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Exercise #1

January 17, 2023

Problem 1.

a) Prove that the real-valued function 𝑓 : R𝑛 ↦→ R is lower semi-continuous at 𝑥 ∈ R𝑛 if and only if for any _ < 𝑓 (𝑥)
there exists 𝛿 > 0 such that _ < 𝑓 (𝑥) for all 𝑥 ∈ B(𝑥, 𝛿), where B(𝑥, 𝛿) is the open ball with center at 𝑥 and radius
𝛿 .

b) Prove that the real-valued function 𝑓 : R𝑛 ↦→ R is lower semi-continuous at 𝑥 if and only if for any 𝜖 > 0 there
exists 𝛿 > 0 such that 𝑓 (𝑥) − 𝜖 < 𝑓 (𝑥) for all 𝑥 ∈ B(𝑥, 𝛿). (Hint: use the condition given in a).)

c) Prove that the real-valued function 𝑓 : R𝑛 ↦→ R is lower semi-continuous in R𝑛 if and only if for any _ ∈ R the set
𝐿_ = {𝑥 ∈ R𝑛 : 𝑓 (𝑥) > _} is open. (Hint: use the condition given in a) or b).)

d) Prove that the real-valued function 𝑓 : R𝑛 ↦→ R is lower semi-continuous in R𝑛 if and only if epi 𝑓 is closed, where
epi 𝑓 is the epigraph of the function 𝑓 , dened as epi 𝑓 = {(𝑥, 𝑝) ∈ R𝑛 × R : 𝑝 ≥ 𝑓 (𝑥)}. (Hint: use the conditions
given in a) and c).)

Solution.

a) Have already discussed in the class!

b) Let 𝑓 be the lower semi-continuous function at 𝑥 . We consider for arbitrary xed 𝜖 > 0, _ = 𝑓 (𝑥) − 𝜖 < 𝑓 (𝑥).
Further, lower semi-continuity of the function 𝑓 implies the assertion 𝑎) of the Problem 1. It follows that there
exists 𝛿 > 0 such that _ = 𝑓 (𝑥) − 𝜖 < 𝑓 (𝑥) for all 𝑥 ∈ B(𝑥, 𝛿). Since this is true for any 𝜖 > 0, assertion 𝑏) holds.

Conversely, we assume that the claim 𝑏) of Problem 1 is true. Therefore, for any 𝜖 > 0 there exists 𝛿 > 0 such that

𝑓 (𝑥) − 𝜖 < 𝑓 (𝑥), ∀ 𝑥 ∈ B(𝑥, 𝛿). (1)

Let the arbitrary _ < 𝑓 (𝑥). Now, we can consider a 𝜖 > 0 such that

_ < 𝑓 (𝑥) − 𝜖. (2)

By using inequality (1) in (2), we can write there exists 𝛿 > 0 such that

𝑓 (𝑥) − 𝜖 < 𝑓 (𝑥), ∀ 𝑥 ∈ B(𝑥, 𝛿). (3)

By inequalities (2) and (3), we can write for any _ < 𝑓 (𝑥) there exists 𝛿 > 0 such that _ < 𝑓 (𝑥) for all 𝑥 ∈ B(𝑥, 𝛿).
Now, the assertion 𝑎) implies that the function 𝑓 is lower semi-continuous at 𝑥 .

c) Assume that the function 𝑓 is lower semi-continuous and x _ ∈ R. Let 𝑦 ∈ 𝐿_ be arbitrary, it follows that _ < 𝑓 (𝑦).
Since 𝑓 is lower semi-continuous function, by the assertion 𝑎) we can write there exists 𝛿 > 0 such that _ < 𝑓 (𝑥)
for all 𝑥 ∈ B(𝑦, 𝛿). Therefore, 𝑥 ∈ 𝐿_ and then B(𝑦, 𝛿) ⊂ 𝐿_ . Moreover, this is true for any 𝑦 ∈ 𝐿_ . That means for
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any 𝑦 ∈ 𝐿_ there exists an open ball B(𝑦, 𝛿) centered at 𝑦 with radius 𝛿 , such that B(𝑦, 𝛿) ⊂ 𝐿_ . Consequently, 𝐿_
is open set for any _ ∈ R.

Conversely, we suppose that assertion 𝑐) holds. Let arbitrary _ < 𝑓 (𝑥) for any 𝑥 ∈ R𝑛 . It follows that 𝑥 ∈ 𝐿_ . Since
𝐿_ is open set, there exists 𝛿 > 0 such that

𝐵(𝑥, 𝛿) ⊂ 𝐿_ . (4)

Let 𝑥 ∈ 𝐵(𝑥, 𝛿) be arbitrary. Then, inequality (4) implies 𝑥 ∈ 𝐿_ . It follows that _ < 𝑓 (𝑥). Since 𝑥 is arbitrary, we
can write that _ < 𝑓 (𝑥) for all 𝑥 ∈ B(𝑥, 𝛿). Now, the assertion 𝑎) implies 𝑓 is lower semi-continuity function at 𝑥 ,
moreover 𝑥 ∈ R𝑛 is arbitrary that turns into lower semi-continuity of the function 𝑓 in R𝑛 .

d) Let 𝑓 be lower semi-continuous function at any 𝑥 ∈ R𝑛 . Now we shall show that epi 𝑓 is closed by showing that
(epi 𝑓 )𝑐 (complement of epi 𝑓 ) is open. Take any (𝑥, _) ∈ (epi 𝑓 )𝑐 , which yields _ < 𝑓 (𝑥). Choose a small enough
𝜖 > 0 such that _+𝜖 < 𝑓 (𝑥). Since 𝑓 is lower semi-continuous function at 𝑥 , the assertion 𝑎) implies that there exists
𝛿 > 0 such that _ + 𝜖 < 𝑓 (𝑥) for all 𝑥 ∈ B(𝑥, 𝛿). Then it can be easily seen that B(𝑥, 𝛿) × (_ − 𝜖, _ + 𝜖) ⊂ (epi 𝑓 )𝑐 .
Since such an open ball exists for any (𝑥, _) ∈ (epi 𝑓 )𝑐 which gives that (epi 𝑓 )𝑐 is open. Consequently, epi 𝑓 is
closed.

Conversely, let epi 𝑓 be closed. Taking any _ ∈ R, we shall show that the set 𝐴 = {𝑥 ∈ R𝑛 : 𝑓 (𝑥) ≤ _} is closed.
Then assertion 𝑐) implies that the function 𝑓 is lower semi-continuous in R𝑛 . To this end, let {𝑥𝑘 }𝑘∈N be a sequence
in the set 𝐴 that converges to 𝑥 ∈ R𝑛 . Since 𝑥𝑘 ∈ 𝐴, 𝑓 (𝑥𝑘 ) ≤ _. Therefore, (𝑥𝑘 , _) ∈ epi 𝑓 , and we also have
(𝑥𝑘 , _) → (𝑥, _). Moreover, epi 𝑓 is closed. Consequently, (𝑥, _) ∈ epi 𝑓 , which implies _ ≥ 𝑓 (𝑥). Thus, 𝑥 ∈ 𝐴.
Eventually, we get that 𝐴 is closed, as asserted.

Problem 2.

Check the properties of lower semi-continuity, coercivity and existence of a global minimizer for the following functions:

a) ℓ : R ↦→ R dened as ℓ (𝑥) = 5𝑥 10 + 8𝑥7 − 9𝑥2 + 𝑥 + 𝑐 , where 𝑐 ∈ R is a constant.

b) 𝑚 : R ↦→ R dened as𝑚(𝑥) = 𝑒𝑥 − 1
1+𝑥2 .

c) 𝑝 : R ↦→ R dened as 𝑝 (𝑥) = 𝑥4 − 20𝑥3 + sup
𝑘∈N

sin(𝑘2𝑥).

d) 𝑞 : R2 ↦→ R dened as 𝑞(𝑥) = 𝑥21 (1 + 𝑥32) + 𝑥21 .

Solution.

a) The given function 𝑙 is a polynomial and hence continuous. Therefore, 𝑙 is the lower semi-continuous function.
Moreover, it is coercive too because of the term 𝑥 10, as it dominates all other terms for large |𝑥 |. Consequently, a
global minimizer exists (by the week 2 lecture note).

b) The given function𝑚 is continuous. Therefore, it is lower semi-continuous too. Moreover, it is not coercive because
lim

𝑥→−∞
𝑔(𝑥) = 0 ≠ +∞. On the other hand, the closed set Ω = {𝑥 ∈ R : 𝑔(𝑥) ≤ 𝑔(−1)} is bounded (and therefore

compact), since 𝑔(−1) < 0 = lim
𝑥→−∞

𝑔(𝑥) and 𝑔(−1) < 0 < +∞ = lim
𝑥→+∞

𝑔(𝑥). Therefore, the global minimum of 𝑔 is
attained over Ω.

c) Since 𝑥4−20𝑥3 is a polynomial, 𝑥4−20𝑥3 is continuous. Further sin(𝑘2𝑥) is continuous, implies it’s semi-continuity
too, and then sup

𝑘∈N
sin(𝑘2𝑥) is semi-continuous (by the week 2 lecture). Now, 𝑝 (𝑥) is the sum of lower semi-

continuous function and hence lower semi continuous. The function 𝑝 (𝑥) is coercive, because of 𝑥4, as it dominates
all other terms for large |𝑥 |. Consequently, a global minimizer exists (by the week 2 lecture note).
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d) The given function 𝑞(𝑥) is a polynomial and hence continuous, which implies its lower semi-continuity. Moreover,
it is not coercive because for any xed 𝑥1 ≠ 0 and 𝑥2 → −∞ we get 𝑞(𝑥) → −∞. Therefore, it does not attain global
minimizers on R2.

Problem 3.

Find the gradient, Hessian, and local minimizers of the objective function 𝑓 of the optimization problem min
𝑥,𝑦

𝑓 (𝑥, 𝑦),

where 𝑓 : R2 ↦→ R is dened as:

a) 𝑓 (𝑥, 𝑦) = 𝑥2

2 + 𝑥 cos 𝑦 .

b) 𝑓 (𝑥, 𝑦) = 2𝑥2 − 4𝑥𝑦 + 𝑦4 + 5𝑦2 − 10𝑦 .

Solution.

a) We have already discussed this in the class. However, for the reference some hints are given below:
We have two sets of critical points;
1. 𝑥 = 0 and 𝑦 = (2𝑛 + 1) 𝜋2 , for 𝑛 = 0,±1,±2,±3, . . . are not local minimum.
2. 𝑥 = (−1)𝑛+1 and 𝑦 = 𝑛𝜋 for 𝑛 = 0,±1,±2,±3, . . . are strict local minimizers.

b) (Gradient of 𝑓 ) ∇𝑓 (𝑥, 𝑦) = (4𝑥 − 4𝑦,−4𝑥 + 4𝑦3 + 10𝑦 − 10)𝑇 .

(Hessian of 𝑓 ) ∇2 𝑓 (𝑥, 𝑦) =
[
4 −4
−4 12𝑦2 + 10

]
. The rst-order necessary condition of optimality gives ∇𝑓 (𝑥, 𝑦) = 0.

Now, we have the critical point 𝑥 = (1, 1) where the Hessian matrix is

∇2 𝑓 (𝑥, 𝑦) =
[
4 −4
−4 22

]
.

It is easy to show that 𝑝𝑇∇2 𝑓 (𝑥, 𝑦)𝑝 > 0 for all non zero vector 𝑝 , or, we can nd the eigen values of Hessian
matrix which are approximately 22.8489 and 3.1512. Thus Hessian matrix is positive denite. Therefore, (1, 1) is
strict local minimizer and hence local minimizer.

Problem 4.

Compute the gradient, Hessian and local minimizers of the Rosenbrock function 𝑓 : R2 ↦→ R, 𝑓 (𝑥) = 100(𝑥2−𝑥21 )2+(1−𝑥1)2.

Solution.

(Gradient of 𝑓 ) ∇𝑓 (𝑥, 𝑦) = (−400𝑥1 (𝑥2 − 𝑥21 ) − 2(1 − 𝑥1), 200(𝑥2 − 𝑥21 ))𝑇 .

(Hessian of 𝑓 ) ∇2 𝑓 (𝑥, 𝑦) =

[
−400𝑥2 + 1200𝑥21 + 2 −400𝑥1

−400𝑥1 200

]
. The rst-order necessary condition of optimality gives

∇𝑓 (𝑥, 𝑦) = 0. Now, we have the solution is 𝑥 = (1, 1) and the Hessian matrix is

∇2 𝑓 (𝑥, 𝑦) =
[
802 −400
−400 200

]
.

It is evident that the Hessian matrix is symmetric and it’s eigen values are 501 ±
√
250601, in which the value of both

eigen values are positive. Therefore, (1, 1) is strict local minimizer and hence the local minimizer.
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Problem 5.

For a matrix 𝐴 ∈ R𝑑×𝑑 , we denote by

‖𝐴‖𝐹 :=
( 𝑑∑︁
𝑖, 𝑗=1

𝑎2𝑖 𝑗

) 1
2

its Frobenius norm. Show that the optimization problem

min
𝐴∈R𝑑×𝑑 ,
det𝐴>0

(
‖𝐴‖𝐹 + 1

det𝐴

)
admits a global minimum.

Solution.

The objective function 𝑓 (𝐴) = ‖𝐴‖𝐹 + 1
det𝐴 is continuous because the Frobenius norm is continuous and the determinant

is also continuous (because it is polynomial of matrix elements). Thus 𝑓 (𝐴) is continuous over the feasible set Ω = {𝐴 ∈
R𝑑×𝑑 : det 𝐴 > 0}, which is neither closed nor bounded. Now we aim to construct a compact set, say 𝑆 ⊂ Ω in which the
objective function 𝑓 is continuous. Since 𝐼 (identity matrix) ∈ Ω and det 𝐼 > 0 with 𝑓 (𝐼 ) = 𝑑

1
2 + 1. Therefore, if global

minima exists, then it should be in the set {𝐴 ∈ Ω : 𝑓 (𝐴) ≤ 𝑓 (𝐼 )} = {𝐴 ∈ Ω : 𝑓 (𝐴) ≤ 𝑑
1
2 + 1} ⊂ {𝐴 ∈ R𝑑×𝑑 : ‖𝐴‖𝐹 ≤

𝑑
1
2 + 1} ∩ {𝐴 ∈ Ω : det 𝐴 ≥ (𝑑 1

2 + 1)−1}. We say,

𝑆 = {𝐴 ∈ R𝑑×𝑑 : ‖𝐴‖𝐹 ≤ 𝑑
1
2 + 1} ∩ {𝐴 ∈ Ω : det 𝐴 ≥ (𝑑 1

2 + 1)−1}

which is bounded (the rst set in the intersection is bounded) and closed (both intersected sets are closed, since the
functions dening the inequality constraints are continuous). Therefore, the given optimization problem attains a global
minimum in 𝑆 and hence in Ω too.
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