 = 1, then

𝑄 (𝑥, 𝑦 ; 1) = 1
2

[
(𝑥 − 𝑦)2 + (𝑥𝑦)2 + 1

]
≥ 1

2
= 𝑄 (0, 0),

with equality if and only if 𝑥 = 𝑦 = 0. As such, (0, 0) is a strict local minimiser also for 𝜇 = 1.

If 𝑦 ≠ 0, then (★) simpli�es to
1 + 𝜇𝑦2 = 𝜇,

with solutions

𝑦 = ±
√︄
1 − 1

𝜇
,

provided 𝜇 ≥ 1. This also gives

𝑥 =
𝜇𝑦

1 + 𝜇𝑦2
= ±

√︄
1 − 1

𝜇
,

and it can be veri�ed that these points (𝑥, 𝑦) are minimisers. In total, (0, 0) is the global minimiser of 𝑄 (·, ·; 𝜇)
when 𝜇 ≤ 1, while the two points

(𝑥, 𝑦) =
(
±
√︄
1 − 1

𝜇
,±

√︄
1 − 1

𝜇

)
minimise 𝑄 (·, ·; 𝜇) when 𝜇 > 1. Finally, as 𝜇 → ∞, we �nd that (𝑥, 𝑦) converges to the global minimisers ±(1, 1) of
the original constrained problem.

c) The augmented Lagrangian for this problem is

𝐿𝐴 (𝑥, 𝑦, 𝜆, 𝜇) =
1
2
(𝑥2 + 𝑦2) − 𝜆(𝑥𝑦 − 1) + 𝜇

2
(𝑥𝑦 − 1)2,

which is coercive and lower semi-continuous such that a minimizer exists, and it has the gradient

∇𝐿𝐴 (𝑥, 𝑦, 𝜆, 𝜇) =
[
𝑥 − 𝜆𝑦 + 𝜇 (𝑥𝑦2 − 𝑦)
𝑦 − 𝜆𝑥 + 𝜇 (𝑥2𝑦 − 𝑥)

]
.
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After a similar computation to that in part b), we �nd

𝑥 =
(𝜇 + 𝜆)𝑦
1 + 𝜇𝑦2

and the equation for 𝑦 :

(1 + 𝜇𝑦2)2 = (𝜆 + 𝜇)2 .

In addition, we have the solution (𝑥, 𝑦) = (0, 0). We must be somewhat careful in �nding 𝑦 . First, we have

1 + 𝜇𝑦2 = ±(𝜆 + 𝜇),

but since the left hand side is positive, we must choose the right hand side positive as well. Therefore, we have

1 + 𝜇𝑦2 = |𝜆 + 𝜇 |

and thus

𝑦∗ = ±

√︄����𝜆𝜇 + 1
���� − 1

𝜇
,

which exists if |𝜆 + 𝜇 | ≥ 1. It can be checked that here, too, we have 𝑥∗ = 𝑦∗. The points (𝑥∗, 𝑦∗) are the global
minimizers if 𝜆 + 𝜇 ≥ 1. Otherwise, (0, 0) is the global minimizer. We see that the original solution is obtained
when either 𝜆 = 1 or 𝜇 → ∞. The fact that (𝑥∗, 𝑦∗) are the global minimizers if 𝜆 + 𝜇 ≥ 1 can seen by checking
when L𝐴 (𝑥∗, 𝑦∗, 𝜆, 𝜇) ≤ L𝐴 (0, 0, 𝜆, 𝜇). This leads (after some computation) to the condition

(𝜆 + 𝜇 − 1) ( |𝜆 + 𝜇 | − 1) ≥ 1
2
( |𝜆 + 𝜇 | − 1)2 .

Since (𝑥∗, 𝑦∗) exist only if |𝜆 + 𝜇 | ≥ 1, and if |𝜆 + 𝜇 | = 1 then (𝑥∗, 𝑦∗) = (0, 0), we can divide by |𝜆 + 𝜇 | − 1 to obtain
the condition

(𝜆 + 𝜇 − 1) ≥ 1
2
( |𝜆 + 𝜇 | − 1),

which holds if 𝜆 + 𝜇 ≥ 1 but not if 𝜆 + 𝜇 ≤ −1.

Problem 3.

Sketch the region Ω ⊂ R2 de�ned by the inequalities

𝑦 ≥ 𝑥4 and 𝑦 ≤ 𝑥3,

and compute the tangent cone and the set of linearized feasible directions for each point in Ω. For which points in Ω is
the LICQ satis�ed? (Note that this is same feasible region of the Problem 4.)

Solution.

De�ning
𝑐1 (𝑥, 𝑦) = 𝑦 − 𝑥4 and 𝑐2 (𝑥, 𝑦) = 𝑥3 − 𝑦

gives Ω = {(𝑥, 𝑦) ∈ R2 : 𝑐1 (𝑥, 𝑦) ≥ 0 and 𝑐2 (𝑥, 𝑦) ≥ 0}, which is shown in Figure 1.

Omitting details—the process is very similar to the Problem 1 of Exercise 6—we obtain that the LICQ condition holds at
all feasible points except (0, 0). Moreover, 𝑇Ω (𝑥, 𝑦) = F (𝑥, 𝑦) if (𝑥, 𝑦) lies in the interior of Ω;

𝑇Ω (𝑥, 𝑦) = F (𝑥, 𝑦) =
{
𝑑 ∈ R2 : 𝑑2 ≥ 4𝑥3𝑑1

}
when only 𝑐1 is active;

𝑇Ω (𝑥, 𝑦) = F (𝑥, 𝑦) =
{
𝑑 ∈ R2 : 3𝑥2𝑑1 ≥ 𝑑2

}
4 page 4 of 6



TMA4180 Optimisation 1
Spring 2023 Exercise #7

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

𝑐 1
(𝑥
, 𝑦
) =

0

𝑐 2(𝑥
, 𝑦
) =

0

𝑥

𝑦

Figure 1: Region Ω in grey, with colors on the boundary speci�ying the active constraints.

when only 𝑐2 is active;
𝑇Ω (1, 1) = F (1, 1) =

{
𝑑 ∈ R2 : 3𝑑1 ≥ 𝑑2 ≥ 4𝑑1

}
;

and
F (0, 0) =

{
𝑑 ∈ R2 : 𝑑2 = 0

}
and 𝑇Ω (0, 0) =

{
𝑑 ∈ R2 : 𝑑2 = 0 and 𝑑1 ≥ 0

}
.

Problem 4.

Consider the constrained optimization problem

min
(𝑥,𝑦)

(𝑥) such that

{
𝑦 ≥ 𝑥4,

𝑦 ≤ 𝑥3.

Find all KKT points and local minima for this optimization problem.

Solution.

We begin by stating the problem in standard form, writing x = [𝑥, 𝑦]𝑇 :

min
x∈R2

𝑓 (x) s.t. 𝑐𝑖 (x) ≥ 0, 𝑖 = 1, 2,

where

𝑓 (x) = 𝑥,

𝑐1 (x) = 𝑦 − 𝑥4

𝑐2 (x) = 𝑥3 − 𝑦.

The KKT conditions for this problem can be stated as follows:

1 + 4𝑥3𝜆1 − 3𝑥2𝜆2 = 0 (1a)
−𝜆1 + 𝜆2 = 0 (1b)
𝑦 − 𝑥4 ≥ 0 (1c)
𝑥3 − 𝑦 ≥ 0 (1d)

𝜆𝑖 ≥ 0, 𝑖 = 1, 2 (1e)
𝜆1 (𝑦 − 𝑥4) = 0 (1f)
𝜆2 (𝑥3 − 𝑦) = 0. (1g)
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Now, we can take a shortcut; from (1b), we see that 𝜆1 = 𝜆2, and from (1a) we see that there cannot exist any KKT point
for which 𝜆1 = 𝜆2 = 0. Therefore, the cases with no active constraints (𝜆1 = 𝜆2 = 0) and one active constraint (𝜆1 = 0
or 𝜆2 = 0) cannot produce KKT points. We are left with considering the case where both constraints are active, i.e. the
corner points (0, 0) and (1, 1).

In the point (1,1), we �nd (by (1a) and (1b)) that 𝜆1 = 𝜆2 = −1, and therefore this is not a KKT point.

The last point is (0, 0), for which we cannot write the gradient of 𝑓 at (0, 0) (which is [1, 0]𝑇 ) as a non-negative linear
combination of the gradients of the constraints, and which therefore is not a KKT point (here we can simply write (0, 0)
does not satisfy the condition 3a, therefore, (0, 0) cannot be a KKT point). This does not, however, mean that it is not a
minimizer. Applying common sense, it is clearly a local minimum, as no other points with 𝑥 = 0 are feasible, and 𝑥 = 0 is
the lowest possible value of the objective function.

Problem 5.

Consider the constrained optimisation problem

min
(𝑥,𝑦)

(𝑥 + 𝑦) such that 𝑥2 + 𝑦2 ≤ 1.

Formulate a logarithmic barrier method for the solution of this constrained optimisation problem and compute its solution
for each parameter 𝜇 > 0 in the barrier functional.

Solution.

Constructively, a logarithmic barrier approach may be written as

min
𝑥,𝑦,𝑠

(𝑥 + 𝑦 − 𝜇 log 𝑠) subject to 1 − 𝑥2 − 𝑦2 − 𝑠 = 0,

where 𝑠 (≥ 0) is the slack variable, and 𝜇 > 0 is the barrier parameter which we intend to drive to 0. Introducing a
Lagrange multiplier 𝜆, the KKT conditions for this problems are

1 + 2𝑥𝜆 = 0, 1 + 2𝑦𝜆 = 0, −𝜇

𝑠
+ 𝜆 = 0 and 1 − 𝑥2 − 𝑦2 − 𝑠 = 0.

This gives �rst that
𝜆 =

𝜇

𝑠
and 𝑥 = 𝑦 = − 𝑠

2𝜇
,

and inserted into the constraint equation, we �nd that

1 − 𝑠2

2𝜇2
− 𝑠 = 0.

The relevant solution of this quadratic equation is 𝑠 = 𝜇 (
√︁
𝜇2 + 2 − 𝜇), and we end up with

𝑥 = 𝑦 = − 1
2
(
√︁
𝜇2 + 2 − 𝜇) and 𝜆 = (

√︁
𝜇2 + 2 − 𝜇)−1.

Since the Hessian of the Lagrangian to this problem is positive de�nite, the found KKT point is the unique global minimizer
of the logarithmic barrier formulation. Notably, as 𝜇 → 0+, we recover the exact solution 𝑥∗ = 𝑦∗ = − 1√

2
, with 𝜆∗ = 1√

2
,

of the original problem.
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