

Exercise #11

April 18, 2023

Problem 1.

Decide for each of the following binary relations whether it is a partial order, a total order, or no order relation at all.

- a) The relation \leq on \mathbb{C} given by $x \leq y$ if $\Re x \leq \Re y$ (here $\Re x$, $\Re y$ denote the real part of *x* and *y*, respectively).
- b) The relation \leq on \mathbb{R}^n , $n \geq 1$, given by $x \leq y$ if $||x|| \leq ||y||$.
- c) The relation \leq on \mathbb{R}^n , $n \geq 1$, given by $x \leq y$ if $x_1 \leq y_1$ and $x_i = y_i$ for $2 \leq i \leq n$.
- d) The relation \leq on the set of cubic polynomials given by $p \leq q$ if the largest roots x_p , x_q of p and q, respectively, satisfy $x_p \leq x_q$.

Problem 2.

On the space \mathbb{R}^d we can define the relation $x \leq_{\text{lex}} y$ if either x = y or there exists $1 \leq i \leq d$ such that $x_j = y_j$ for j < i and $x_i < y_i$.

- a) Show that \leq_{lex} defines a total order on \mathbb{R}^d (the *lexicographical order*).
- b) Show that the space $(\mathbb{R}^d, \leq_{\text{lex}})$ is an ordered vector space.
- c) Sketch the cone $C := \{x : 0 \leq_{\text{lex}} x\}$ in the case d = 2.

Problem 3.

Define the functions $f_1: \mathbb{R} \to \mathbb{R}$, $f_1(x) = x^2$ and $f_2: \mathbb{R} \to \mathbb{R}$, $f_2(x) = (x^2 - 1)^2$, and consider the multicriteria optimisation problem

1

$$\min_{x \in \mathbb{R}} (f_1(x), f_2(x)). \tag{1}$$

- a) Sketch the image $Y := \{(f_1(x), f_2(x)) : x \in \mathbb{R}\} \subset \mathbb{R}^2$ of (f_1, f_2) and find all minimal points in *Y*.
- b) Find all Pareto-optimal solutions of (1).

Problem 4.

Define the functions $f_1, f_2 \colon \mathbb{R}^2 \to \mathbb{R}$

$$f_1(x, y) = \frac{1}{x^4 + y^4 + 1},$$
 $f_2(x, y) = x^2 + y^2,$

and consider the multicriteria optimisation problem

$$\min_{(x,y)\in\mathbb{R}^2} (f_1(x,y), f_2(x,y)).$$
(2)

- a) Sketch the image $Y := \{(f_1(x, y), f_2(x, y)) : (x, y) \in \mathbb{R}^2\} \subset \mathbb{R}^2$ of (f_1, f_2) and find all minimal points in *Y*.
- b) Show that the Pareto-optimal solutions of (2) are precisely the points of the form $(x^*, 0), x^* \in \mathbb{R}$, and $(0, y^*), y^* \in \mathbb{R}$.
- c) Show that there does not exist any $0 \le \lambda \le 1$ such that $(x^*, 0) = (1/2, 0)$ is a solution of the weighted sum problem

$$\min_{(x,y)\in\mathbb{R}^2} \left(\lambda f_1(x,y) + (1-\lambda)f_2(x,y)\right)$$