Exercise \#11

April 18, 2023

Problem 1.

Decide for each of the following binary relations whether it is a partial order, a total order, or no order relation at all.
a) The relation \leq on \mathbb{C} given by $x \leq y$ if $\mathfrak{R} x \leq \mathfrak{R} y$ (here $\mathfrak{R} x, \mathfrak{R} y$ denote the real part of x and y, respectively).
b) The relation \leq on $\mathbb{R}^{n}, n \geq 1$, given by $x \leq y$ if $\|x\| \leq\|y\|$.
c) The relation \leq on $\mathbb{R}^{n}, n \geq 1$, given by $x \leq y$ if $x_{1} \leq y_{1}$ and $x_{i}=y_{i}$ for $2 \leq i \leq n$.
d) The relation \leq on the set of cubic polynomials given by $p \leq q$ if the largest roots x_{p}, x_{q} of p and q, respectively, satisfy $x_{p} \leq x_{q}$.

Problem 2.

On the space \mathbb{R}^{d} we can define the relation $x \leq_{\text {lex }} y$ if either $x=y$ or there exists $1 \leq i \leq d$ such that $x_{j}=y_{j}$ for $j<i$ and $x_{i}<y_{i}$.
a) Show that $\leq_{\text {lex }}$ defines a total order on \mathbb{R}^{d} (the lexicographical order).
b) Show that the space $\left(\mathbb{R}^{d}, \leq_{\text {lex }}\right)$ is an ordered vector space.
c) Sketch the cone $C:=\left\{x: 0 \leq_{\operatorname{lex}} x\right\}$ in the case $d=2$.

Problem 3.

Define the functions $f_{1}: \mathbb{R} \rightarrow \mathbb{R}, f_{1}(x)=x^{2}$ and $f_{2}: \mathbb{R} \rightarrow \mathbb{R}, f_{2}(x)=\left(x^{2}-1\right)^{2}$, and consider the multicriteria optimisation problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}}\left(f_{1}(x), f_{2}(x)\right) \tag{1}
\end{equation*}
$$

a) Sketch the image $Y:=\left\{\left(f_{1}(x), f_{2}(x)\right): x \in \mathbb{R}\right\} \subset \mathbb{R}^{2}$ of $\left(f_{1}, f_{2}\right)$ and find all minimal points in Y.
b) Find all Pareto-optimal solutions of (1).

NTNU

Problem 4.

Define the functions $f_{1}, f_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}$

$$
f_{1}(x, y)=\frac{1}{x^{4}+y^{4}+1}, \quad f_{2}(x, y)=x^{2}+y^{2}
$$

and consider the multicriteria optimisation problem

$$
\begin{equation*}
\min _{(x, y) \in \mathbb{R}^{2}}\left(f_{1}(x, y), f_{2}(x, y)\right) \tag{2}
\end{equation*}
$$

a) Sketch the image $Y:=\left\{\left(f_{1}(x, y), f_{2}(x, y)\right):(x, y) \in \mathbb{R}^{2}\right\} \subset \mathbb{R}^{2}$ of $\left(f_{1}, f_{2}\right)$ and find all minimal points in Y.
b) Show that the Pareto-optimal solutions of (2) are precisely the points of the form ($\left.x^{*}, 0\right), x^{*} \in \mathbb{R}$, and ($0, y^{*}$), $y^{*} \in \mathbb{R}$.
c) Show that there does not exist any $0 \leq \lambda \leq 1$ such that $\left(x^{*}, 0\right)=(1 / 2,0)$ is a solution of the weighted sum problem

$$
\min _{(x, y) \in \mathbb{R}^{2}}\left(\lambda f_{1}(x, y)+(1-\lambda) f_{2}(x, y)\right)
$$

