
TMA4180 Optimisation 1
Spring 2023 Exercise #2

Exercise #2

January 24, 2023

Problem 1.

a) Show that a (not necessarily di�erentiable) function 𝑓 : R𝑛 ↦→ R>0 is convex, if the function 𝑥 ↦→ log(𝑓 (𝑥)) is
convex.

b) Show that an optimization problem min
𝑥 ∈R𝑛

𝑓 (𝑥) has at most one global minimizer if the objective function 𝑓 : R𝑛 ↦→ R
is strictly convex. In addition, �nd a strictly convex objective function 𝑓 that has no global minimizer at all.

Solution.

a) Have already discussed in the class!
For your future convenience, some hints are given below:
De�ne a function 𝑔 : R𝑛 ↦→ R such that 𝑔(𝑥) = log(𝑓 (𝑥)), it follows that 𝑓 (𝑥) = exp(𝑔(𝑥)), then use the monotonic
increasing and convexity property of exponential (exp) function.

b) Have already discussed in the class!
For your future convenience, some hints are given below:
Start proving by assuming to the contrary that this problem has two distinct minimizers, say, 𝑥1, 𝑥2 ∈ R𝑛 , such that

𝑓 (𝑥1) = 𝑓 (𝑥2) = min 𝑓 ,

and use the strict convexity property of 𝑓 .

Problem 2.

Show that the function 𝑓 : R2 ↦→ R,
𝑓 (𝑥, 𝑦) = log

(
𝑒𝑥 + 𝑒𝑦

)
is convex.

Solution.

Have already discussed in the class!
For your future convenience, some hints are given below:
Prove this by proving positive semi-de�niteness of the Hessian matrix.

Problem 3.

Consider the optimization problem
min
𝑥 ∈R𝑛

𝑓 (𝑥),
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where the objective function 𝑓 : R3 ↦→ R is de�ned as

𝑓 (𝑥, 𝑦, 𝑧) = 2𝑥2 + 𝑥𝑦 + 𝑦2 + 𝑦𝑧 + 𝑧2 − 6𝑥 − 7𝑦 − 8𝑧 + 9.

Prove that this optimization problem has a unique global minimizer and �nd it.

Solution.

The �rst order necessary condition for the optimization problem (??) implies

∇𝑓 (𝑥, 𝑦, 𝑧) = (4𝑥 + 𝑦 − 6, 𝑥 + 2𝑦 + 𝑧 − 7, 𝑦 + 2𝑧 − 8)𝑇 = 0.

Now we have the following system of three equation

4𝑥 + 𝑦 = 6,
𝑥 + 2𝑦 + 𝑧 = 7,
𝑦 + 2𝑧 = 8.

(1)

By solving (1), we obtain the critical point (𝑥, 𝑦, 𝑧) =
( 6
5 ,

6
5 ,

17
5
)
. Now, we �nd the Hessian matrix

∇2 𝑓 =


4 1 0
1 2 1
0 1 2

 .
The approximate eigen values of the Hessian matrix are 4.48, 2.69, and 0.83. It is evident that the Hessian matrix is
symmetric and has non-zero positive eigenvalues. Therefore, Hessian matrix is positive de�nite and consequently the
objective function 𝑓 is strictly convex. Eventually, we can conclude that the optimization problem has unique global
minimizer

( 6
5 ,

6
5 ,

17
5
)
.

Problem 4.

Consider the function 𝑓 : R2 ↦→ R (see Exercise 1, Problem 3a)

𝑓 (𝑥, 𝑦) = 𝑥2

2
+ 𝑥 cos 𝑦.

We want to perform one step of a line search method with initial value 𝑥0 = (1, 𝜋4 ) and search direction 𝑝0 = (−1, 0).

a) Con�rm that 𝑝0 is a descent direction from the initial point 𝑥0.

b) State the Armijo condition. What is the range of admissible values for the step length 𝛼 , if a parameter 𝑐 = 0.1 is
used?

c) Perform one step of the line search method using the optimal value of 𝛼 as step length.

Solution.

a) The search direction 𝑝0 is a descent direction from the initial point 𝑥0, if ∇𝑓 (𝑥0)𝑇𝑝0 < 0. We have

∇𝑓 (𝑥) = (𝑥 + cos 𝑦,−𝑥 sin 𝑦)𝑇 ,

which implies

∇𝑓 (𝑥0) = ∇𝑓
(
1,
𝜋

4

)
=

(
1 + 1

√
2
,− 1

√
2

)𝑇
.

Thus, ∇𝑓 (𝑥0)𝑇𝑝0 = −1 − 1√
2
< 0.

2 page 2 of 5



TMA4180 Optimisation 1
Spring 2023 Exercise #2

b) The Armijo condition is given as

𝑓 (𝑥𝑘 + 𝛼𝑘𝑝𝑘 ) ≤ 𝑓 (𝑥𝑘 ) + 𝑐𝛼𝑘∇𝑓 (𝑥𝑘 )𝑇𝑝𝑘 .

For 𝑥0 =
(
1, 𝜋4

)
and 𝑝0 = (−1, 0), the Armijo condition 𝑓 (𝑥0 + 𝛼𝑝0) ≤ 𝑓 (𝑥0) + 𝑐𝛼∇𝑓 (𝑥0)𝑇𝑝0 gives

(1 − 𝛼)2
2

+ (1 − 𝛼)
√
2

≤ 1
2
+ 1
√
2
− 𝑐𝛼

(
1 + 1

√
2

)

⇒ (1 − 𝛼) (1 − 𝛼 +
√
2)

2
≤ 1 +

√
2

2
− 𝑐𝛼

(2 +
√
2)

2
⇒ 𝛼 (𝛼 − 2 −

√
2 + 𝑐 (2 +

√
2)) ≤ 0 (since 𝛼 > 0)

⇒ 𝛼 − (2 +
√
2) + 𝑐 (2 +

√
2) ≤ 0

⇒ 𝛼 ≤ (1 − 𝑐) (2 +
√
2).

By putting the value 𝑐 = 0.1, we obtain the following admissible value range of 𝛼

0 < 𝛼 ≤ 3.0727.

c) One step with the line search method means to solve the following one-dimensional optimization problem

min
𝛼>0

𝑓 (𝑥0 + 𝛼𝑝0) = min
𝛼>0

{
(1 − 𝛼)2

2
+ 1 − 𝛼

√
2

}
.

Say, 𝜙 (𝛼) = (1−𝛼)2
2 + 1−𝛼√

2
. Then, ∇𝜙 (𝛼) = 0 gives the solution 𝛼 = 1 + 1√

2
. The new iterate is then 𝑥1 = 𝑥0 + 𝛼0𝑝0,

which gives 𝑥1 =
(
−

√
2
2 ,

𝜋
4

)
.

Problem 5.

a) Consider the function 𝑓 : R2 ↦→ R (see Exercise 1, Problem 3b),

𝑓 (𝑥, 𝑦) = 2𝑥2 − 4𝑥𝑦 + 𝑦4 + 5𝑦2 − 10𝑦.

Perform one step of the gradient descent method with backtracking (Armijo) line search starting from the point
𝑥0 = (0, 0). Start with an initial step lenght 𝛼 = 1 and use the parameters 𝑐 = 0.1 (su�cient decrease parameter) and
𝜌 = 0.1 (contraction factor).

b) Consider the function 𝑓 : R2 ↦→ R,

𝑓 (𝑥, 𝑦) = 𝑥4𝑦2 + 𝑥4 − 2𝑥3𝑦 − 2𝑥2𝑦 − 𝑥2 + 2𝑥 + 2.

Perform one step of the gradient descent method with backtracking (Armijo) line search starting from the point
𝑥0 = (0, 0). Start with an initial step length 𝛼 = 1

2 and use the parameters 𝑐 = 1
2 (su�cient decrease parameter) and

𝜌 = 0.1 (contraction factor).

Solution.

a) Have already discussed in the class!
A hint is 𝛼 = 1 does not satify the Armijo condition so you have to check for another 𝛼 , let’s say for 𝛼 = 0.1.
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b) First �nd the search direction 𝑝0 from the starting point 𝑥0 = (0, 0), which is 𝑝0 = −∇𝑓 (𝑥0)𝑇 = (−2, 0)𝑇 . Now the
Armijo condition at 𝑥0 and 𝑝0 with parameter 𝑐 = 1

2 , 𝑓 (𝑥0 + 𝛼𝑝0) ≤ 𝑓 (𝑥0) + 𝑐𝛼∇𝑓 (𝑥0)𝑇𝑝0 gives

16𝛼4 − 4𝛼2 − 4𝛼 + 2 ≤ 2 − 2𝛼.

The initial step length 𝛼 = 1
2 in the above inequality implies

0 ≤ 1.

Therefore, 𝛼 = 1
2 satis�es the Armijo condition. Now, we can choose the step length 𝛼 = 1

2 . Thus the next iterate of
gradient descent method is 𝑥1 = 𝑥0 + 𝛼𝑝0 = (−1, 0).

Problem 6.

a) Assume that the sequence {𝑥𝑘 }𝑘∈N is generated by the gradient descent method with backtracking (Armijo)
line search for the minimization of a function 𝑓 , and that ∇𝑓 (𝑥𝑘 ) ≠ 0 for all 𝑘 . Moreover, assume that 𝑥 is an
accumulation point of the sequence {𝑥𝑘 }𝑘∈N. Show that 𝑥 is not a local maximum of 𝑓 .

b) We consider a line search method of the form 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑝𝑘 for the minimization of the function 𝑓 : R𝑛 ↦→ R
with the search direction 𝑝𝑘 given as

𝑝𝑘 = − sgn
(
(∇𝑓 (𝑥𝑘 ))𝑖

)
𝑒𝑖 ,

where the index 𝑖 is chosen such that | (∇𝑓 (𝑥𝑘 ))𝑖 | is maximal. Here 𝑒𝑖 with 1 ≤ 𝑖 ≤ 𝑛 denotes 𝑖th standard basis
vector in R𝑛 . Show that the direction 𝑝𝑘 is a descent direction whenever 𝑥𝑘 is not a stationary point of 𝑓 (that is,
∇𝑓 (𝑥𝑘 ) ≠ 0).

Solution.

a) Since the sequence 𝑥𝑘 is generated by using a back tracking line search method, it satis�es the Armijo condition

𝑓 (𝑥𝑘+1) = 𝑓 (𝑥𝑘 + 𝛼𝑘𝑝𝑘 ) ≤ 𝑓 (𝑥𝑘 ) + 𝑐𝛼𝑘∇𝑓 (𝑥𝑘 )𝑇𝑝𝑘 ,

with 𝑝𝑘 = −∇𝑓 (𝑥𝑘 ) ≠ 0, which implies that

𝑓 (𝑥𝑘+1) ≤ 𝑓 (𝑥𝑘 ) − 𝑐𝛼𝑘 ‖∇𝑓 (𝑥𝑘 )‖2 < 𝑓 (𝑥𝑘 ),

which implies that 𝑓 (𝑥𝑘+1) < 𝑓 (𝑥𝑘 ). Therefore, the sequence {𝑓 (𝑥𝑘 )}𝑘∈N is strictly decreasing. Now, we have 𝑥 is
an accumulation point of the sequence {𝑥𝑘 }𝑘∈N. Thus there exists a subsequence {𝑥𝑘′ } converging to 𝑥 . Moreover,
𝑓 is continuous function, therefore, 𝑓 (𝑥𝑘′ ) → 𝑓 (𝑥) too. Since 𝑓 (𝑥𝑘 ) is strictly decreasing, 𝑓 (𝑥𝑘′ ) is also strictly
decreasing sequence, and we have 𝑓 (𝑥𝑘′ ) → 𝑓 (𝑥), implying that 𝑓 (𝑥𝑘′ ) > 𝑓 (𝑥) for every 𝑘

′ (because bounded
decreasing sequence converges to its in�mum (greatest lower bound), and the sequence 𝑓 (𝑥𝑘′ ) is convergent and
hence bounded too), which in turn shows that 𝑥 is not a local maximum of 𝑓 . �

b) We recall that 𝑝𝑘 is a descent direction for 𝑓 at 𝑥𝑘 if and only if 𝑝𝑇
𝑘
∇𝑓 (𝑥𝑘 ) < 0, which we have to prove. To this

end, assume that 𝑥𝑘 is not a stationary point of 𝑓 , that is, ∇𝑓 (𝑥𝑘 ) ≠ 0. Since the index 𝑖 in the direction of 𝑝𝑘 is
chosen in such a way that | (∇𝑓 (𝑥𝑘 ))𝑖 | is maximal, we obtain in particular that | (∇𝑓 (𝑥𝑘 ))𝑖 | > 0. Thus

𝑝𝑇
𝑘
∇𝑓 (𝑥𝑘 ) = −sgn((∇𝑓 (𝑥𝑘 ))𝑖 )𝑒𝑇𝑖 ∇𝑓 (𝑥𝑘 )

= −sgn((∇𝑓 (𝑥𝑘 ))𝑖 ) (∇𝑓 (𝑥𝑘 ))𝑖

= − |(∇𝑓 (𝑥𝑘 ))𝑖 |
(∇𝑓 (𝑥𝑘 ))𝑖

(∇𝑓 (𝑥𝑘 ))𝑖
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= −|(∇𝑓 (𝑥𝑘 ))𝑖 | < 0.

Therefore, 𝑝𝑘 is the descent direction. �
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