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Exercise #9

March 14, 2023

Problem 1.

In this exercise, we study the Gau3—Newton method for solving the least-squares problem corresponding to the (overde-
termined and inconsistent) system of equations

x+y=1,
x—y=0,
Xy =2.

To that end, we define
nxy) =x+y-1

ra(x,y) ==x -y,
r3(x,y) == xy -2,

and
3

flx,y) = % Z ri(x, y)z.

j=1

We denote moreover by J = J(x, y) the Jacobian of r.

a) Show that the function f is non-convex, but that it has a unique minimiser (x*, y*).
b) Show that the matrix J7 J required in the Gau3—~Newton method is positive definite for all x, y.

c¢) Perform one step of the Gaufl—-Newton method (without line search) for the solution of this least-squares problem.
Use the initial value (xo, yo) = (0, 0).

Solution.

Have already discussed in the class!

Problem 2.

Let
f(x) = xf +2x;1 + X1X2 + X1 — Xg + 2.

Starting at the point xo = (0,0) compute explicitly one step for the trust region method with the model function
m(p) = f(x0) +g"p + 1p" Bp, where g = Vf(xo), B = V?f(xo), and the trust region radius A = 1.

Solution.

Have already discussed in the class!
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Problem 3. (Problem 4.1 in N&W)

Let
F(x) =10(xz — x3)2 + (1 - x))"

At x = (0,—1) draw the contour lines of the quadratic model
. 1 .
rr;,mm(p) =f() +(Vf(x).p) + S (p. Bp) subject to [|p|| < A, (1)

assuming that B is the Hessian of f. Draw the family of solutions of (1) as the trust region radius varies from A = 0 to
A = 2. Repeat this at x = (0, 0.5).

Solution.

The gradient and Hessian of the objective function f(x) = 10(x; — x%)* + (1 — x)? are

- — )y — —
Vo) = [0 )

40(3x% —x3) +2  —40x;
—40x; 20

and V2f(x) = ( ) , respectively.

We see that f has only one minimum, that is x* = (1, l)T. For x; = (0, —l)T, we have that

_ (-2 2. (42 0
fi =1L, Vfi = (_20) and V°fy = (0 20).
Hence, )
mi(p) = fi + VI p+ EpTVkap = 11— 2p; — 20p, + 21p? +10p2,

is a strictly convex quadratic function with minimizer pf =-V? fk_lv fr = (%, 1)T. We can rewrite my (p) to
1 20

me(p) = 21(p1 — —)* +10(p2 = 1)* + =.

k(p) (p1 21) (p2—1) oo

Thus the contours of mi(p) are ellipses. We can get the solution of

”;ﬂligAmk (») (2)

as
IPIl= A, llpgll > A,
p= pf, otherwise.

For x;. = (0,0.5)T, we have that

fie = = Ve = (;(?) Vi = (_38 200)'

2
Hence,
7 ) ) 1, 1, 10
mg(p) = i 2p1 +10p; — 9py +10p; = —9(p1 + 5) +10(p; + 5) + 5
has no global maximum or minimum, but a saddle point at (—é, —%)T. Since we have no minimum in the interior of

the trust-region, the minimizer py of (2) will also here satisfy ||pr|| = A. Observe that the contours of my (p) will be
hyperbolas. Contour plots of my (x), the family of solutions of (2) for A € (0, 2] and trust region radii for the two different
xx are shown in Figure 1.
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Figure 1: Contour plot of my (p) and the family of solutions of (5)(in red)

Problem 4. (Problem 4.5 in N&W)

Let #(7) = my(zp;), where p; = —%gk and mi(p) = fr + g{p + 3p"Bp with B € R symmetric. Show that the
minimizer of ¢(7) subject to ||7p}|| < Ay and 7 > 0 is given as
1, ifg]{Bkgk <0,
min(M 1), otherwise ()
Argy Brgr® ’

Solution.

With the definition of my (p) and p;, we can write

¢(f)=fk+g,f( TAkgk) 1( TAkgk)TB ( TAkgk)

_ 1 (-
lgell )~ 2\ Tlgel gl
172N g! Big
= fi — tAllgell + 25—
gl

Furthermore, observe that the constraint ||zp; || < A is equivalent to |z| < 1. Together with 7 > 0, this means that
7 € (0,1]. First, if gx = 0, then ¢(7) is a constant, so 7 = 1 will be a minimizer. This is in agreement with (3). Second, if
ngkgk = 0, then ¢(r) is linear and decreasing, so the minimizer is the highest possible value, i.e., 7 = 1, which is also in
agreement with (3). Lastly, if gIZBkgk # 0, then we have a critical point where

, TAZgTBkgk
¢ (1) = =Axllgl —=E—= =0,
g |

that is ,
gkl

= . (4)
Akgy Brgk

Now if ngkgk < 0 then this is a maximizer, and the minimizer must be at the endpoints of the interval (0, 1]. Since we

have ¢(0) > ¢(1), the minimizer must be 7 = 1. This is in agreement with (3). Otherwise, if ngkgk > 0 then (4) is a
minimizer. If this value in bigger than 1, then ¢ is decreasing across the interval (0, 1], and thus the minimizer is 7 = 1, as
in (3). If (4) is less than 1, then (4) is the minimizer. This is captured by (3).
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