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Exercise #2

January 24, 2023

Problem 1.
a) Show that a (not necessarily differentiable) function f: R" +— R is convex, if the function x — log(f(x)) is

convex.

b) Show that an optimization problem m]%n £ (x) has at most one global minimizer if the objective function f: R" - R
x€R™

is strictly convex. In addition, find a strictly convex objective function f that has no global minimizer at all.

Solution.

a) Have already discussed in the class!
For your future convenience, some hints are given below:
Define a function g: R" + R such that g(x) = log(f(x)), it follows that f(x) = exp(g(x)), then use the monotonic
increasing and convexity property of exponential (exp) function.

b) Have already discussed in the class!
For your future convenience, some hints are given below:
Start proving by assuming to the contrary that this problem has two distinct minimizers, say, x;, x; € R", such that

f(x1) = f(xz) = min f,

and use the strict convexity property of f.

Problem 2.

Show that the function f: R? — R,
f(x,y) =log(e* +¢”)

is convex.

Solution.

Have already discussed in the class!
For your future convenience, some hints are given below:
Prove this by proving positive semi-definiteness of the Hessian matrix.

Problem 3.
Consider the optimization problem

min f(x),

x€eR™
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where the objective function f: R® i R is defined as
flx, y,2) = 2x2+xy+y2+yz+z2 —6x—7y—8z+9.

Prove that this optimization problem has a unique global minimizer and find it.

Solution.

The first order necessary condition for the optimization problem (??) implies
Vi(x,y.2) = (4x+y—6,x+2y+z-7y+2z-8)L =0.

Now we have the following system of three equation

4x+y =6,
x+2y+z=7, (1)
y+2z=28.

By solving (1), we obtain the critical point (x, y, z) = (%, g, %) Now, we find the Hessian matrix

4 1
VifF=11 2
0 1

N = O

The approximate eigen values of the Hessian matrix are 4.48, 2.69, and 0.83. It is evident that the Hessian matrix is
symmetric and has non-zero positive eigenvalues. Therefore, Hessian matrix is positive definite and consequently the

objective function f is strictly convex. Eventually, we can conclude that the optimization problem has unique global
6,6, 11)

minimizer (3, 25 )

Problem 4.

Consider the function f: R? + R (see Exercise 1, Problem 3a)

2
fx,y) = ?+xcosy.

We want to perform one step of a line search method with initial value xo = (1, §) and search direction py = (-1,0).
a) Confirm that py is a descent direction from the initial point x.

b) State the Armijo condition. What is the range of admissible values for the step length «, if a parameter ¢ = 0.1is
used?

c) Perform one step of the line search method using the optimal value of « as step length.

Solution.

a) The search direction p, is a descent direction from the initial point xo, if V£ (x9)” po < 0. We have
V£(x) = (x +cos y, —x sin y),
which implies
% 11\
Vf(xo) = Vf (1, Z) - (1 5 -$) .

Thus, V£ (x0) pe = -1 - % < 0.
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b) The Armijo condition is given as

F (e + apr) < fxr) + care V() .

For xo = (1, %) and po = (—1,0), the Armijo condition f(xo + apo) < f(x0) + caV f(x0)" po gives

(1-a)? (l—a) 1 —ca(1+i)

2 v C2 V2

- (1—a)(12—a+\/§) . 1+2\/§_m(2+2\/§)
= a(a—2-V2+c(2+V2)) <0 (since a > 0)
=Sa-2+V2)+c(2+V2) <0
=Sa<(1-c)(2+V2).

By putting the value ¢ = 0.1, we obtain the following admissible value range of «

0 <a<3.0727.

c¢) One step with the line search method means to solve the following one-dimensional optimization problem

(1-a)? 1-«a
5 +-:ET}.

minf(xo + apy) = min {
a>0 a>0

Say, ¢(a) = a z“> ‘f Then, V@(a) = 0 gives the solution o =1+ T The new iterate is then x; = x¢ + 2o po,
)
4

which gives x; =

Problem 5.

a) Consider the function f: R? - R (see Exercise 1, Problem 3b),
f(x,y) = 2x* — 4xy + y* + 5% — 10y.

Perform one step of the gradient descent method with backtracking (Armijo) line search starting from the point
xo = (0, 0). Start with an initial step lenght « = 1 and use the parameters ¢ = 0.1 (sufficient decrease parameter) and
p = 0.1 (contraction factor).

b) Consider the function f: R? — R,
fo,y) =x*y? +xt —2xPy —2x?y — x* + 2x + 2.
Perform one step of the gradient descent method with backtracking (Armijo) line search starting from the point

xo = (0, 0). Start with an initial step length a = % and use the parameters ¢ = % (sufficient decrease parameter) and
p = 0.1 (contraction factor).

Solution.

a) Have already discussed in the class!
A hint is @ = 1 does not satify the Armijo condition so you have to check for another «, let’s say for ¢ = 0.1.
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b) First find the search direction p, from the starting point x, = (0, 0), which is py = =V f(x0)T = (-2, 0)”. Now the
Armijo condition at xy and py with parameter ¢ = %, F(xo+apo) < f(xo) +caVf(x)T py gives

16a* —4a® —da+2 < 2 - 2a.
The initial step length o = % in the above inequality implies

0<1L
Therefore, a = % satisfies the Armijo condition. Now, we can choose the step length a = % Thus the next iterate of
gradient descent method is x; = x + apy = (-1, 0).

Problem 6.

a) Assume that the sequence {xy}recn is generated by the gradient descent method with backtracking (Armijo)
line search for the minimization of a function f, and that Vf(xx) # 0 for all k. Moreover, assume that X is an
accumulation point of the sequence {xk }ren. Show that x is not a local maximum of f.

b) We consider a line search method of the form xj.; = x; + axpy for the minimization of the function f: R — R
with the search direction py given as

pre = —sgn((Vf(xx))i)ei

where the index i is chosen such that |(Vf(x));| is maximal. Here ¢; with 1 < i < n denotes i standard basis
vector in R”. Show that the direction py is a descent direction whenever xj is not a stationary point of f (that is,

Vf(xx) #0).

Solution.

a) Since the sequence xy is generated by using a back tracking line search method, it satisfies the Armijo condition

f(xks1) = f(xx + arpr) < fxr) +carVE(x) pr,

with pr = =V f(xx) # 0, which implies that

Fran) < flxw) = carIVFGell® < f (xe),

which implies that f(xg+1) < f(xr). Therefore, the sequence {f(xx) }ren is strictly decreasing. Now, we have X is
an accumulation point of the sequence {xx }ren. Thus there exists a subsequence {x;/ } converging to x. Moreover,
f is continuous function, therefore, f(x,/) — f(x) too. Since f(xx) is strictly decreasing, f(x;) is also strictly
decreasing sequence, and we have f(x;/) — f(x), implying that f(x;/) > f(x) for every k' (because bounded
decreasing sequence converges to its infimum (greatest lower bound), and the sequence f(x;/) is convergent and
hence bounded too), which in turn shows that X is not a local maximum of f. O

b) We recall that py is a descent direction for f at xj if and only if pIzV f(xx) < 0, which we have to prove. To this

end, assume that x is not a stationary point of f, that is, Vf(xi) # 0. Since the index i in the direction of py is
chosen in such a way that |(Vf(xx));| is maximal, we obtain in particular that [(Vf(xx));| > 0. Thus

PV () = —sgn((Vf (x))i)e] Vo (xi)

= —sgn((Vf (xx)):) (Vf (xx)):

e |
== o), ()
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==[(Vf ()il <o.

Therefore, py is the descent direction. m]
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