Exercise \#9

March 14, 2023

Problem 1.

In this exercise, we study the Gauß-Newton method for solving the least-squares problem corresponding to the (overdetermined and inconsistent) system of equations

$$
\begin{array}{r}
x+y=1 \\
x-y=0 \\
x y=2 .
\end{array}
$$

To that end, we define

$$
\begin{aligned}
& r_{1}(x, y):=x+y-1, \\
& r_{2}(x, y):=x-y, \\
& r_{3}(x, y):=x y-2,
\end{aligned}
$$

and

$$
f(x, y):=\frac{1}{2} \sum_{j=1}^{3} r_{j}(x, y)^{2} .
$$

We denote moreover by $J=J(x, y)$ the Jacobian of r.
a) Show that the function f is non-convex, but that it has a unique minimiser $\left(x^{*}, y^{*}\right)$.
b) Show that the matrix $J^{T} J$ required in the Gauß-Newton method is positive definite for all x, y.
c) Perform one step of the Gauß-Newton method (without line search) for the solution of this least-squares problem. Use the initial value $\left(x_{0}, y_{0}\right)=(0,0)$.

Solution.

Have already discussed in the class!

Problem 2.

Let

$$
f(x)=x_{1}^{4}+2 x_{2}^{4}+x_{1} x_{2}+x_{1}-x_{2}+2 .
$$

Starting at the point $x_{0}=(0,0)$ compute explicitly one step for the trust region method with the model function $m(p)=f\left(x_{0}\right)+g^{T} p+\frac{1}{2} p^{T} B p$, where $g=\nabla f\left(x_{0}\right), B=\nabla^{2} f\left(x_{0}\right)$, and the trust region radius $\Delta=1$.

Solution.

Have already discussed in the class!

NTNU

Problem 3. (Problem 4.1 in N\&W)
Let

$$
f(x)=10\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2} .
$$

At $x=(0,-1)$ draw the contour lines of the quadratic model

$$
\begin{equation*}
\min _{p} m(p)=f(x)+\langle\nabla f(x), p\rangle+\frac{1}{2}\langle p, B p\rangle \quad \text { subject to }\|p\| \leq \Delta, \tag{1}
\end{equation*}
$$

assuming that B is the Hessian of f. Draw the family of solutions of (1) as the trust region radius varies from $\Delta=0$ to $\Delta=2$. Repeat this at $x=(0,0.5)$.

Solution.

The gradient and Hessian of the objective function $f(x)=10\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}$ are

$$
\begin{gathered}
\nabla f(x)=\binom{-40\left(x_{2}-x_{1}^{2}\right) x_{1}-2\left(1-x_{1}\right)}{20\left(x_{2}-x_{1}^{2}\right),} \\
\text { and } \nabla^{2} f(x)=\left(\begin{array}{cc}
40\left(3 x_{1}^{2}-x_{2}\right)+2 & -40 x_{1} \\
-40 x_{1} & 20
\end{array}\right) \text {, respectively. }
\end{gathered}
$$

We see that f has only one minimum, that is $x^{*}=(1,1)^{T}$. For $x_{k}=(0,-1)^{T}$, we have that

$$
f_{k}=11, \nabla f_{k}=\binom{-2}{-20} \text { and } \nabla^{2} f_{k}=\left(\begin{array}{cc}
42 & 0 \\
0 & 20
\end{array}\right) .
$$

Hence,

$$
m_{k}(p)=f_{k}+\nabla f_{k}^{T} p+\frac{1}{2} p^{T} \nabla^{2} f_{k} p=11-2 p_{1}-20 p_{2}+21 p_{1}^{2}+10 p_{2}^{2}
$$

is a strictly convex quadratic function with minimizer $p_{k}^{B}=-\nabla^{2} f_{k}^{-1} \nabla f_{k}=\left(\frac{1}{21}, 1\right)^{T}$. We can rewrite $m_{k}(p)$ to

$$
m_{k}(p)=21\left(p_{1}-\frac{1}{21}\right)^{2}+10\left(p_{2}-1\right)^{2}+\frac{20}{21} .
$$

Thus the contours of $m_{k}(p)$ are ellipses. We can get the solution of

$$
\begin{equation*}
\min _{\|p\| \leq \Delta} m_{k}(p) \tag{2}
\end{equation*}
$$

as

$$
\left\{\begin{array}{l}
\|P\|=\Delta,\left\|p_{k}^{B}\right\|>\Delta \\
p=p_{k}^{B}, \text { otherwise }
\end{array}\right.
$$

For $x_{k}=(0,0.5)^{T}$, we have that

$$
f_{k}=\frac{7}{2}, \nabla f_{k}=\binom{-2}{10}, \quad \nabla^{2} f_{k}=\left(\begin{array}{cc}
-18 & 0 \\
0 & 20
\end{array}\right) .
$$

Hence,

$$
m_{k}(p)=\frac{7}{2}-2 p_{1}+10 p_{2}-9 p_{1}^{2}+10 p_{2}^{2}=-9\left(p_{1}+\frac{1}{9}\right)^{2}+10\left(p_{2}+\frac{1}{2}\right)^{2}+\frac{10}{9}
$$

has no global maximum or minimum, but a saddle point at $\left(-\frac{1}{9},-\frac{1}{2}\right)^{T}$. Since we have no minimum in the interior of the trust-region, the minimizer p_{k} of (2) will also here satisfy $\left\|p_{k}\right\|=\Delta$. Observe that the contours of $m_{k}(p)$ will be hyperbolas. Contour plots of $m_{k}(x)$, the family of solutions of (2) for $\Delta \in(0,2]$ and trust region radii for the two different x_{k} are shown in Figure 1.

Figure 1: Contour plot of $m_{k}(p)$ and the family of solutions of (5)(in red)

Problem 4. (Problem 4.5 in N\&W)
Let $\phi(\tau)=m_{k}\left(\tau p_{k}^{s}\right)$, where $p_{k}^{s}=-\frac{\Delta_{k}}{\left\|g_{k}\right\|} g_{k}$ and $m_{k}(p)=f_{k}+g_{k}^{T} p+\frac{1}{2} p^{T} B p$ with $B \in \mathbb{R}^{d \times d}$ symmetric. Show that the minimizer of $\phi(\tau)$ subject to $\left\|\tau p_{k}^{s}\right\| \leq \Delta_{k}$ and $\tau \geq 0$ is given as

$$
\begin{cases}1, & \text { if } g_{k}^{T} B_{k} g_{k} \leq 0 \tag{3}\\ \min \left(\frac{\left\|g_{k}\right\|^{3}}{\Delta \Delta_{k} g_{k}^{T} B_{k} g_{k}}, 1\right), & \text { otherwise }\end{cases}
$$

Solution.

With the definition of $m_{k}(p)$ and p_{k}^{s}, we can write

$$
\begin{aligned}
\phi(\tau) & =f_{k}+g_{k}^{T}\left(-\frac{\tau \Delta_{k} g_{k}}{\left\|g_{k}\right\|}\right)+\frac{1}{2}\left(-\frac{\tau \Delta_{k} g_{k}}{\left\|g_{k}\right\|}\right)^{T} B_{k}\left(-\frac{\tau \Delta_{k} g_{k}}{\left\|g_{k}\right\|}\right) \\
& =f_{k}-\tau \Delta_{k}\left\|g_{k}\right\|+\frac{\frac{1}{2} \tau^{2} \Delta_{k}^{2} g_{k}^{T} B_{k} g_{k}}{\left\|g_{k}\right\|^{2}} .
\end{aligned}
$$

Furthermore, observe that the constraint $\left\|\tau p_{k}^{s}\right\| \leq \Delta_{k}$ is equivalent to $|\tau| \leq 1$. Together with $\tau>0$, this means that $\tau \in(0,1]$. First, if $g_{k}=0$, then $\phi(\tau)$ is a constant, so $\tau=1$ will be a minimizer. This is in agreement with (3). Second, if $g_{k}^{T} B_{k} g_{k}=0$, then $\phi(\tau)$ is linear and decreasing, so the minimizer is the highest possible value, i.e., $\tau=1$, which is also in agreement with (3). Lastly, if $g_{k}^{T} B_{k} g_{k} \neq 0$, then we have a critical point where

$$
\phi^{\prime}(\tau)=-\Delta_{k}\left\|g_{k}\right\| \frac{\tau \Delta_{k}^{2} g_{k}^{T} B_{k} g_{k}}{\left\|g_{k}\right\|^{2}}=0
$$

that is

$$
\begin{equation*}
\tau=\frac{\left\|g_{k}\right\|^{3}}{\Delta_{k} g_{k}^{T} B_{k} g_{k}} \tag{4}
\end{equation*}
$$

Now if $g_{k}^{T} B_{k} g_{k}<0$ then this is a maximizer, and the minimizer must be at the endpoints of the interval $(0,1]$. Since we have $\phi(0)>\phi(1)$, the minimizer must be $\tau=1$. This is in agreement with (3). Otherwise, if $g_{k}^{T} B_{k} g_{k}>0$ then (4) is a minimizer. If this value in bigger than 1 , then ϕ is decreasing across the interval $(0,1]$, and thus the minimizer is $\tau=1$, as in (3). If (4) is less than 1 , then (4) is the minimizer. This is captured by (3).

