Exercise \#8

March 07, 2023

Problem 1.

The secant method for the solution of one-dimensional optimisation problems is given by the iteration

$$
x_{k+1}=x_{k}-\frac{x_{k}-x_{k-1}}{f^{\prime}\left(x_{k}\right)-f^{\prime}\left(x_{k-1}\right)} f^{\prime}\left(x_{k}\right) .
$$

Show that this method coincides with both the BFGS and the DFP Quasi-Newton methods without line search.

Problem 2. (See N\&W, Problem 6.1.a)
Consider a line search method $x_{k+1}=x_{k}+\alpha_{k} p_{k}$ with search direction

$$
p_{k}=-B_{k}^{-1} \nabla f\left(x_{k}\right),
$$

where $B_{k} \in \mathbb{R}^{d \times d}$ is a positive definite, symmetric matrix. Denote $s_{k}=x_{k+1}-x_{k}$ and $y_{k}=\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)$.
Show that the curvature condition (see N\&W, eq. (6.7))

$$
\left\langle s_{k}, y_{k}\right\rangle>0
$$

holds for all step lengths $\alpha_{k}>0$, if f is a strictly convex function and $\nabla f\left(x_{k}\right) \neq 0$.

Problem 3.

One possibility for lowering the memory requirements of the BFGS-method is to reset the matrix B_{k} (or its inverse H_{k}) to the identity matrix after each j-th step for some fixed number $j .{ }^{1}$ For $j=1$ this leads (with the notation of the lecture and Nocedal \& Wright, Chapter 6) to the update

$$
H_{k+1}=\left(\operatorname{Id}-\frac{s_{k} y_{k}^{T}}{y_{k}^{T} s_{k}}\right)\left(\operatorname{Id}-\frac{y_{k} s_{k}^{T}}{y_{k}^{T} s_{k}}\right)+\frac{s_{k} s_{k}^{T}}{y_{k}^{T} s_{k}} .
$$

Assume now that this method is implemented with an exact line search. Show that this yields a non-linear CG-method, where the search directions are defined by

$$
p_{k+1}=-\nabla f_{k+1}+\beta_{k+1} p_{k}
$$

with

$$
\beta_{k+1}=\frac{\nabla f_{k+1}^{T}\left(\nabla f_{k+1}-\nabla f_{k}\right)}{\left(\nabla f_{k+1}-\nabla f_{k}\right)^{T} p_{k}}
$$

(this is the Hestenes-Stiefel method, cf. Nocedal \& Wright, p. 123).
(Hint: You may need to show in a first step that an exact line search implies that $\nabla f_{k+1}^{T} p_{k}=0=\nabla f_{k+1}^{T} s_{k}$.)

[^0]NTNU

Problem 4.

Implement the BFGS method for the minimisation of the Rosenbrock function.
Note that you will require a Wolfe line search in order to ensure that the matrices stay positive definite and the search directions are actually descent directions.

[^0]: ${ }^{1}$ More sophisticated methods are described in Nocedal \& Wright, Chapter 7.2.

