Exercise \#2

January 24, 2023

Problem 1.

a) Show that a (not necessarily differentiable) function $f: \mathbb{R}^{n} \mapsto \mathbb{R}_{>0}$ is convex, if the function $x \mapsto \log (f(x))$ is convex.
b) Show that an optimization problem $\min _{x \in \mathbb{R}^{n}} f(x)$ has at most one global minimizer if the objective function $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ is strictly convex. In addition, find a strictly convex objective function f that has no global minimizer at all.

Solution.

a) Have already discussed in the class!

For your future convenience, some hints are given below:
Define a function $g: \mathbb{R}^{n} \mapsto \mathbb{R}$ such that $g(x)=\log (f(x))$, it follows that $f(x)=\exp (g(x))$, then use the monotonic increasing and convexity property of exponential (exp) function.
b) Have already discussed in the class!

For your future convenience, some hints are given below:
Start proving by assuming to the contrary that this problem has two distinct minimizers, say, $x_{1}, x_{2} \in \mathbb{R}^{n}$, such that

$$
f\left(x_{1}\right)=f\left(x_{2}\right)=\min f,
$$

and use the strict convexity property of f.

Problem 2.

Show that the function $f: \mathbb{R}^{2} \mapsto \mathbb{R}$,

$$
f(x, y)=\log \left(e^{x}+e^{y}\right)
$$

is convex.

Solution.

Have already discussed in the class!
For your future convenience, some hints are given below:
Prove this by proving positive semi-definiteness of the Hessian matrix.

Problem 3.

Consider the optimization problem

$$
\min _{x \in \mathbb{R}^{n}} f(x)
$$

where the objective function $f: \mathbb{R}^{3} \mapsto \mathbb{R}$ is defined as

$$
f(x, y, z)=2 x^{2}+x y+y^{2}+y z+z^{2}-6 x-7 y-8 z+9 .
$$

Prove that this optimization problem has a unique global minimizer and find it.

Solution.

The first order necessary condition for the optimization problem (??) implies

$$
\nabla f(x, y, z)=(4 x+y-6, x+2 y+z-7, y+2 z-8)^{T}=0 .
$$

Now we have the following system of three equation

$$
\begin{align*}
& 4 x+y=6 \\
& x+2 y+z=7, \tag{1}\\
& y+2 z=8 .
\end{align*}
$$

By solving (1), we obtain the critical point $(x, y, z)=\left(\frac{6}{5}, \frac{6}{5}, \frac{17}{5}\right)$. Now, we find the Hessian matrix

$$
\nabla^{2} f=\left[\begin{array}{lll}
4 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right]
$$

The approximate eigen values of the Hessian matrix are 4.48, 2.69, and 0.83. It is evident that the Hessian matrix is symmetric and has non-zero positive eigenvalues. Therefore, Hessian matrix is positive definite and consequently the objective function f is strictly convex. Eventually, we can conclude that the optimization problem has unique global minimizer $\left(\frac{6}{5}, \frac{6}{5}, \frac{17}{5}\right)$.

Problem 4.

Consider the function $f: \mathbb{R}^{2} \mapsto \mathbb{R}$ (see Exercise 1, Problem 3a)

$$
f(x, y)=\frac{x^{2}}{2}+x \cos y .
$$

We want to perform one step of a line search method with initial value $x_{0}=\left(1, \frac{\pi}{4}\right)$ and search direction $p_{0}=(-1,0)$.
a) Confirm that p_{0} is a descent direction from the initial point x_{0}.
b) State the Armijo condition. What is the range of admissible values for the step length α, if a parameter $c=0.1$ is used?
c) Perform one step of the line search method using the optimal value of α as step length.

Solution.

a) The search direction p_{0} is a descent direction from the initial point x_{0}, if $\nabla f\left(x_{0}\right)^{T} p_{0}<0$. We have

$$
\nabla f(x)=(x+\cos y,-x \sin y)^{T}
$$

which implies

$$
\nabla f\left(x_{0}\right)=\nabla f\left(1, \frac{\pi}{4}\right)=\left(1+\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)^{T}
$$

Thus, $\nabla f\left(x_{0}\right)^{T} p_{0}=-1-\frac{1}{\sqrt{2}}<0$.
b) The Armijo condition is given as

$$
f\left(x_{k}+\alpha_{k} p_{k}\right) \leq f\left(x_{k}\right)+c \alpha_{k} \nabla f\left(x_{k}\right)^{T} p_{k} .
$$

For $x_{0}=\left(1, \frac{\pi}{4}\right)$ and $p_{0}=(-1,0)$, the Armijo condition $f\left(x_{0}+\alpha p_{0}\right) \leq f\left(x_{0}\right)+c \alpha \nabla f\left(x_{0}\right)^{T} p_{0}$ gives

$$
\begin{aligned}
& \frac{(1-\alpha)^{2}}{2}+\frac{(1-\alpha)}{\sqrt{2}} \leq \frac{1}{2}+\frac{1}{\sqrt{2}}-c \alpha\left(1+\frac{1}{\sqrt{2}}\right) \\
\Rightarrow & \frac{(1-\alpha)(1-\alpha+\sqrt{2})}{2} \leq \frac{1+\sqrt{2}}{2}-c \alpha \frac{(2+\sqrt{2})}{2} \\
\Rightarrow & \alpha(\alpha-2-\sqrt{2}+c(2+\sqrt{2})) \leq 0(\text { since } \alpha>0) \\
\Rightarrow & \alpha-(2+\sqrt{2})+c(2+\sqrt{2}) \leq 0 \\
\Rightarrow & \alpha \leq(1-c)(2+\sqrt{2}) .
\end{aligned}
$$

By putting the value $c=0.1$, we obtain the following admissible value range of α

$$
0<\alpha \leq 3.0727 .
$$

c) One step with the line search method means to solve the following one-dimensional optimization problem

$$
\min _{\alpha>0} f\left(x_{0}+\alpha p_{0}\right)=\min _{\alpha>0}\left\{\frac{(1-\alpha)^{2}}{2}+\frac{1-\alpha}{\sqrt{2}}\right\} .
$$

Say, $\phi(\alpha)=\frac{(1-\alpha)^{2}}{2}+\frac{1-\alpha}{\sqrt{2}}$. Then, $\nabla \phi(\alpha)=0$ gives the solution $\alpha=1+\frac{1}{\sqrt{2}}$. The new iterate is then $x_{1}=x_{0}+\alpha_{0} p_{0}$, which gives $x_{1}=\left(-\frac{\sqrt{2}}{2}, \frac{\pi}{4}\right)$.

Problem 5.

a) Consider the function $f: \mathbb{R}^{2} \mapsto \mathbb{R}$ (see Exercise 1 , Problem $3 b$),

$$
f(x, y)=2 x^{2}-4 x y+y^{4}+5 y^{2}-10 y .
$$

Perform one step of the gradient descent method with backtracking (Armijo) line search starting from the point $x_{0}=(0,0)$. Start with an initial step lenght $\alpha=1$ and use the parameters $c=0.1$ (sufficient decrease parameter) and $\rho=0.1$ (contraction factor).
b) Consider the function $f: \mathbb{R}^{2} \mapsto \mathbb{R}$,

$$
f(x, y)=x^{4} y^{2}+x^{4}-2 x^{3} y-2 x^{2} y-x^{2}+2 x+2
$$

Perform one step of the gradient descent method with backtracking (Armijo) line search starting from the point $x_{0}=(0,0)$. Start with an initial step length $\alpha=\frac{1}{2}$ and use the parameters $c=\frac{1}{2}$ (sufficient decrease parameter) and $\rho=0.1$ (contraction factor).

Solution.

a) Have already discussed in the class!

A hint is $\alpha=1$ does not satify the Armijo condition so you have to check for another α, let's say for $\alpha=0.1$.
b) First find the search direction p_{0} from the starting point $x_{0}=(0,0)$, which is $p_{0}=-\nabla f\left(x_{0}\right)^{T}=(-2,0)^{T}$. Now the Armijo condition at x_{0} and p_{0} with parameter $c=\frac{1}{2}, f\left(x_{0}+\alpha p_{0}\right) \leq f\left(x_{0}\right)+c \alpha \nabla f\left(x_{0}\right)^{T} p_{0}$ gives

$$
16 \alpha^{4}-4 \alpha^{2}-4 \alpha+2 \leq 2-2 \alpha .
$$

The initial step length $\alpha=\frac{1}{2}$ in the above inequality implies

$$
0 \leq 1 .
$$

Therefore, $\alpha=\frac{1}{2}$ satisfies the Armijo condition. Now, we can choose the step length $\alpha=\frac{1}{2}$. Thus the next iterate of gradient descent method is $x_{1}=x_{0}+\alpha p_{0}=(-1,0)$.

Problem 6.

a) Assume that the sequence $\left\{x_{k}\right\}_{k \in \mathbb{N}}$ is generated by the gradient descent method with backtracking (Armijo) line search for the minimization of a function f, and that $\nabla f\left(x_{k}\right) \neq 0$ for all k. Moreover, assume that \bar{x} is an accumulation point of the sequence $\left\{x_{k}\right\}_{k \in \mathbb{N}}$. Show that \bar{x} is not a local maximum of f.
b) We consider a line search method of the form $x_{k+1}=x_{k}+\alpha_{k} p_{k}$ for the minimization of the function $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ with the search direction p_{k} given as

$$
p_{k}=-\operatorname{sgn}\left(\left(\nabla f\left(x_{k}\right)\right)_{i}\right) e_{i},
$$

where the index i is chosen such that $\left|\left(\nabla f\left(x_{k}\right)\right)_{i}\right|$ is maximal. Here e_{i} with $1 \leq i \leq n$ denotes $i^{\text {th }}$ standard basis vector in \mathbb{R}^{n}. Show that the direction p_{k} is a descent direction whenever x_{k} is not a stationary point of f (that is, $\left.\nabla f\left(x_{k}\right) \neq 0\right)$.

Solution.

a) Since the sequence x_{k} is generated by using a back tracking line search method, it satisfies the Armijo condition

$$
f\left(x_{k+1}\right)=f\left(x_{k}+\alpha_{k} p_{k}\right) \leq f\left(x_{k}\right)+c \alpha_{k} \nabla f\left(x_{k}\right)^{T} p_{k}
$$

with $p_{k}=-\nabla f\left(x_{k}\right) \neq 0$, which implies that

$$
f\left(x_{k+1}\right) \leq f\left(x_{k}\right)-c \alpha_{k}\left\|\nabla f\left(x_{k}\right)\right\|^{2}<f\left(x_{k}\right),
$$

which implies that $f\left(x_{k+1}\right)<f\left(x_{k}\right)$. Therefore, the sequence $\left\{f\left(x_{k}\right)\right\}_{k \in \mathbb{N}}$ is strictly decreasing. Now, we have \bar{x} is an accumulation point of the sequence $\left\{x_{k}\right\}_{k \in \mathbb{N}}$. Thus there exists a subsequence $\left\{x_{k^{\prime}}\right\}$ converging to \bar{x}. Moreover, f is continuous function, therefore, $f\left(x_{k^{\prime}}\right) \rightarrow f(\bar{x})$ too. Since $f\left(x_{k}\right)$ is strictly decreasing, $f\left(x_{k^{\prime}}\right)$ is also strictly decreasing sequence, and we have $f\left(x_{k^{\prime}}\right) \rightarrow f(\bar{x})$, implying that $f\left(x_{k^{\prime}}\right)>f(\bar{x})$ for every k^{\prime} (because bounded decreasing sequence converges to its infimum (greatest lower bound), and the sequence $f\left(x_{k^{\prime}}\right)$ is convergent and hence bounded too), which in turn shows that \bar{x} is not a local maximum of f.
b) We recall that p_{k} is a descent direction for f at x_{k} if and only if $p_{k}^{T} \nabla f\left(x_{k}\right)<0$, which we have to prove. To this end, assume that x_{k} is not a stationary point of f, that is, $\nabla f\left(x_{k}\right) \neq 0$. Since the index i in the direction of p_{k} is chosen in such a way that $\left|\left(\nabla f\left(x_{k}\right)\right)_{i}\right|$ is maximal, we obtain in particular that $\left|\left(\nabla f\left(x_{k}\right)\right)_{i}\right|>0$. Thus

$$
\begin{aligned}
p_{k}^{T} \nabla f\left(x_{k}\right) & =-\operatorname{sgn}\left(\left(\nabla f\left(x_{k}\right)\right)_{i}\right) e_{i}^{T} \nabla f\left(x_{k}\right) \\
& =-\operatorname{sgn}\left(\left(\nabla f\left(x_{k}\right)\right)_{i}\right)\left(\nabla f\left(x_{k}\right)\right)_{i} \\
& =-\frac{\left|\left(\nabla f\left(x_{k}\right)\right)_{i}\right|}{\left(\nabla f\left(x_{k}\right)\right)_{i}}\left(\nabla f\left(x_{k}\right)\right)_{i}
\end{aligned}
$$

$$
=-\left|\left(\nabla f\left(x_{k}\right)\right)_{i}\right|<0
$$

Therefore, p_{k} is the descent direction.

