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Exercise #1

January 17, 2023

Problem 1.

a) Prove that the real-valued function f: R" +— R is lower semi-continuous at x € R" if and only if for any A < f(X)

there exists § > 0 such that A < f(x) for all x € B(X, §), where B(X, 0) is the open ball with center at x and radius
é.

b) Prove that the real-valued function f: R"” +— R is lower semi-continuous at X if and only if for any € > 0 there

exists § > 0 such that f(x) — e < f(x) for all x € B(x, §). (Hint: use the condition given in a).)

c) Prove that the real-valued function f: R” = R is lower semi-continuous in R” if and only if for any A € R the set

Ly ={x € R": f(x) > A} is open. (Hint: use the condition given in a) or b).)

d) Prove that the real-valued function f: R"” + R is lower semi-continuous in R” if and only if epi f is closed, where

epi f is the epigraph of the function f, defined as epi f = {(x,p) € R* xR : p > f(x)}. (Hint: use the conditions
given in a) and c).)

Solution.

a) Have already discussed in the class!

b) Let f be the lower semi-continuous function at x. We consider for arbitrary fixed € > 0, A = f(x) — € < f(x).

c)

Further, lower semi-continuity of the function f implies the assertion a) of the Problem 1. It follows that there
exists § > 0 such that A = f(x) — € < f(x) for all x € B(X, ). Since this is true for any € > 0, assertion &) holds.

Conversely, we assume that the claim b) of Problem 1 is true. Therefore, for any € > 0 there exists § > 0 such that

f(x) —€ < f(x), Yx €B(x,9). (1)
Let the arbitrary A < f(X). Now, we can consider a € > 0 such that
1< f(x)-E (2)
By using inequality (1) in (2), we can write there exists § > 0 such that
f(x) —€ < f(x), Yx € B(x, ). (3)

By inequalities (2) and (3), we can write for any A < f () there exists § > 0 such that 1 < f(x) for all x € B(Xx;, ).
Now, the assertion a) implies that the function f is lower semi-continuous at x.

Assume that the function f is lower semi-continuous and fix A € R. Let y € L, be arbitrary, it follows that A < f(y).

Since f is lower semi-continuous function, by the assertion a) we can write there exists § > 0 such that A < f(x)
for all x € B(y, §). Therefore, x € L) and then B(y, §) C Lj. Moreover, this is true for any y € L). That means for
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d)

any y € L, there exists an open ball B(y, §) centered at y with radius 8, such that B(y, §) c L). Consequently, L,
is open set for any A € R.

Conversely, we suppose that assertion c¢) holds. Let arbitrary A < f(x) for any x € R". It follows that X € L. Since
L, is open set, there exists § > 0 such that
B(x,6) c L. (4)

Let x € B(x, 5) be arbitrary. Then, inequality (4) implies x € L). It follows that A < f(x). Since x is arbitrary, we
can write that A < f(x) for all x € B(x, §). Now, the assertion a) implies f is lower semi-continuity function at X,
moreover X € R" is arbitrary that turns into lower semi-continuity of the function f in R".

Let f be lower semi-continuous function at any X € R". Now we shall show that epi f is closed by showing that
(epi f)€ (complement of epi f) is open. Take any (X, 1) € (epi f)€, which yields A < f(x). Choose a small enough
€ > O such that A+€ < f(X). Since f is lower semi-continuous function at x, the assertion a) implies that there exists
& > 0 such that 1 + € < f(x) for all x € B(x, §). Then it can be easily seen that B(x, ) X (A —¢,A+¢€) C (epi f)°.
Since such an open ball exists for any (x, 1) € (epi f)¢ which gives that (epi f)¢ is open. Consequently, epi f is
closed.

Conversely, let epi f be closed. Taking any A € R, we shall show that the set A = {x € R" : f(x) < A} is closed.
Then assertion ¢) implies that the function f is lower semi-continuous in R". To this end, let {x} }xexy be a sequence
in the set A that converges to x € R". Since x; € A, f(xx) < A. Therefore, (xk, A) € epi f, and we also have
(xx, &) — (,A). Moreover, epi f is closed. Consequently, (x, 1) € epi f, which implies A > f(x). Thus, X € A.
Eventually, we get that A is closed, as asserted.

Problem 2.

Check the properties of lower semi-continuity, coercivity and existence of a global minimizer for the following functions:

a)

b)

c)

d)

£: R — R defined as £(x) = 5x'° + 8x” — 9x? + x + ¢, where ¢ € R is a constant.

m: R — R defined as m(x) = e* — #

p: R — R defined as p(x) = x* — 20x> + sup sin(k?x).
keN

q: R? > R defined as q(x) = x?(1+x;) + x2.

Solution.

a)

b)

The given function [ is a polynomial and hence continuous. Therefore, [ is the lower semi-continuous function.
Moreover, it is coercive too because of the term x!, as it dominates all other terms for large |x|. Consequently, a
global minimizer exists (by the week 2 lecture note).

The given function m is continuous. Therefore, it is lower semi-continuous too. Moreover, it is not coercive because
lim g(x) = 0 # +o0. On the other hand, the closed set Q = {x € R : g(x) < g(-1)} is bounded (and therefore
X——00
compact), since g(—1) < 0 = lim g(x) and g(-1) < 0 < 400 = lim g¢(x). Therefore, the global minimum of g is
X——00 X—+00

attained over Q.

Since x* — 20x is a polynomial, x* — 20x? is continuous. Further sin(k%x) is continuous, implies it’s semi-continuity

too, and then sup sin(k%x) is semi-continuous (by the week 2 lecture). Now, p(x) is the sum of lower semi-
keN

continuous function and hence lower semi continuous. The function p(x) is coercive, because of x4, as it dominates
all other terms for large |x|. Consequently, a global minimizer exists (by the week 2 lecture note).

2 page 2 of 4



TMA4180 Optimisation 1 .
Spring 2023 Exercise #1

NTNU

d) The given function g(x) is a polynomial and hence continuous, which implies its lower semi-continuity. Moreover,
it is not coercive because for any fixed x; # 0 and x, — —co we get g(x) — —co. Therefore, it does not attain global
minimizers on R?.

Problem 3.
Find the gradient, Hessian, and local minimizers of the objective function f of the optimization problem minf(x, y),
x,y

where f: R? R is defined as:

a) f(x,y) = x?z + xcos y.

b) f(x,y) = 2x? —4xy + y* + 5% — 10y.

Solution.

a) We have already discussed this in the class. However, for the reference some hints are given below:
We have two sets of critical points;
1.x=0and y=(2n+ 1)%, for n = 0, £1, +£2, £3, . .. are not local minimum.
2.x = (=1)"" and y = nx for n = 0, +1, +2, 3, ... are strict local minimizers.

b) (Gradient of f) Vf(x,y) = (4x — 4y, —4x + 4y + 10y — 10)T.

. 9 |4 -4
(Hessian of f) V*f(x,y) = [_4 1292 +10

Now, we have the critical point x = (1, 1) where the Hessian matrix is

. The first-order necessary condition of optimality gives Vf(x, y) = 0.

4 -4
v =|Y %)

It is easy to show that p” V2f(x, y)p > 0 for all non zero vector p, or, we can find the eigen values of Hessian
matrix which are approximately 22.8489 and 3.1512. Thus Hessian matrix is positive definite. Therefore, (1,1) is
strict local minimizer and hence local minimizer.

Problem 4.

Compute the gradient, Hessian and local minimizers of the Rosenbrock function f: R? - R, f(x) = 100(xp—x2)?+(1—x7)%.

Solution.

(Gradient of f) Vf(x, y) = (—400x;(x; — x12) —2(1= x,),200(x — xf))T.
_ 2 _

(Hessian of f) V2f(x,y) = 400x; +1200x; +2 —400x;

—400x; 200
Vf(x,y) = 0. Now, we have the solution is x = (1,1) and the Hessian matrix is

. The first-order necessary condition of optimality gives

) [ 802 —400
Vf(x’y)_[—wo 200]'

It is evident that the Hessian matrix is symmetric and it’s eigen values are 501 + ¥250601, in which the value of both
eigen values are positive. Therefore, (1,1) is strict local minimizer and hence the local minimizer.
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Problem 5.

Rdxd

For a matrix A € , we denote by

d o\
IAllp = (Z afj)

its Frobenius norm. Show that the optimization problem

1
min |||A||lp+ ——
AeRdxd,(u e + o A)

det A>0

admits a global minimum.

Solution.

The objective function f(A) = ||A||lr + ﬁ is continuous because the Frobenius norm is continuous and the determinant
is also continuous (because it is polynomial of matrix elements). Thus f(A) is continuous over the feasible set Q = {A €
R4 : det A > 0}, which is neither closed nor bounded. Now we aim to construct a compact set, say S C Q in which the
objective function f is continuous. Since I(identity matrix) € Q and det I > 0 with f(I) =d ? + 1. Therefore, if global
minima exists, then it should be in the set {A € Q : f(A) < f(I)} = {A € Q: f(A) < d? +1} C {A € R™d . ||A||f <
di + BN{AeQ:detA> (d% +1)71}. We say,

S={AeR™ . |Alp<d?+1}N{AcQ:detA> (d? +1)7}
which is bounded (the first set in the intersection is bounded) and closed (both intersected sets are closed, since the

functions defining the inequality constraints are continuous). Therefore, the given optimization problem attains a global
minimum in S and hence in Q too.
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