## Exercise \#5

## February 14, 2023

## Problem 1.

Consider the sets $\Omega_{1}=\left\{x \in \mathbb{R}^{d}:\|x\|_{\infty} \leq 1\right\}$ and $\Omega_{2}=\left\{x \in \mathbb{R}^{d}:\|x\|_{2} \leq 1\right\}$.
a) Show that $\Omega_{1}$ and $\Omega_{2}$ are non-empty, closed and convex sets.
b) In dimension $d=2$, determine the normal and tangent cones to the sets $\Omega_{1}$ and $\Omega_{2}$ at the point $x=(1,0)$. In addition, determine the normal and tangent cones to $\Omega_{1}$ at the point $(1,1)$.
c) Show that the projection $\pi_{\Omega_{2}}$ onto $\Omega_{2}$ is explicitly given as

$$
\pi_{\Omega_{2}}(z)= \begin{cases}\frac{z}{\|z\|_{2}} & \text { if }\|z\|_{2}>1 \\ z & \text { else }\end{cases}
$$

d) Consider now the case $d=2$ and let $f(x)=x_{1}^{2}+\left(x_{2}+2\right)^{2}$. Find the global solution of the problem $\min _{x \in \Omega_{2}} f(x)$. Also, perform one step of the gradient projection method with the step length $\alpha=\frac{1}{2}$ and initial point $x^{0}=(1,1)$.

## Solution.

a) Evidently, $0 \in \Omega_{1}, \Omega_{2}$. Therefore, $\Omega_{1}$ and $\Omega_{2}$ are non-empty, and closeness follows immediately from the continuity of the norm. Let $x_{1}, x_{2} \in \Omega_{i}, i=1,2$ be arbitrary and $\lambda \in[0,1]$. Further for all $\lambda \in[0,1]$, we get

$$
\left\|\lambda x_{1}+(1-\lambda) x_{2}\right\| \leq \lambda\left\|x_{1}\right\|+(1-\lambda)\left\|x_{2}\right\| \leq 1,
$$

which implies that $\lambda x_{1}+(1-\lambda) x_{2} \in \Omega_{i}, i=1,2$. Therefore, $\Omega_{1}$ and $\Omega_{2}$ are convex sets.
b) We can rewrite the set $\Omega_{1}$ in the following four smooth inequality constraints

$$
\begin{gathered}
c_{1}(x)=-x_{1}+1 \geq 0, \\
c_{2}(x)=x_{1}+1 \geq 0, \\
c_{3}(x)=-x_{2}+1 \geq 0, \\
c_{4}(x)=x_{2}+1 \geq 0
\end{gathered}
$$

It is evident that at the point $\hat{x}=\left(\hat{x}_{1}, \hat{x}_{2}\right)=(1,0)$, only the inequality constraint $c_{1}(\hat{x})$ is active, and $\nabla c_{1}(\hat{x})=(-1,0)^{T}$. Therefore, the cone of linearized feasible directions at $\hat{x}$ is defined as

$$
F(\hat{x})=\left\{d=\left(d_{1}, d_{2}\right) \in \mathbb{R}^{2}: d^{T} \nabla c_{1}(\hat{x}) \geq 0\right\},
$$

which gives $F(\hat{x})=\left\{d=\left(d_{1}, d_{2}\right) \in \mathbb{R}^{2}: d_{1} \leq 0\right\}$. Moreover, the set of active constraint gradient $\left\{\nabla c_{1}(\hat{x})\right\}$ is linearly independent. Therefore LICQ (linear independence constraint qualification) holds. Now, Lemma 12.2 (N\&W Book) implies that $F(\hat{x})=T_{\Omega_{1}}(\hat{x})=\left\{d=\left(d_{1}, d_{2}\right) \in \mathbb{R}^{2}: d_{1} \leq 0\right\}$ (or we can use the Lemma 12.7 ( $\mathrm{N} \& \mathrm{~W}$ Book)). Further, $N_{\Omega_{1}}(\hat{x})=\left\{p=\left(p_{1}, p_{2}\right) \in \mathbb{R}^{2}: p^{T} q \leq 0, \forall q \in T_{\Omega_{1}}(\hat{x})\right\}=\left\{p=\left(p_{1}, p_{2}\right) \in \mathbb{R}^{2}: p_{1} \geq 0\right.$ and $\left.p_{2}=0\right\}$.
For the set $\Omega_{2}$, the inequality constraint $c(x)=1-x_{1}^{2}-x_{2}^{2} \geq 0$ is active at $\hat{x}=(1,0)$, and $\nabla c(\hat{x})=(-2,0)^{T}$. Therefore, the cone of linearized feasible directions at $\hat{x}$ is defined as

$$
F(\hat{x})=\left\{d=\left(d_{1}, d_{2}\right) \in \mathbb{R}^{2}: d^{T} \nabla c(\hat{x}) \geq 0\right\},
$$

which gives $F(\hat{x})=\left\{d=\left(d_{1}, d_{2}\right) \in \mathbb{R}^{2}: d_{1} \leq 0\right\}$. Moreover, the set of active constraint gradient $\{\nabla c(\hat{x})\}$ is linearly independent. Therefore LICQ (linear independence constraint qualification) holds. Now, Lemma 12.2 ( $\mathrm{N} \& \mathrm{~W}$ Book) implies that $F(\hat{x})=T_{\Omega_{2}}(\hat{x})=\left\{d=\left(d_{1}, d_{2}\right) \in \mathbb{R}^{2}: d_{1} \leq 0\right\}$. Further, $N_{\Omega_{2}}(\hat{x})=\left\{p=\left(p_{1}, p_{2}\right) \in \mathbb{R}^{2}: p^{T} q \leq\right.$ $\left.0, \forall q \in T_{\Omega_{2}}(\hat{x})\right\}=\left\{p=\left(p_{1}, p_{2}\right) \in \mathbb{R}^{2}: p_{1} \geq 0\right.$ and $\left.p_{2}=0\right\}$. The conclusion is $T_{\Omega_{1}}(\hat{x})=T_{\Omega_{2}}(\hat{x})$ and $N_{\Omega_{1}}(\hat{x})=N_{\Omega_{2}}(\hat{x})$.

For the last part, we see that the inequality constraints $c_{1}(x)$ and $c_{3}(x)$ are active at $\hat{x}=(1,1)$, and $\nabla c_{1}(\hat{x})=$ $(-1,0)^{T}, \nabla c_{3}(\hat{x})=(0,-1)^{T}$. Therefore, the cone of linearized feasible directions at $\hat{x}$ is defined as

$$
F(\hat{x})=\left\{d=\left(d_{1}, d_{2}\right) \in \mathbb{R}^{2}: d^{T} \nabla c_{1}(\hat{x}) \geq 0 \text { and } d^{T} \nabla c_{3}(\hat{x}) \geq 0\right\}
$$

which gives $F(\hat{x})=\left\{d=\left(d_{1}, d_{2}\right) \in \mathbb{R}^{2}: d_{1}, d_{2} \leq 0\right\}$. Moreover, the set of active constraints gradient $\left\{\nabla c_{1}(\hat{x}), \nabla c_{3}(\hat{x})\right\}$ is linearly independent. Therefore LICQ (linear independence constraint qualification) holds. Now, Lemma 12.2 (N\&W Book) implies that $F(\hat{x})=T_{\Omega_{1}}(\hat{x})=\left\{d=\left(d_{1}, d_{2}\right) \in \mathbb{R}^{2}: d_{1}, d_{2} \leq 0\right\}$ (or we can use the Lemma 12.7 (N\&W Book)). Further, $N_{\Omega_{1}}(\hat{x})=\left\{p=\left(p_{1}, p_{2}\right) \in \mathbb{R}^{2}: p^{T} q \leq 0, \forall q \in T_{\Omega_{1}}(\hat{x})\right\}=\left\{p=\left(p_{1}, p_{2}\right) \in \mathbb{R}^{2}: p_{1}, p_{2} \geq 0\right\}$.
c) If $\|z\|_{2} \leq 1$, then we already have that $z \in \Omega_{2}$. Thus the projection of $z$ is equal to $z$.

Now assume that $\|z\|_{2}>1$ and let $x \in \Omega_{2}$ be arbitrary, yields, $\|x\|_{2} \leq 1$. Then

$$
\left\langle\frac{z}{\|z\|_{2}}-z, x-\frac{z}{\|z\|_{2}}\right\rangle=\frac{\langle z, x\rangle}{\|z\|_{2}}-\langle z, x\rangle-1+\|z\|_{2}=\left(\|z\|_{2}-1\right)\left(1-\frac{\langle z, x\rangle}{\|z\|_{2}}\right) .
$$

Since $\|z\|_{2}>1$, the first term in the last product is positive. Moreover, the Cauchy-Schwarz inequality implies that

$$
\langle z, x\rangle \leq\|z\|_{2}\|x\|_{2} .
$$

Since $\|x\|_{2} \leq 1$, it follows that

$$
1-\frac{\langle z, x\rangle}{\|z\|_{2}} \geq 0
$$

that is, the second term is positive as well. Together, we have thus shown that

$$
\left\langle\frac{z}{\|z\|_{2}}-z, x-\frac{z}{\|z\|_{2}}\right\rangle \geq 0
$$

for all $x \in \Omega_{2}$. Since this precisely the characterization of the projection onto $\Omega_{2}$, this shows that $\pi_{\Omega_{2}}(z)=z /\|z\|_{2}$.
d) If we compare the objective function $f(x)$ with the optimization problem (5) of the lecture note on convex optimization, we can say that we have to find a point in $\Omega_{2}$ (global solution) which is closest to $z=(0,-2)$. This is evidently the projection of $z=(0,-2)$ on to $\Omega_{2}$, which is $x^{*}=(0,-1)$ (this is quite easy to understand if you sketch $\Omega_{2}$ ).

We now perform the gradient projection method for the step length $\alpha=\frac{1}{2}$ and initial point $x^{0}=(1,1)$. We have $\nabla f\left(x^{0}\right)=\left(2 x_{1}^{0}, 2\left(x_{2}^{0}+2\right)\right)^{T}=(2,6)^{T}$. By gradient projection method, we have

$$
x^{1}=\pi_{\Omega_{2}}\left(x^{0}-\alpha \nabla f\left(x^{0}\right)\right)=\pi_{\Omega_{2}}(0,-2)=(0,-1) .
$$

Therefore, the gradient projection method converges in one step.

NTNU

## Problem 2.

Assume that $\Omega \subset \mathbb{R}^{d}$ is a non-empty, closed and convex set. Show that the projection mapping $\pi_{\Omega}: \mathbb{R}^{d} \mapsto \Omega$ is a non-expansive map in the sense that

$$
\left\|\pi_{\Omega}\left(z_{1}\right)-\pi_{\Omega}\left(z_{2}\right)\right\|_{2} \leq\left\|z_{1}-z_{2}\right\|_{2}, \forall z_{1}, z_{1} \in \mathbb{R}^{d}
$$

## Solution.

Let $z_{1}, z_{2} \in \mathbb{R}^{d}$ be arbitrary. The variational characterization of the projection operator on to $\Omega$ yields that

$$
\begin{equation*}
\left\langle z_{1}-\pi_{\Omega}\left(z_{1}\right), x-\pi_{\Omega}\left(z_{1}\right)\right\rangle \leq 0, \forall x \in \Omega \tag{1}
\end{equation*}
$$

Since $\pi_{\Omega}\left(z_{2}\right) \in \Omega$, the inequality (1) renders

$$
\begin{equation*}
\left\langle z_{1}-\pi_{\Omega}\left(z_{1}\right), \pi_{\Omega}\left(z_{2}\right)-\pi_{\Omega}\left(z_{1}\right)\right\rangle \leq 0 . \tag{2}
\end{equation*}
$$

By interchanging $z_{1}$ and $z_{2}$ in inequality (2), we obtain

$$
\left\langle z_{2}-\pi_{\Omega}\left(z_{2}\right), \pi_{\Omega}\left(z_{1}\right)-\pi_{\Omega}\left(z_{2}\right)\right\rangle \leq 0,
$$

which can be rewritten as

$$
\begin{equation*}
\left\langle\pi_{\Omega}\left(z_{2}\right)-z_{2}, \pi_{\Omega}\left(z_{2}\right)-\pi_{\Omega}\left(z_{1}\right)\right\rangle \leq 0 . \tag{3}
\end{equation*}
$$

By adding inequalities (2) and (3), we get

$$
\left\langle z_{1}-z_{2}+\pi_{\Omega}\left(z_{2}\right)-\pi_{\Omega}\left(z_{1}\right), \pi_{\Omega}\left(z_{2}\right)-\pi_{\Omega}\left(z_{1}\right)\right\rangle \leq 0 .
$$

By rearranging the above inequality implies

$$
\left\|\pi_{\Omega}\left(z_{2}\right)-\pi_{\Omega}\left(z_{1}\right)\right\|_{2}^{2} \leq\left\langle z_{2}-z_{1}, \pi_{\Omega}\left(z_{2}\right)-\pi_{\Omega}\left(z_{1}\right)\right\rangle .
$$

By applying Cauchy-Schwartz inequality property in the above inequality, we get

$$
\left\|\pi_{\Omega}\left(z_{2}\right)-\pi_{\Omega}\left(z_{1}\right)\right\|_{2}^{2} \leq\left\|z_{2}-z_{1}\right\|_{2}\left\|\pi_{\Omega}\left(z_{2}\right)-\pi_{\Omega}\left(z_{1}\right)\right\|_{2}
$$

which implies

$$
\left\|\pi_{\Omega}\left(z_{2}\right)-\pi_{\Omega}\left(z_{1}\right)\right\|_{2} \leq\left\|z_{2}-z_{1}\right\|_{2}
$$

Since $z_{1}, z_{2} \in \mathbb{R}^{d}$ are arbitrary,

$$
\left\|\pi_{\Omega}\left(z_{2}\right)-\pi_{\Omega}\left(z_{1}\right)\right\|_{2} \leq\left\|z_{2}-z_{1}\right\|_{2}, \forall z_{1}, z_{2} \in \mathbb{R}^{d} .
$$

## Problem 3.

Let $A \in \mathbb{R}^{m \times d}$ with $m \geq d$ have full rank, let $b \in \mathbb{R}^{m}$, and let $\Omega \subset \mathbb{R}^{d}$ be non-empty, convex, and closed. Consider the restricted least squares problem

$$
\begin{equation*}
\min _{x \in \Omega} f(x) \quad \text { with } f(x)=\frac{1}{2}\|A x-b\|_{2}^{2} \tag{4}
\end{equation*}
$$

and the gradient projection algorithm

$$
x^{(k+1)} \leftarrow \pi_{\Omega}\left(x^{(k)}-\alpha \nabla f\left(x^{(k)}\right)\right) .
$$

Show that this algorithm converges to the unique solution of (4) provided that $0<\alpha<2 / \sigma_{\max }^{2}$, where $\sigma_{\max }$ denotes the largest singular value of $A$.

Hint: Show that the gradient descent step $x \mapsto x-\alpha \nabla f(x)$ is a contraction on $\mathbb{R}^{d}$, and then use the result of the previous exercise and Banach's fixed point theorem.

NTNU

## Solution.

Have already discussed in the class!

Problem 4. (Exercise 12.4, N\&W Book)
If $f: \mathbb{R}^{d} \mapsto \mathbb{R}$ is convex and the feasible region $\Omega$ is convex, show that local solutions of the problem $\min _{x \in \Omega} f(x)$ are also global solutions. Show that the set of global solutions is convex.

## Solution.

Let $x_{0} \in \Omega$ be a local solution. It follows that there exists a neighborhood of $x_{0}, N\left(x_{0}\right)$ such that

$$
\begin{equation*}
f\left(x_{0}\right) \leq f(x), \forall x \in N\left(x_{0}\right) \cap \Omega . \tag{5}
\end{equation*}
$$

Now, we have to show that $x_{0}$ is global solution too. We assume to the contrary that $x_{0}$ is not global solution, it follows that there exists $x \in N\left(x_{0}\right) \cap \Omega$ such that

$$
\begin{equation*}
f(x)<f\left(x_{0}\right) . \tag{6}
\end{equation*}
$$

Since, $N\left(x_{0}\right)$ and $\Omega$ are convex, $N\left(x_{0}\right) \cap \Omega$ is convex. Thus, for all $\lambda \in[0,1], \lambda x_{0}+(1-\lambda) x \in N\left(x_{0}\right) \cap \Omega$. Convexity of the objective function $f$ implies

$$
\begin{equation*}
f\left(\lambda x_{0}+(1-\lambda) x\right) \leq \lambda f\left(x_{0}\right)+(1-\lambda) f(x) . \tag{7}
\end{equation*}
$$

By combining inequalities (6) and (7), we obtain

$$
f\left(\lambda x_{0}+(1-\lambda) x\right)<f\left(x_{0}\right),
$$

which contradicts the inequality (5). Therefore, $x_{0}$ is the global solution.

For the next part, we consider $S$ is the set of global minimizers. Now, we have to show that $S$ is convex. Let $x_{1}, x_{2} \in S$ be arbitrary. We have

$$
\begin{equation*}
f\left(x_{1}\right) \leq f(x) \text { and } f\left(x_{2}\right) \leq f(x), \forall x \in \Omega . \tag{8}
\end{equation*}
$$

Since, $\Omega$ is convex, $\lambda x_{1}+(1-\lambda) x_{2} \in \Omega$ for all $\lambda \in[0,1]$. The convexity of the function $f$ yields

$$
\begin{equation*}
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right) . \tag{9}
\end{equation*}
$$

Inequalities (8) and (9) imply

$$
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq f(x), \forall x \in \Omega,
$$

which implies that $\lambda x_{1}+(1-\lambda) x_{2} \in S$. Therefore, $S$ is the convex set.

## Problem 5.

Consider the set

$$
\Omega:=\left\{(x, y) \in \mathbb{R}^{2}: y \geq 0 \text { and } x^{2}(x+1)-y \geq 0\right\} .
$$

Determine the tangent cone and the cone of linearized feasible directions to $\Omega$ at the points $(x, y)=(-1,0),\left(-\frac{2}{3}, 0\right)$, and ( 0,0 ).

## Solution.

We denote the feasible set by $\Omega$, and inequality constraints by $c_{1}(x, y)=y \geq 0$ and $c_{2}(x, y)=x^{2}(x+1)-y \geq 0$. It is evident that at $(\hat{x}, \hat{y})=(-1,0)$, both the inequality constraints $c_{1}(\hat{x}, \hat{y})$ and $c_{2}(\hat{x}, \hat{y})$ are active, and $\nabla c_{1}(\hat{x}, \hat{y})=(0,1)^{T}$, $\nabla c_{2}(\hat{x}, \hat{y})=(1,-1)^{T}$. Therefore, the cone of linearized feasible directions at $(\hat{x}, \hat{y})$ is defined as

$$
F(\hat{x}, \hat{y})=\left\{d=\left(d_{1}, d_{2}\right) \in \mathbb{R}^{2}: d^{T} \nabla c_{1}(\hat{x}, \hat{y}) \geq 0 \text { and } d^{T} \nabla c_{2}(\hat{x}, \hat{y}) \geq 0\right\}
$$

which gives $F(\hat{x}, \hat{y})=\left\{d=\left(d_{1}, d_{2}\right) \in \mathbb{R}^{2}: d_{1} \geq d_{2} \geq 0\right\}$. Moreover, the set of active constraints gradient $\left\{\nabla c_{1}(\hat{x}, \hat{y}), \nabla c_{2}(\hat{x}, \hat{y})\right\}$ is linearly independent. Therefore LICQ (linear independence constraint qualification) holds. Now, Lemma 12.2 (N\&W Book) implies that $F(\hat{x}, \hat{y})=T_{\Omega}(\hat{x}, \hat{y})=\left\{d=\left(d_{1}, d_{2}\right) \in \mathbb{R}^{2}: d_{1} \geq d_{2} \geq 0\right\}$.

It is evident that at $(\hat{x}, \hat{y})=\left(-\frac{2}{3}, 0\right)$, only the inequality constraint $c_{1}(\hat{x}, \hat{y})$ is active, and $\nabla c_{1}(\hat{x}, \hat{y})=(0,1)^{T}$. Therefore, the cone of linearized feasible directions at $(\hat{x}, \hat{y})$ is defined as

$$
F(\hat{x}, \hat{y})=\left\{d=\left(d_{1}, d_{2}\right) \in \mathbb{R}^{2}: d^{T} \nabla c_{1}(\hat{x}, \hat{y}) \geq 0\right\},
$$

which gives $F(\hat{x}, \hat{y})=\left\{d=\left(d_{1}, d_{2}\right) \in \mathbb{R}^{2}: d_{2} \geq 0\right\}$. Moreover, the set of active constraints gradient $\left\{\nabla c_{1}(\hat{x}, \hat{y})\right\}$ is linearly independent. Therefore LICQ (linear independence constraint qualification) holds. Now, Lemma 12.2 (N\&W Book) implies that $F(\hat{x}, \hat{y})=T_{\Omega}(\hat{x}, \hat{y})=\left\{d=\left(d_{1}, d_{2}\right) \in \mathbb{R}^{2}: d_{2} \geq 0\right\}$.

It is evident that at $(\hat{x}, \hat{y})=(0,0)$, both the inequality constraints $c_{1}(\hat{x}, \hat{y})$ and $c_{2}(\hat{x}, \hat{y})$ are active, and $\nabla c_{1}(\hat{x}, \hat{y})=(0,1)^{T}$, $\nabla c_{2}(\hat{x}, \hat{y})=(0,-1)^{T}$. Therefore, the cone of linearized feasible directions at $(\hat{x}, \hat{y})$ is defined as

$$
F(\hat{x}, \hat{y})=\left\{d=\left(d_{1}, d_{2}\right) \in \mathbb{R}^{2}: d^{T} \nabla c_{1}(\hat{x}, \hat{y}) \geq 0 \text { and } d^{T} \nabla c_{2}(\hat{x}, \hat{y}) \geq 0\right\}
$$

which gives $F(\hat{x}, \hat{y})=\left\{d=\left(d_{1}, d_{2}\right) \in \mathbb{R}^{2}: d_{2}=0\right\}$. Moreover, the set of active constraints gradient $\left\{\nabla c_{1}(\hat{x}, \hat{y}), \nabla c_{2}(\hat{x}, \hat{y})\right\}$ is linearly dependent. Thus LICQ (linear independence constraint qualification) does not hold. Now, we cannot be sure that $F(\hat{x}, \hat{y})=T_{\Omega}(\hat{x}, \hat{y})$. Therefore, we have to find the tangent cone $T_{\Omega}(\hat{x}, \hat{y})$ by definition. For that, we consider that $z_{k}=\left(p_{k}, q_{k}\right)=\left( \pm \frac{1}{k}, 0\right)$ is a feasible sequence,which clearly converges to $(0,0)$, and $t_{k}=\frac{\tau}{k}$ for $\tau>0$. Then,

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{z_{k}-(0,0)}{t_{k}}=\left( \pm \frac{1}{\tau}, 0\right) \in T_{\Omega}(0,0) . \tag{10}
\end{equation*}
$$

Clearly, the point $(0,0) \in \Omega$, and the Lemma 12.2 ( $\mathrm{N} \& \mathrm{~W}$ Book) implies $T_{\Omega}(0,0) \subset F(0,0)$. Moreover, for the feasible sequence $z_{k}=(0,0)$,

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{z_{k}-(0,0)}{t_{k}}=(0,0) \in T_{\Omega}(0,0) . \tag{11}
\end{equation*}
$$

Now, by (1o) and (11), we can say that $F(0,0) \subset T_{\Omega}(0,0)$. Finally, we have $T_{\Omega}(0,0)=F(0,0)=\left\{d=\left(d_{1}, d_{2}\right) \in \mathbb{R}^{2}: d_{2}=\right.$ $0\}$.

