Optimisation 1, Lecture 22

Markus Grasmair

Department of Mathematics, Norwegian University of Science and Technology, Trondheim, Norway

> Trondheim, March 24, 2023

э

Previous lecture

- Sequential quadratic programming for inequality constrained problems:
 - Interpret Newton's method for the KKT system as solution of a quadratic programme.
 - Generalise this idea to inequality constraints.
- Multicriteria optimisation:
 - Given a function f: Ω → S with (S, ≤) partially ordered, a point x* is a Pareto optimum for f, if there does not exist x ∈ Ω with f(x) ≺ f(x*).
 - In particular if f: Ω → ℝⁿ, then x* is a Pareto optimum, if there does not exist x ∈ Ω with

$$f_i(x) \le f_i(x^*)$$
 for all $1 \le i \le n$,
 $f_k(x) < f_k(x^*)$ for at least one $1 \le k \le n$.

Goals for today's lecture

- Pareto optimality; examples.
- The weighted sum method for computing Pareto optima.

3/3