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April 18, 2023

Problem 1.

Decide for each of the following binary relations whether it is a partial order, a total order, or no order relation at all.

a) The relation � on C given by 𝑥 � 𝑦 if <𝑥 ≤ <𝑦 (here <𝑥 ,<𝑦 denote the real part of 𝑥 and 𝑦 , respectively).

b) The relation � on R𝑛 , 𝑛 ≥ 1, given by 𝑥 � 𝑦 if ‖𝑥 ‖ ≤‖𝑦 ‖.

c) The relation � on R𝑛 , 𝑛 ≥ 1, given by 𝑥 � 𝑦 if 𝑥1 ≤ 𝑦1 and 𝑥𝑖 = 𝑦𝑖 for 2 ≤ 𝑖 ≤ 𝑛.

d) The relation � on the set of cubic polynomials given by 𝑝 � 𝑞 if the largest roots 𝑥𝑝 , 𝑥𝑞 of 𝑝 and 𝑞, respectively,
satisfy 𝑥𝑝 ≤ 𝑥𝑞 .

Solution.

a) Let 𝑥 = 𝑎1 + 𝑖𝑏1 and 𝑦 = 𝑎2 + 𝑖𝑏2.
Re�exivity: Obviously, 𝑎1 ≤ 𝑎1, i.e., <𝑥 ≤ <𝑥 , which implies 𝑥 � 𝑥 .
Anti-symmetry: Obviously, 𝑎1 ≤ 𝑎2 and 𝑎2 ≤ 𝑎1 implies 𝑎1 = 𝑎2, i.e., <𝑥 ≤ <𝑦 and <𝑦 ≤ <𝑥 implies <𝑥 = <𝑦 .
However, we cannot write

𝑥 � 𝑦 and 𝑦 � 𝑥 ⇒ 𝑥 = 𝑦.

For example, we have 𝑥 = 1 + 𝑖 and 𝑦 = 1 + 2𝑖 . Obviously, <𝑥 = <𝑦 and 𝑥 � 𝑦 but 𝑥 ≠ 𝑦 . Therefore, the given
relation � is not anti-symmetric and hence it is not a partial order relation. Moreover, it is not a total order relation
either.

b) Re�exivity: Obviously, ‖𝑥 ‖ ≤ ‖𝑥 ‖, which implies 𝑥 � 𝑥 .
Anti-symmetry: Obviously ‖𝑥 ‖ ≤ ‖𝑦 ‖ and ‖𝑦 ‖ ≤ ‖𝑥 ‖ implies ‖𝑥 ‖ = ‖𝑦 ‖. However, we cannot say

𝑥 � 𝑦 and 𝑦 � 𝑥 ⇒ 𝑥 = 𝑦.

For example, let 𝑥 = (1,−1) and 𝑦 = (1, 1). Then ‖𝑥 ‖ = ‖𝑦 ‖ =
√
2 and 𝑥 � 𝑦 and 𝑦 � 𝑥 , but 𝑥 ≠ 𝑦 . Therefore, the

given relation � is not anti-symmetric and hence it is not a partial order relation. Moreover, it is not a total order
relation either.

c) Re�exivity: Obviously, 𝑥1 ≤ 𝑥1 and 𝑥𝑖 ≤ 𝑥𝑖 for 2 ≤ 𝑖 ≤ 𝑛, which implies 𝑥 � 𝑥 .
Anti-symmetry: Obviously, 𝑥1 ≤ 𝑦1, 𝑥𝑖 = 𝑦𝑖 for 2 ≤ 𝑖 ≤ 𝑛 and 𝑦1 ≤ 𝑥1, 𝑦𝑖 = 𝑥𝑖 for 2 ≤ 𝑖 ≤ 𝑛 imply 𝑥1 = 𝑦1 and
𝑥𝑖 = 𝑦𝑖 for 2 ≤ 𝑖 ≤ 𝑛. Therefore, 𝑥 � 𝑦 and 𝑦 � 𝑥 yield 𝑥 = 𝑦 .
Transitivity: Obviously, 𝑥1 ≤ 𝑦1, 𝑥𝑖 = 𝑦𝑖 for 2 ≤ 𝑖 ≤ 𝑛 and 𝑦1 ≤ 𝑧1, 𝑦𝑖 = 𝑧𝑖 for 2 ≤ 𝑖 ≤ 𝑛 imply 𝑥1 ≤ 𝑧1 and 𝑥𝑖 = 𝑧𝑖
for 2 ≤ 𝑖 ≤ 𝑛. Therefore, 𝑥 � 𝑦 and 𝑦 � 𝑧 yield 𝑥 � 𝑧.
Thus, the given relation � is a partial order.
Total order: The given relation � is not a total order. Take for example 𝑥 = (𝑥1, 𝑥2) = (0, 0) and 𝑦 = (𝑦1, 𝑦2) = (0, 1).
Since 𝑥2 ≠ 𝑦2, neither of the relations 𝑥 � 𝑦 or 𝑦 � 𝑥 hold.
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d) Re�exivity: Obviously, 𝑥𝑝 ≤ 𝑥𝑝 which implies 𝑥 � 𝑥 .

Anti-symmetry: Obviously, 𝑥𝑝 ≤ 𝑥𝑞 and 𝑥𝑞 ≤ 𝑥𝑝 yield 𝑥𝑝 = 𝑥𝑞 . However, we cannot say

𝑥 � 𝑦 and 𝑦 � 𝑥 ⇒ 𝑥 = 𝑦.

For example, let 𝑝 (𝑥) = 𝑥2 (𝑥 − 1) and 𝑞(𝑥) = (𝑥 − 1)3. Then the largest roots of 𝑝 and 𝑞 are 𝑥𝑝 = 𝑥𝑞 = 1. Thus 𝑝 � 𝑞

and 𝑞 � 𝑝 , but, obviously, 𝑝 ≠ 𝑞. Therefore, the given relation � is not anti-symmetric and hence it is not a partial
order relation. Moreover, it is not a total order relation either.

Problem 2.

On the space R𝑑 we can de�ne the relation 𝑥 ≤lex 𝑦 if either 𝑥 = 𝑦 or there exists 1 ≤ 𝑖 ≤ 𝑑 such that 𝑥 𝑗 = 𝑦 𝑗 for 𝑗 < 𝑖

and 𝑥𝑖 < 𝑦𝑖 .

a) Show that ≤lex de�nes a total order on R𝑑 (the lexicographical order).

b) Show that the space (R𝑑 , ≤lex) is an ordered vector space.

c) Sketch the cone 𝐶 := {𝑥 : 0 ≤lex 𝑥} in the case 𝑑 = 2.

Solution.

a) Re�exivity: By de�nition we have 𝑥 ≤lex 𝑥 , and thus ≤lex is re�exive.

Anti-symmetry: Assume that 𝑥 ≤lex 𝑦 and that 𝑥 ≠ 𝑦 . Then there exists 𝑖 ∈ {1, 2, . . . , 𝑑} such that 𝑥 𝑗 = 𝑦 𝑗 for
𝑗 < 𝑖 , and 𝑥𝑖 < 𝑦𝑖 . This, however, implies that we cannot simultaneously have that 𝑦 ≤lex 𝑥 (because for that we
would need that 𝑦𝑖 < 𝑥𝑖 ). Therefore, the only possibility how we can have that 𝑥 ≤lex 𝑦 and 𝑦 ≤lex 𝑥 is that 𝑦 = 𝑥 .

Transitivity: Assume that 𝑥 ≤lex 𝑦 and 𝑦 ≤lex 𝑧. We have to show that 𝑥 ≤lex 𝑧. For that we can assume without
loss of generality that 𝑥 ≠ 𝑦 and 𝑦 ≠ 𝑧, as else the claim is trivial. Let therefore 𝑗 ∈ {1, . . . , 𝑑} be such that 𝑥𝑖 = 𝑦𝑖
for 𝑖 < 𝑗 and 𝑥 𝑗 < 𝑦 𝑗 , and let 𝑘 ∈ {1, . . . , 𝑑} be such that 𝑦𝑖 = 𝑧𝑖 for 𝑖 < 𝑘 and 𝑦𝑘 < 𝑧𝑘 .
Then we have three possibilities: If 𝑗 < 𝑘 , then 𝑥𝑖 = 𝑧𝑖 for 𝑖 < 𝑗 and 𝑥 𝑗 < 𝑦 𝑗 = 𝑧 𝑗 . If 𝑘 < 𝑗 , then 𝑥𝑖 = 𝑧𝑖 for 𝑖 < 𝑘

and 𝑥𝑘 = 𝑦𝑘 < 𝑧𝑘 . If 𝑘 = 𝑗 , then 𝑥𝑖 = 𝑧𝑖 for 𝑖 < 𝑗 and 𝑥 𝑗 < 𝑦 𝑗 < 𝑧 𝑗 . In all three cases, we obtain that 𝑥 ≤lex 𝑧.

Total order: Assume that 𝑥 , 𝑦 ∈ R𝑑 . We have to show that at least one of the relations 𝑥 ≤lex 𝑦 or 𝑦 ≤lex 𝑥 holds.
If 𝑥 = 𝑦 , then both relations hold trivially. Else, denote by 𝑗 ∈ {1, . . . , 𝑑} the smallest index for which 𝑥 𝑗 ≠ 𝑦 𝑗 . Then
𝑥𝑖 = 𝑦𝑖 for 𝑖 < 𝑗 , and we either have 𝑥 𝑗 < 𝑦 𝑗 in which case 𝑥 ≤lex 𝑦 , or 𝑦 𝑗 < 𝑥 𝑗 in which case 𝑦 ≤lex 𝑥 .

b) In order to show that (R𝑑 , ≤lex) is an ordered vector space, we have to show the following two relations:

1) If 𝑢 ≤lex 𝑣 and𝑤 ∈ R𝑑 , then also 𝑢 +𝑤 ≤lex 𝑣 +𝑤 .

2) If 𝑢 ≤lex 𝑣 and 𝜆 > 0, then also 𝜆𝑢 ≤lex 𝜆𝑣 .

Let therefore 𝑢, 𝑣 ∈ R𝑑 with 𝑢 ≤lex 𝑣 . Without loss of generality, we may assume that 𝑢 ≠ 𝑣 ; else both of the
assertions are trivial. Thus there exists 1 ≤ 𝑗 ≤ 𝑛 such that 𝑢𝑖 = 𝑣𝑖 for 𝑖 < 𝑗 and 𝑢 𝑗 < 𝑣 𝑗 . Now, if𝑤 ∈ R𝑑 , then we
have 𝑢𝑖 +𝑤𝑖 = 𝑣𝑖 +𝑤𝑖 for 𝑖 < 𝑗 and 𝑢 𝑗 +𝑤 𝑗 < 𝑣 𝑗 +𝑤 𝑗 , and thus 𝑢 +𝑤 ≤lex 𝑣 +𝑤 . Moreover, if 𝜆 > 0, then 𝜆𝑢𝑖 = 𝜆𝑣𝑖
for 𝑖 < 𝑗 and 𝜆𝑢 𝑗 < 𝜆𝑣 𝑗 , and thus 𝜆𝑢 ≤lex 𝜆𝑣 .

c) See Figure 1.
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𝑥

𝑦

Figure 1: Sketch of the non-negative cone for the lexicographic order in R2. Note that the upper part of the 𝑦-axis (but
not the lower part!) as well as the origin are part of the cone.

Problem 3.

De�ne the functions 𝑓1 : R→ R, 𝑓1 (𝑥) = 𝑥2 and 𝑓2 : R→ R, 𝑓2 (𝑥) = (𝑥2 − 1)2, and consider the multicriteria optimisation
problem

min
𝑥 ∈R

(
𝑓1 (𝑥), 𝑓2 (𝑥)

)
. (1)

a) Sketch the image 𝑌 := {(𝑓1 (𝑥), 𝑓2 (𝑥)) : 𝑥 ∈ R} ⊂ R2 of (𝑓1, 𝑓2) and �nd all minimal points in 𝑌 .

b) Find all Pareto-optimal solutions of (1).

Solution.

a) We note �rst that
𝑓2 (𝑥) = (𝑥2 − 1)2 =

(
𝑓1 (𝑥) − 1

)2
.

Moreover, the image of the function 𝑓1 (𝑥) = 𝑥2 is precisely the set of non-negative real numbers. Thus we have

𝑌 = {(𝑓1 (𝑥), 𝑓2 (𝑥)) : 𝑥 ∈ R} =
{(
𝑓1 (𝑥), (𝑓1 (𝑥) − 1)2

)
: 𝑥 ∈ R

}
=
{
(𝑦, (𝑦 − 1)2) : 𝑦 ≥ 0

}
,

which is sketched in Figure 2.

b) The Pareto-optimal solutions of (1) are precisely the points 𝑥 ∈ R that are mapped onto the minimal points of 𝑌 .
According to the sketch in Figure 2, these are precisely the points for which 0 ≤ 𝑥2 ≤ 1, that is, the interval [−1, 1].

We now look at the same problem in a more mathematical way by using the de�nition of Pareto-optimality. Let
therefore 𝑥 ∈ R. We want to check whether 𝑥 is a Pareto-optimum of (1).

Assume �rst that |𝑥 | > 1. Then 𝑥2 > 1 = 𝑓1 (1), and (𝑥2 − 1)2 > 0 = 𝑓2 (1), and thus (𝑓1 (1), 𝑓2 (1)) < (𝑓1 (𝑥), 𝑓2 (𝑥)).
Thus no point 𝑥 ∈ R with |𝑥 | > 1 can be a Pareto-optimum.
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𝑦1

𝑦2

1

1

Figure 2: Image 𝑌 of the function (𝑓1, 𝑓2). The red part shows the minimal points of 𝑌 .

Now assume that |𝑥 | ≤ 1 and let 𝑥 ∈ R. If 𝑓1 (𝑥) = 𝑓1 (𝑥), then also 𝑓2 (𝑥) = 𝑓2 (𝑥). On the other hand, if 𝑓1 (𝑥) < 𝑓1 (𝑥),
that is, 𝑥2 < 𝑥2 ≤ 1, then (𝑥2 − 1)2 > (𝑥2 − 1)2, that is 𝑓2 (𝑥) > 𝑓2 (𝑥). Thus, for |𝑥 | ≤ 1, there exists no 𝑥 ∈ R such
that 𝑓𝑖 (𝑥) ≤ 𝑓𝑖 (𝑥) for 𝑖 = 1, 2, and either 𝑓1 (𝑥) < 𝑓1 (𝑥) or 𝑓2 (𝑥) < 𝑓2 (𝑥). This shows that every point 𝑥 with |𝑥 | ≤ 1
is Pareto-optimal.

Therefore, the set of Pareto-optimal solutions of (1) is the interval [−1, 1].

Problem 4.

De�ne the functions 𝑓1, 𝑓2 : R2 → R

𝑓1 (𝑥, 𝑦) =
1

𝑥4 + 𝑦4 + 1 , 𝑓2 (𝑥, 𝑦) = 𝑥2 + 𝑦2,

and consider the multicriteria optimisation problem

min
(𝑥,𝑦) ∈R2

(
𝑓1 (𝑥, 𝑦), 𝑓2 (𝑥, 𝑦)

)
. (2)

a) Sketch the image 𝑌 := {(𝑓1 (𝑥, 𝑦), 𝑓2 (𝑥, 𝑦)) : (𝑥, 𝑦) ∈ R2} ⊂ R2 of (𝑓1, 𝑓2) and �nd all minimal points in 𝑌 .

b) Show that the Pareto-optimal solutions of (2) are precisely the points of the form (𝑥∗, 0), 𝑥∗ ∈ R, and (0, 𝑦∗),
𝑦∗ ∈ R.

c) Show that there does not exist any 0 ≤ 𝜆 ≤ 1 such that (𝑥∗, 0) = (1/2, 0) is a solution of the weighted sum problem

min
(𝑥,𝑦) ∈R2

(
𝜆𝑓1 (𝑥, 𝑦) + (1 − 𝜆) 𝑓2 (𝑥, 𝑦)

)
.

Solution.

a) In the next part of the problem, we will show that, for a �xed value 𝑓2 (𝑥, 𝑦) = 𝑅, the function values of 𝑓1 (𝑥, 𝑦) are
between 1/(1 + 𝑅2) and 1/(1 + 𝑅2/2). With this information, we can easily produce the sketch shown in Figure 3.

b) We note �rst that the point (0, 0) is a Pareto-optimal solution of (2), as it is the strict global minimum of 𝑓2.

Let now (𝑥∗, 𝑦∗) ∈ R2 \ {(0, 0)} be a Pareto-optimal solution of (2), and let 𝑅 := 𝑓2 (𝑥∗, 𝑦∗) > 0. Then the
Pareto-optimality implies that (𝑥∗, 𝑦∗) solves the problem

min
(𝑥,𝑦) ∈R2

𝑓1 (𝑥, 𝑦) s.t. 𝑓2 (𝑥, 𝑦) = 𝑅. (3)
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1

1

𝑓1

𝑓2

Figure 3: Sketch of the image 𝑌 of (𝑓1, 𝑓2). The minimal points are shown in red.

That is, for �xed value of 𝑓2, the point (𝑥∗, 𝑦∗) needs to minimize the function 𝑓1. Note that the constraint 𝑓2 (𝑥, 𝑦) = 𝑅

de�nes a closed and bounded set, and thus a minimizer of (3) exists.

Since 𝑅 > 0, the LICQ holds for every feasible point for (3). Thus the KKT conditions are necessary optimality
conditions. In this case, they read

− 4𝑥3
(𝑥4 + 𝑦4 + 1)2 = 2𝜆𝑥,

− 4𝑦3

(𝑥4 + 𝑦4 + 1)2 = 2𝜆𝑦,

𝑥2 + 𝑦2 = 𝑅,

where 𝜆 ∈ R is a Lagrange multiplier.

It is straightforward to see that they are satis�ed in the following cases:

• 𝑥∗ = ±
√
𝑅 and 𝑦∗ = 0. Here we have the function value 𝑓1 (𝑥∗, 0) = 1/(1 + 𝑅2).

• 𝑦∗ = ±
√
𝑅 and 𝑥∗ = 0. Again, we have the function value 𝑓1 (0, 𝑦∗) = 1/(1 + 𝑅2).

• 𝑥∗ = ±
√︁
𝑅/2 and 𝑦∗ = ±

√︁
𝑅/2. Here we have the function value 𝑓1 (±𝑥∗,±𝑦∗) = 1/(1 + 𝑅2/2).

Since 1
1+𝑅2 < 1

1+𝑅2/2 , it follows that the solutions of (3) are obtained in the �rst two cases. (Note also: The problem
of maximising 𝑓1 (𝑥, 𝑦) subject to the constraint 𝑓2 (𝑥, 𝑦) = 𝑅 also attains a solution, and the only candidates are the
KKT-points obtained in the third case above. Thus these points are the solutions of this maximisation problem.)

Until now, we have shown that all solutions of (2) are of the form asked for in the problem statement. We still have
to show, though, that every such point indeed is Pareto-optimal. For that, we recall that the value of the solutions
of (3) is 𝑔(𝑅) := 1/(1 + 𝑅2) for 𝑅 ≥ 0, and 𝑔 is a decreasing function for 𝑅 ≥ 0. Let therefore (𝑥∗, 𝑦∗) ∈ R2 with
𝑓2 (𝑥∗, 𝑦∗) = 𝑅 be a solution of (3) for some 𝑅 > 0. Let moreover (𝑥, 𝑦) ∈ R2 with 𝑓2 (𝑥, 𝑦) ≤ 𝑅. Then, if 𝑓2 (𝑥, 𝑦) = 𝑅,
it follows that 𝑓1 (𝑥, 𝑦) ≥ 𝑓1 (𝑥∗, 𝑦∗), as (𝑥∗, 𝑦∗) solves (3). On the other hand, if 𝑓2 (𝑥, 𝑦) < 𝑅,

𝑓1 (𝑥, 𝑦) ≥ inf
𝑓2 (𝑥,𝑦)=𝑓2 (𝑥,𝑦)

𝑓1 (𝑥, 𝑦) =
1

1 + 𝑓1 (𝑥, 𝑥)
>

1
1 + 𝑅2 = 𝑓2 (𝑥∗, 𝑦∗).
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This shows that there exists no point (𝑥, 𝑦) ∈ R2 such that 𝑓𝑖 (𝑥, 𝑦) ≤ 𝑓𝑖 (𝑥∗, 𝑦∗) for 𝑖 = 1, 2, and at least one of the
inequalities 𝑓1 (𝑥, 𝑦) < 𝑓1 (𝑥∗, 𝑦∗) or 𝑓2 (𝑥, 𝑦) < 𝑓2 (𝑥∗, 𝑦∗) holds. Thus (𝑥∗, 𝑦∗) is a Pareto-optimal solution of (2).

c) We �rst compute the gradient and Hessian of the functions 𝑓1 and 𝑓2. For 𝑓1 we obtain

∇𝑓1 (𝑥, 𝑦) = − 4
(𝑥4 + 𝑦4 + 1)2

(
𝑥3

𝑦3

)
and

𝐻𝑓1 (𝑥, 𝑦) =
4

(𝑥4 + 𝑦4 + 1)3

(
𝑥6 − 3𝑥2𝑦4 − 3𝑥2 4𝑥3𝑦3

4𝑥3𝑦3 𝑦6 − 3𝑥4𝑦2 − 3𝑦2
)
.

For 𝑓2 we obtain

∇𝑓2 (𝑥, 𝑦) =
(
2𝑥
2𝑦

)
and 𝐻𝑓2 (𝑥, 𝑦) =

(
2 0
0 2

)
.

Speci�cally, we obtain for (𝑥, 𝑦) = (1/2, 0) that

∇𝑓1 (1/2, 0) = − 128
289

(
1
0

)
and 𝐻𝑓1 (1/2, 0) = −256 · 47

173

(
1 0
0 0

)
,

and
∇𝑓2 (1/2, 0) =

(
1
0

)
and 𝐻𝑓2 (1/2, 0) =

(
2 0
0 2

)
.

Now assume that 0 ≤ 𝜆 ≤ 1 is such that (1/2, 0) solves the problem min(𝑥,𝑦) 𝜆𝑓1 (𝑥, 𝑦) + (1−𝜆) 𝑓2 (𝑥, 𝑦). Then the �rst
order optimality condition needs to be satis�ed at (1/2, 0), that is 𝜆∇𝑓1 (1/2, 0) + (1 − 𝜆)∇𝑓2 (1/2, 0) = 0. Inserting
the values obtained above and ignoring the second component, which is 0 anyway, we obtain the condition

− 128
289𝜆 + 1 − 𝜆 = 0.

By solving this equation for 𝜆, we see that the only possibility for 𝜆 is

𝜆 =
289
417 .

For this value of 𝜆, however, we see that

𝜆𝜕𝑥𝑥 𝑓1 (1/2, 0) + (1 − 𝜆)𝜕𝑥𝑥 𝑓2 (1/2, 0) = −2560
2363 < 0.

Thus the Hessian of 𝜆𝑓1 + (1 − 𝜆) 𝑓2 is not positive semi-de�nite, and therefore (1/2, 0) is no local minimum.
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