
TMA4180 Optimisation 1
Spring 2023 Exercise #6

Exercise #6

February 21, 2023

Problem 1.

Sketch the region Ω = {(𝑥, 𝑦) ∈ R2 : 𝑦 ≥ 𝑥 and 𝑦4 ≤ 𝑥3} and compute the tangent cone and the set of linearized feasible
directions for each point in Ω. For which point in Ω is the LICQ satised?

Solution.

We rst dene the constraint functions,

𝑐1 (𝑥, 𝑦) = 𝑦 − 𝑥 and 𝑐2 (𝑥, 𝑦) = 𝑥3 − 𝑦4,

so that Ω = {(𝑥, 𝑦) ∈ R2 : 𝑐1 (𝑥, 𝑦) ≥ 0 and 𝑐2 (𝑥, 𝑦) ≥ 0}, and sketch of the region Ω is displayed in the Figure below.
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Figure 1: Region Ω in grey, with colors on the boundary speciying the active constraints.

In order to characterise the tangent cone 𝑇Ω (𝑥, 𝑦) and the set of linearised feasible directions F (𝑥, 𝑦), we employ
Lemma 12.2 in N&W, which states that if the LICQ condition holds at a feasible point (𝑥, 𝑦), then 𝑇Ω (𝑥, 𝑦) = F (𝑥, 𝑦).

Note rst that the LICQ condition holds vacuously in the interior of Ω because all constraints are inactive, and there-
fore, 𝑇Ω (𝑥, 𝑦) = F (𝑥, 𝑦) = R2 at interior points.

Next we consider boundary points with precisely one active constraint. Starting with points for which 𝑐1 (𝑥, 𝑦) = 0, and
excluding (0, 0) and (1, 1) where also 𝑐2 is active. We nd that ∇𝑐1 (𝑥, 𝑦) = (−1, 1). Since ∇𝑐1 ≠ 0, the LICQ condition
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holds, and so

𝑇Ω (𝑥, 𝑦) = F (𝑥, 𝑦) =
{
𝑑 = (𝑑1, 𝑑2) ∈ R2 : ∇𝑐1 (𝑥, 𝑦)>𝑑 ≥ 0

}
=
{
𝑑 = (𝑑1, 𝑑2) ∈ R2 : 𝑑2 ≥ 𝑑1

}
.

Similarly, if only 𝑐2 is active, we observe that the LICQ condition holds because ∇𝑐2 (𝑥, 𝑦) = (3𝑥2,−4𝑦3) ≠ 0 away
from (0, 0). This yields

𝑇Ω (𝑥, 𝑦) = F (𝑥, 𝑦) =
{
𝑑 = (𝑑1, 𝑑2) ∈ R2 : ∇𝑐2 (𝑥, 𝑦)>𝑑 ≥ 0

}
=
{
𝑑 = (𝑑1, 𝑑2) ∈ R2 : 3𝑥2𝑑1 ≥ 4𝑦3𝑑2

}
.

Constraint gradients at (1, 1) equal ∇𝑐1 = (−1, 1) and ∇𝑐2 = (3,−4), which are linearly independent. Thus the LICQ
condition is true, and

𝑇Ω (1, 1) = F (1, 1) =
{
𝑑 = (𝑑1, 𝑑2) ∈ R2 : ∇𝑐1 (1, 1)>𝑑 ≥ 0 and ∇𝑐2 (1, 1)>𝑑 ≥ 0

}
=
{
𝑑 = (𝑑1, 𝑑2) ∈ R2 : 𝑑1 ≤ 𝑑2 and 3𝑑1 ≥ 4𝑑2

}
.

Lastly, since∇𝑐1 (0, 0) = (−1, 1) and∇𝑐2 (0, 0) = 0, the LICQ condition fails at (0, 0), andwe cannot expect that𝑇Ω (0, 0) = F (0, 0).
Readily,

F (0, 0) =
{
𝑑 ∈ R2 : ∇𝑐1 (0, 0)>𝑑 ≥ 0 and ∇𝑐2 (0, 0)>𝑑 ≥ 0

}
=
{
𝑑 ∈ R2 : 𝑑2 ≥ 𝑑1

}
.

In order to nd the tangent cone, we rst consider limiting directions along the constraint boundaries 𝑐1 (𝑥, 𝑦) = 0
and 𝑐2 (𝑥, 𝑦) = 0 as (𝑥, 𝑦) → (0, 0). Travelling towards (0, 0) when 𝑐1 is active, we may put, using the notation in N&W,

𝑧𝑘 = (1/𝑘, 1/𝑘) and 𝑡𝑘 = 1/𝑘,

and obtain the limiting direction

𝑑 = lim
𝑘→∞

𝑧𝑘 − (0, 0)
𝑡𝑘

= (1, 1).

Note: the length of 𝑑 is irrelevant; we only care about its direction. Similarly, travelling along 𝑐2 (𝑥, 𝑦) = 0 yields 𝑑 = (0, 1),
using for example, the sequences

𝑧𝑘 =
(
𝑘−1/3, 𝑘−1/4

)
and 𝑡𝑘 = 𝑘−1/4 .

It can furthermore be seen that approaching (0, 0) from the interior of Ω gives tangent directions “between” these
borderline cases, and so

𝑇Ω (0, 0) =
{
𝑑 ∈ R2 : 𝑑2 ≥ 𝑑1 ≥ 0

}
.

Problem 2.

Assume that one wants to solve the optimisation problem

max
𝑥

𝑓 (𝑥) such that

{
𝑐𝑖 (𝑥) = 0 for all 𝑖 ∈ E,
𝑐𝑖 (𝑥) ≥ 0 for all 𝑖 ∈ I .

How can we modify the KKT conditions such that one obtains (rst order) necessary conditions for this maximisation
problem?

Solution.
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Have already discussed in the class!

Problem 3.

Consider the constrained optimization problem

min
(𝑥,𝑦)

(𝑥2 + 𝑦2) such that


𝑥 + 𝑦 ≥ 1,

𝑦 ≤ 2,
𝑦2 ≥ 𝑥 .

a) Formulate the KKT-conditions for this optimization problem.

b) Find all KKT points for this optimization problem.

c) Find all local and global minima for this optimization problem.

(Part b) can be very tedious. One strategy is to consider all possible active sets and determine for each active set whether
KKT-points exist. It can also be extremely helpful to sketch the feasible set and the function.)

Solution.

a) We begin by stating the problem in standard form, writing x = [𝑥, 𝑦]𝑇 :

min
x∈R2

𝑓 (x) s.t. 𝑐𝑖 (x) ≥ 0, 𝑖 = 1, 2, 3,

where

𝑓 (x) = 𝑥2 + 𝑦2,

𝑐1 (x) = 𝑥 + 𝑦 − 1,
𝑐2 (x) = 2 − 𝑦,

𝑐3 (x) = 𝑦2 − 𝑥 .

The KKT conditions can now be stated as follows:

2𝑥∗ − 𝜆∗1 + 𝜆∗3 = 0 (1a)
2𝑦∗ − 𝜆∗1 + 𝜆∗2 − 2𝑦∗𝜆∗3 = 0 (1b)

𝑥∗ + 𝑦∗ − 1 ≥ 0 (1c)
2 − 𝑦∗ ≥ 0 (1d)

𝑦∗2 − 𝑥∗ ≥ 0 (1e)
𝜆∗𝑖 ≥ 0, 𝑖 = 1, 2, 3 (1f)

𝜆∗1 (𝑥∗ + 𝑦∗ − 1) = 0 (1g)
𝜆∗2 (2 − 𝑦∗) = 0 (1h)

𝜆∗3 (𝑦∗
2 − 𝑥∗) = 0. (1i)

b) The feasible set is sketched in Figure 2.

We will nd all KKT points by systematically considering all possible active sets of constraints. Remember that a
constraint 𝑐𝑖 is active at a point x if 𝑐𝑖 (x) = 0. Also, the LICQ conditions are satised at every point we consider
here; with one active constraint, the LICQ conditions hold trivially, since the gradient ∇𝑐𝑖 never vanishes. Moreover,
in the cases with two constraints it is not hard to check that the LICQ conditions do hold.
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Figure 2: Feasible set. Note: The lower "triangle" extends further toward innity.

Observe that if x∗ = [𝑥∗, 𝑦∗]𝑇 is a KKT point, then from (1a) and (1b) we have:

𝑥∗ =
𝜆∗1 − 𝜆∗3

2
, 𝑦∗ =

𝜆∗1 − 𝜆∗2
2(1 − 𝜆∗3)

.

From here on, we will drop the asterisk in the notation and write 𝑥 for 𝑥∗, etc.

First, suppose that the active set is empty, i.e. neither of (1c)-(1e) are equalities. This corresponds to the inte-
rior of the domain. Then, by (1g)-(1i), we have 𝜆1 = 𝜆2 = 𝜆3 = 0, and so 𝑥 = 𝑦 = 0. But this point is not feasible,
since it violates condition (1c). Thus, with the active set empty, there are no KKT points.

Next, we consider the case when the active set contains one index, i.e. exactly one of (1c)-(1e) is an equality.
This corresponds to the boundaries of the domain, excepting the corner points. If (1c) is active, then 𝜆2 = 𝜆3 = 0
while 𝜆1 ≥ 0. We get

𝑥 =
𝜆1

2
, 𝑦 =

𝜆1

2
,

and inserting this into (1c) (which is now an equality), we get the condition

𝜆1

2
+ 𝜆1

2
− 1 = 0 ⇒ 𝜆1 = 1,

giving us the point (𝑥, 𝑦) = ( 12 ,
1
2 ). But this point violates condition (1e), so ( 12 ,

1
2 ) is not a KKT point.

If (1d) is active, then 𝜆1 = 𝜆3 = 0 while 𝜆2 ≥ 0, so

𝑥 = 0, 𝑦 = −𝜆2
2
.

Inserting this into the equality (1d), we get

2 + 𝜆2

2
= 0 ⇒ 𝜆2 = −4.

Since the Lagrange multiplier is negative, KKT conditions are not satised at this point.

If (1e) is active, then 𝜆1 = 𝜆2 = 0 while 𝜆3 ≥ 0, so

𝑥 = −𝜆3
2
, 𝑦 = 0.
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Inserting this into the equality (1e), we get

𝜆3

2
= 0 ⇒ 𝜆3 = 0.

This gives the candidate point (0, 0), which is not feasible since it violates (1c), and thereby is not a KKT point.

Having considered all possible active sets of one index, we now turn to the cases with two indices, i.e. ex-
actly two of (1c)-(1e) are equalities. This corresponds to the corner points of the domain. First, if (1c) and (1d) are
both active, then 𝜆3 = 0 while 𝜆1, 𝜆2 ≥ 0. This gives us

𝑥 =
𝜆1

2
, 𝑦 =

𝜆1 − 𝜆2

2
.

Plugging this into equalities (1c) and (1d) yields:

𝜆1

2
+ 𝜆1 − 𝜆2

2
− 1 = 0

2 − 𝜆1 − 𝜆2

2
= 0,

with solutions 𝜆1 = −2 and 𝜆2 = −6. Since the multipliers are negative, this is not a KKT point.

Next, if (1c) and (1e) are both active, then 𝜆2 = 0 while 𝜆1, 𝜆3 ≥ 0, which means

𝑥 =
𝜆1 − 𝜆3

2
, 𝑦 =

𝜆1

2(1 − 𝜆3)
.

Plugging this into equalities (1c) and (1e) yields:

𝜆1 − 𝜆3

2
+ 𝜆1

2(1 − 𝜆3)
− 1 = 0

𝜆21
4(1 − 𝜆3)2

− 𝜆1 − 𝜆3

2
= 0.

Solving this set of equations yields 𝜆1 = 5 ± 9√
5
and 𝜆3 = 2 ± 4√

5
, thereby giving the candidate points (𝑥, 𝑦) =

( 12 (3 ±
√
5), 12 (−1 ∓

√
5)) which both satisfy the KKT conditions. Since 𝜆1, 𝜆3 ≥ 0, these points are minimizer

candidates. Note: This result can be arrived upon by the easier approach of rst nding the points (𝑥, 𝑦) where 𝑐1
and 𝑐3 are both active, then working out what 𝜆1 and 𝜆3 are.

Finally, we check the case where (1d) and (1e) are both active, i.e. 𝜆1 = 0 while 𝜆2, 𝜆3 ≥ 0. This gives us

𝑥 = −𝜆3
2
, 𝑦 = − 𝜆2

2(1 − 𝜆3)
.

Plugging this into equalities (1d) and (1e) yields:

2 + 𝜆2

2(1 − 𝜆3)
= 0

𝜆22
4(1 − 𝜆3)2

+ 𝜆3

2
= 0,

which can be solved to nd 𝜆2 = −28 and 𝜆3 = −8. Since the multipliers are negative, this is not a KKT point.

Concerning the case with all constraints active, we may conclude that no KKT point exists; all three constraint
functions cannot be active at the same point. The investigation is summarized in the table below.

Point 𝜆1 𝜆2 𝜆3 KKT?
(0,2) 0 -4 0 No

( 12 (3 +
√
5), 12 (−1 −

√
5)) 5 + 9√

5
0 2 + 4√

5
Yes

( 12 (3 −
√
5), 12 (−1 +

√
5)) 5 − 9√

5
0 2 − 4√

5
Yes

(-1,2) -2 -6 0 No
(4,2) 0 -28 -8 No
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c) To determine whether the KKT points that are minimizer candidates are in fact local minimizers, we check the
second order sucient conditions from Theorem 12.6 in N&W, i.e. whether

𝑤𝑇∇2
𝑥𝑥L(𝑥, 𝜆)𝑤 > 0 ∀𝑤 ∈ C(𝑥, 𝜆),𝑤 ≠ 0, (2)

where, C(𝑥, 𝜆) is the critical cone at 𝑥 , given by (12.53) in N&W.

For both candidates, i.e. ( 12 (3 ±
√
5), 12 (−1 ∓

√
5)), we have that the critical cone is simply given as C(𝑥, 𝜆) = {0}.

This is because any 𝑤 ∈ C(𝑥, 𝜆) must be orthogonal to the ∇𝑐𝑖 (𝑥) for which 𝜆𝑖 > 0, of which there are two for
each point. Since the LICQ conditions hold at both points, these two vectors are linearily independent and thus
span R2. The only vector orthogonal to R2 is the zero vector. Thereby, the only vector in C(𝑥, 𝜆) is the zero vector
for these points, and thus condition (2) holds. We can conclude that ( 12 (3±

√
5), 12 (−1∓

√
5)) are strict local minimizers.

We note that 𝑓 ( 12 (3−
√
5), 12 (−1 +

√
5)) < 𝑓 ( 12 (3 +

√
5), 12 (−1−

√
5)) and 𝑓 (x) → ∞ in the unbounded region of the

feasible domain. This means that ( 12 (3 −
√
5), 12 (−1 +

√
5)) is a global minimizer and ( 12 (3 +

√
5), 12 (−1 −

√
5)) is a

local minimizer.

Problem 4.

Consider the constrained optimization problem

min
(𝑥,𝑦)

(𝑥𝑦) such that

{
𝑦 ≥ 𝑥,

𝑦4 ≤ 𝑥3.

(Note that the constraint set is the same as in Problem 1.)

a) Find all KKT points and local minima for this optimization problem.

b) Compute the critical cone at (0, 0) as dened in the lecture and Nocedal & Wright, and show that there exist
directions 𝑝 contained in the critical cone for which 𝑝𝑇∇2L((0, 0), 𝜆∗)𝑝 < 0.

c) Show that 𝑝𝑇∇2L((0, 0), 𝜆∗)𝑝 ≥ 0 for all vectors 𝑝 contained in the tangent cone to the feasible set at (0, 0).

Solution.

Have already discussed in the class!
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