Exercise \#9

March 14, 2023

Problem 1.

In this exercise, we study the Gauß-Newton method for solving the least-squares problem corresponding to the (overdetermined and inconsistent) system of equations

$$
\begin{array}{r}
x+y=1, \\
x-y=0, \\
x y=2 .
\end{array}
$$

To that end, we define

$$
\begin{aligned}
& r_{1}(x, y):=x+y-1, \\
& r_{2}(x, y):=x-y, \\
& r_{3}(x, y):=x y-2,
\end{aligned}
$$

and

$$
f(x, y):=\frac{1}{2} \sum_{j=1}^{3} r_{j}(x, y)^{2} .
$$

We denote moreover by $J=J(x, y)$ the Jacobian of r.
a) Show that the function f is non-convex, but that it has a unique minimiser $\left(x^{*}, y^{*}\right)$.
b) Show that the matrix $J^{T} J$ required in the Gauß-Newton method is positive definite for all x, y.
c) Perform one step of the Gauß-Newton method (without line search) for the solution of this least-squares problem. Use the initial value $\left(x_{0}, y_{0}\right)=(0,0)$.

Problem 2.

Let

$$
f(x)=x_{1}^{4}+2 x_{2}^{4}+x_{1} x_{2}+x_{1}-x_{2}+2 .
$$

Starting at the point $x_{0}=(0,0)$ compute explicitly one step for the trust region method with the model function $m(p)=f\left(x_{0}\right)+g^{T} p+\frac{1}{2} p^{T} B p$, where $g=\nabla f\left(x_{0}\right), B=\nabla^{2} f\left(x_{0}\right)$, and the trust region radius $\Delta=1$.

NTNU

Problem 3. (Problem 4.1 in N\&W)
Let

$$
f(x)=10\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2} .
$$

At $x=(0,-1)$ draw the contour lines of the quadratic model

$$
\begin{equation*}
\min _{p} m(p)=f(x)+\langle\nabla f(x), p\rangle+\frac{1}{2}\langle p, B p\rangle \quad \text { subject to }\|p\| \leq \Delta \tag{1}
\end{equation*}
$$

assuming that B is the Hessian of f. Draw the family of solutions of (1) as the trust region radius varies from $\Delta=0$ to $\Delta=2$. Repeat this at $x=(0,0.5)$.

Problem 4. (Problem 4.5 in N\&W)
Let $\phi(\tau)=m_{k}\left(\tau p_{k}^{s}\right)$, where $p_{k}^{s}=-\frac{\Delta_{k}}{\left\|g_{k}\right\|} g_{k}$ and $m_{k}(p)=f_{k}+g_{k}^{T} p+\frac{1}{2} p^{T} B p$ with $B \in \mathbb{R}^{d \times d}$ symmetric. Show that the minimizer of $\phi(\tau)$ subject to $\left\|\tau p_{k}^{s}\right\| \leq \Delta_{k}$ and $\tau \geq 0$ is given as

$$
\begin{cases}1, & \text { if } g_{k}^{T} B_{k} g_{k} \leq 0 \tag{2}\\ \min \left(\frac{\left\|g_{k}\right\|^{3}}{\Delta_{k} g_{k}^{T} B_{k} g_{k}}, 1\right), & \text { otherwise } .\end{cases}
$$

