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Exercise #1

January 17, 2023

Problem 1.

a) Prove that the real-valued function 𝑓 : R𝑛 ↦→ R is lower semi-continuous at 𝑥 ∈ R𝑛 if and only if for any 𝜆 < 𝑓 (𝑥)
there exists 𝛿 > 0 such that 𝜆 < 𝑓 (𝑥) for all 𝑥 ∈ B(𝑥, 𝛿), where B(𝑥, 𝛿) is the open ball with center at 𝑥 and radius
𝛿 .

b) Prove that the real-valued function 𝑓 : R𝑛 ↦→ R is lower semi-continuous at 𝑥 if and only if for any 𝜖 > 0 there
exists 𝛿 > 0 such that 𝑓 (𝑥) − 𝜖 < 𝑓 (𝑥) for all 𝑥 ∈ B(𝑥, 𝛿). (Hint: use the condition given in a).)

c) Prove that the real-valued function 𝑓 : R𝑛 ↦→ R is lower semi-continuous in R𝑛 if and only if for any 𝜆 ∈ R the set
𝐿𝜆 = {𝑥 ∈ R𝑛 : 𝑓 (𝑥) > 𝜆} is open. (Hint: use the condition given in a) or b).)

d) Prove that the real-valued function 𝑓 : R𝑛 ↦→ R is lower semi-continuous in R𝑛 if and only if epi 𝑓 is closed, where
epi 𝑓 is the epigraph of the function 𝑓 , de�ned as epi 𝑓 = {(𝑥, 𝑝) ∈ R𝑛 × R : 𝑝 ≥ 𝑓 (𝑥)}. (Hint: use the conditions
given in a) and c).)

Solution.

a) Have already discussed in the class!

b) Let 𝑓 be the lower semi-continuous function at 𝑥 . We consider for arbitrary �xed 𝜖 > 0, 𝜆 = 𝑓 (𝑥) − 𝜖 < 𝑓 (𝑥).
Further, lower semi-continuity of the function 𝑓 implies the assertion 𝑎) of the Problem 1. It follows that there
exists 𝛿 > 0 such that 𝜆 = 𝑓 (𝑥) − 𝜖 < 𝑓 (𝑥) for all 𝑥 ∈ B(𝑥, 𝛿). Since this is true for any 𝜖 > 0, assertion 𝑏) holds.

Conversely, we assume that the claim 𝑏) of Problem 1 is true. Therefore, for any 𝜖 > 0 there exists 𝛿 > 0 such that

𝑓 (𝑥) − 𝜖 < 𝑓 (𝑥), ∀ 𝑥 ∈ B(𝑥, 𝛿). (1)

Let the arbitrary 𝜆 < 𝑓 (𝑥). Now, we can consider a 𝜖 > 0 such that

𝜆 < 𝑓 (𝑥) − 𝜖. (2)

By using inequality (1) in (2), we can write there exists 𝛿 > 0 such that

𝑓 (𝑥) − 𝜖 < 𝑓 (𝑥), ∀ 𝑥 ∈ B(𝑥, 𝛿). (3)

By inequalities (2) and (3), we can write for any 𝜆 < 𝑓 (𝑥) there exists 𝛿 > 0 such that 𝜆 < 𝑓 (𝑥) for all 𝑥 ∈ B(𝑥, 𝛿).
Now, the assertion 𝑎) implies that the function 𝑓 is lower semi-continuous at 𝑥 .

c) Assume that the function 𝑓 is lower semi-continuous and �x 𝜆 ∈ R. Let 𝑦 ∈ 𝐿𝜆 be arbitrary, it follows that 𝜆 < 𝑓 (𝑦).
Since 𝑓 is lower semi-continuous function, by the assertion 𝑎) we can write there exists 𝛿 > 0 such that 𝜆 < 𝑓 (𝑥)
for all 𝑥 ∈ B(𝑦, 𝛿). Therefore, 𝑥 ∈ 𝐿𝜆 and then B(𝑦, 𝛿) ⊂ 𝐿𝜆 . Moreover, this is true for any 𝑦 ∈ 𝐿𝜆 . That means for
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any 𝑦 ∈ 𝐿𝜆 there exists an open ball B(𝑦, 𝛿) centered at 𝑦 with radius 𝛿 , such that B(𝑦, 𝛿) ⊂ 𝐿𝜆 . Consequently, 𝐿𝜆
is open set for any 𝜆 ∈ R.

Conversely, we suppose that assertion 𝑐) holds. Let arbitrary 𝜆 < 𝑓 (𝑥) for any 𝑥 ∈ R𝑛 . It follows that 𝑥 ∈ 𝐿𝜆 . Since
𝐿𝜆 is open set, there exists 𝛿 > 0 such that

𝐵(𝑥, 𝛿) ⊂ 𝐿𝜆 . (4)

Let 𝑥 ∈ 𝐵(𝑥, 𝛿) be arbitrary. Then, inequality (4) implies 𝑥 ∈ 𝐿𝜆 . It follows that 𝜆 < 𝑓 (𝑥). Since 𝑥 is arbitrary, we
can write that 𝜆 < 𝑓 (𝑥) for all 𝑥 ∈ B(𝑥, 𝛿). Now, the assertion 𝑎) implies 𝑓 is lower semi-continuity function at 𝑥 ,
moreover 𝑥 ∈ R𝑛 is arbitrary that turns into lower semi-continuity of the function 𝑓 in R𝑛 .

d) Let 𝑓 be lower semi-continuous function at any 𝑥 ∈ R𝑛 . Now we shall show that epi 𝑓 is closed by showing that
(epi 𝑓 )𝑐 (complement of epi 𝑓 ) is open. Take any (𝑥, 𝜆) ∈ (epi 𝑓 )𝑐 , which yields 𝜆 < 𝑓 (𝑥). Choose a small enough
𝜖 > 0 such that 𝜆+𝜖 < 𝑓 (𝑥). Since 𝑓 is lower semi-continuous function at 𝑥 , the assertion 𝑎) implies that there exists
𝛿 > 0 such that 𝜆 + 𝜖 < 𝑓 (𝑥) for all 𝑥 ∈ B(𝑥, 𝛿). Then it can be easily seen that B(𝑥, 𝛿) × (𝜆 − 𝜖, 𝜆 + 𝜖) ⊂ (epi 𝑓 )𝑐 .
Since such an open ball exists for any (𝑥, 𝜆) ∈ (epi 𝑓 )𝑐 which gives that (epi 𝑓 )𝑐 is open. Consequently, epi 𝑓 is
closed.

Conversely, let epi 𝑓 be closed. Taking any 𝜆 ∈ R, we shall show that the set 𝐴 = {𝑥 ∈ R𝑛 : 𝑓 (𝑥) ≤ 𝜆} is closed.
Then assertion 𝑐) implies that the function 𝑓 is lower semi-continuous in R𝑛 . To this end, let {𝑥𝑘 }𝑘∈N be a sequence
in the set 𝐴 that converges to 𝑥 ∈ R𝑛 . Since 𝑥𝑘 ∈ 𝐴, 𝑓 (𝑥𝑘 ) ≤ 𝜆. Therefore, (𝑥𝑘 , 𝜆) ∈ epi 𝑓 , and we also have
(𝑥𝑘 , 𝜆) → (𝑥, 𝜆). Moreover, epi 𝑓 is closed. Consequently, (𝑥, 𝜆) ∈ epi 𝑓 , which implies 𝜆 ≥ 𝑓 (𝑥). Thus, 𝑥 ∈ 𝐴.
Eventually, we get that 𝐴 is closed, as asserted.

Problem 2.

Check the properties of lower semi-continuity, coercivity and existence of a global minimizer for the following functions:

a) ℓ : R ↦→ R de�ned as ℓ (𝑥) = 5𝑥 10 + 8𝑥7 − 9𝑥2 + 𝑥 + 𝑐 , where 𝑐 ∈ R is a constant.

b) 𝑚 : R ↦→ R de�ned as𝑚(𝑥) = 𝑒𝑥 − 1
1+𝑥2 .

c) 𝑝 : R ↦→ R de�ned as 𝑝 (𝑥) = 𝑥4 − 20𝑥3 + sup
𝑘∈N

sin(𝑘2𝑥).

d) 𝑞 : R2 ↦→ R de�ned as 𝑞(𝑥) = 𝑥21 (1 + 𝑥32) + 𝑥21 .

Solution.

a) The given function 𝑙 is a polynomial and hence continuous. Therefore, 𝑙 is the lower semi-continuous function.
Moreover, it is coercive too because of the term 𝑥 10, as it dominates all other terms for large |𝑥 |. Consequently, a
global minimizer exists (by the week 2 lecture note).

b) The given function𝑚 is continuous. Therefore, it is lower semi-continuous too. Moreover, it is not coercive because
lim

𝑥→−∞
𝑔(𝑥) = 0 ≠ +∞. On the other hand, the closed set Ω = {𝑥 ∈ R : 𝑔(𝑥) ≤ 𝑔(−1)} is bounded (and therefore

compact), since 𝑔(−1) < 0 = lim
𝑥→−∞

𝑔(𝑥) and 𝑔(−1) < 0 < +∞ = lim
𝑥→+∞

𝑔(𝑥). Therefore, the global minimum of 𝑔 is
attained over Ω.

c) Since 𝑥4−20𝑥3 is a polynomial, 𝑥4−20𝑥3 is continuous. Further sin(𝑘2𝑥) is continuous, implies it’s semi-continuity
too, and then sup

𝑘∈N
sin(𝑘2𝑥) is semi-continuous (by the week 2 lecture). Now, 𝑝 (𝑥) is the sum of lower semi-

continuous function and hence lower semi continuous. The function 𝑝 (𝑥) is coercive, because of 𝑥4, as it dominates
all other terms for large |𝑥 |. Consequently, a global minimizer exists (by the week 2 lecture note).
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d) The given function 𝑞(𝑥) is a polynomial and hence continuous, which implies its lower semi-continuity. Moreover,
it is not coercive because for any �xed 𝑥1 ≠ 0 and 𝑥2 → −∞ we get 𝑞(𝑥) → −∞. Therefore, it does not attain global
minimizers on R2.

Problem 3.

Find the gradient, Hessian, and local minimizers of the objective function 𝑓 of the optimization problem min
𝑥,𝑦

𝑓 (𝑥, 𝑦),

where 𝑓 : R2 ↦→ R is de�ned as:

a) 𝑓 (𝑥, 𝑦) = 𝑥2

2 + 𝑥 cos 𝑦 .

b) 𝑓 (𝑥, 𝑦) = 2𝑥2 − 4𝑥𝑦 + 𝑦4 + 5𝑦2 − 10𝑦 .

Solution.

a) We have already discussed this in the class. However, for the reference some hints are given below:
We have two sets of critical points;
1. 𝑥 = 0 and 𝑦 = (2𝑛 + 1) 𝜋2 , for 𝑛 = 0,±1,±2,±3, . . . are not local minimum.
2. 𝑥 = (−1)𝑛+1 and 𝑦 = 𝑛𝜋 for 𝑛 = 0,±1,±2,±3, . . . are strict local minimizers.

b) (Gradient of 𝑓 ) ∇𝑓 (𝑥, 𝑦) = (4𝑥 − 4𝑦,−4𝑥 + 4𝑦3 + 10𝑦 − 10)𝑇 .

(Hessian of 𝑓 ) ∇2 𝑓 (𝑥, 𝑦) =
[
4 −4
−4 12𝑦2 + 10

]
. The �rst-order necessary condition of optimality gives ∇𝑓 (𝑥, 𝑦) = 0.

Now, we have the critical point 𝑥 = (1, 1) where the Hessian matrix is

∇2 𝑓 (𝑥, 𝑦) =
[
4 −4
−4 22

]
.

It is easy to show that 𝑝𝑇∇2 𝑓 (𝑥, 𝑦)𝑝 > 0 for all non zero vector 𝑝 , or, we can �nd the eigen values of Hessian
matrix which are approximately 22.8489 and 3.1512. Thus Hessian matrix is positive de�nite. Therefore, (1, 1) is
strict local minimizer and hence local minimizer.

Problem 4.

Compute the gradient, Hessian and local minimizers of the Rosenbrock function 𝑓 : R2 ↦→ R, 𝑓 (𝑥) = 100(𝑥2−𝑥21 )2+(1−𝑥1)2.

Solution.

(Gradient of 𝑓 ) ∇𝑓 (𝑥, 𝑦) = (−400𝑥1 (𝑥2 − 𝑥21 ) − 2(1 − 𝑥1), 200(𝑥2 − 𝑥21 ))𝑇 .

(Hessian of 𝑓 ) ∇2 𝑓 (𝑥, 𝑦) =

[
−400𝑥2 + 1200𝑥21 + 2 −400𝑥1

−400𝑥1 200

]
. The �rst-order necessary condition of optimality gives

∇𝑓 (𝑥, 𝑦) = 0. Now, we have the solution is 𝑥 = (1, 1) and the Hessian matrix is

∇2 𝑓 (𝑥, 𝑦) =
[
802 −400
−400 200

]
.

It is evident that the Hessian matrix is symmetric and it’s eigen values are 501 ±
√
250601, in which the value of both

eigen values are positive. Therefore, (1, 1) is strict local minimizer and hence the local minimizer.
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Problem 5.

For a matrix 𝐴 ∈ R𝑑×𝑑 , we denote by

‖𝐴‖𝐹 :=
( 𝑑∑︁
𝑖, 𝑗=1

𝑎2𝑖 𝑗

) 1
2

its Frobenius norm. Show that the optimization problem

min
𝐴∈R𝑑×𝑑 ,
det𝐴>0

(
‖𝐴‖𝐹 + 1

det𝐴

)
admits a global minimum.

Solution.

The objective function 𝑓 (𝐴) = ‖𝐴‖𝐹 + 1
det𝐴 is continuous because the Frobenius norm is continuous and the determinant

is also continuous (because it is polynomial of matrix elements). Thus 𝑓 (𝐴) is continuous over the feasible set Ω = {𝐴 ∈
R𝑑×𝑑 : det 𝐴 > 0}, which is neither closed nor bounded. Now we aim to construct a compact set, say 𝑆 ⊂ Ω in which the
objective function 𝑓 is continuous. Since 𝐼 (identity matrix) ∈ Ω and det 𝐼 > 0 with 𝑓 (𝐼 ) = 𝑑

1
2 + 1. Therefore, if global

minima exists, then it should be in the set {𝐴 ∈ Ω : 𝑓 (𝐴) ≤ 𝑓 (𝐼 )} = {𝐴 ∈ Ω : 𝑓 (𝐴) ≤ 𝑑
1
2 + 1} ⊂ {𝐴 ∈ R𝑑×𝑑 : ‖𝐴‖𝐹 ≤

𝑑
1
2 + 1} ∩ {𝐴 ∈ Ω : det 𝐴 ≥ (𝑑 1

2 + 1)−1}. We say,

𝑆 = {𝐴 ∈ R𝑑×𝑑 : ‖𝐴‖𝐹 ≤ 𝑑
1
2 + 1} ∩ {𝐴 ∈ Ω : det 𝐴 ≥ (𝑑 1

2 + 1)−1}

which is bounded (the �rst set in the intersection is bounded) and closed (both intersected sets are closed, since the
functions de�ning the inequality constraints are continuous). Therefore, the given optimization problem attains a global
minimum in 𝑆 and hence in Ω too.
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