Exercise \#8

March 07, 2023

Problem 1.

The secant method for the solution of one-dimensional optimisation problems is given by the iteration

$$
x_{k+1}=x_{k}-\frac{x_{k}-x_{k-1}}{f^{\prime}\left(x_{k}\right)-f^{\prime}\left(x_{k-1}\right)} f^{\prime}\left(x_{k}\right) .
$$

Show that this method coincides with both the BFGS and the DFP Quasi-Newton methods without line search.

Solution.

In the one-dimensional case, we no longer deal with matrices and vectors in the BFGS and DFP methods. Therefore, H_{k}, p_{k}, y_{k} and s_{k} are scalars, and all the gradients become standard derivatives. In addition, we are considering methods without line search, e.g. with step lengths $\alpha_{k}=1$. For the BFGS method, we thereby get

$$
\begin{equation*}
x_{k+1}=x_{k}-H_{k}^{\mathrm{BFGS}} f^{\prime}\left(x_{k}\right), \tag{1}
\end{equation*}
$$

where (equation 6.17 in $\mathrm{N} \& \mathrm{~W}$ book)

$$
H_{k+1}^{\mathrm{BFGS}}=\left(1-\frac{s_{k} y_{k}}{s_{k} y_{k}}\right) H_{k}^{\mathrm{BFGS}}\left(1-\frac{y_{k} s_{k}}{s_{k} y_{k}}\right)+\frac{s_{k}^{2}}{s_{k} y_{k}}=\frac{s_{k}}{y_{k}} .
$$

With $s_{k}=x_{k+1}-x_{k}$ and $y_{k}=f^{\prime}\left(x_{k+1}\right)-f^{\prime}\left(x_{k}\right)$, we find that

$$
H_{k}^{\mathrm{BFGS}}=\frac{s_{k-1}}{y_{k-1}}=\frac{x_{k}-x_{k-1}}{f^{\prime}\left(x_{k}\right)-f^{\prime}\left(x_{k-1}\right)},
$$

and by inserting it into (1), we get

$$
x_{k+1}=x_{k}-\frac{x_{k}-x_{k-1}}{f^{\prime}\left(x_{k}\right)-f^{\prime}\left(x_{k-1}\right)} f^{\prime}\left(x_{k}\right) .
$$

The same reasoning goes for the DFP method; we have

$$
x_{k+1}=x_{k}-H_{k}^{\mathrm{DFP}} f^{\prime}\left(x_{k}\right)
$$

where (equation 6.15 in $\mathrm{N} \$ \mathrm{~W}$ book)

$$
H_{k+1}^{\mathrm{DFP}}=H_{k}^{\mathrm{DFP}}-\frac{H_{k}^{\mathrm{DFP}} y_{k} y_{k} H_{k}^{\mathrm{DFP}}}{y_{k} H_{k}^{\mathrm{DFP}} y_{k}}+\frac{s_{k}^{2}}{s_{k} y_{k}}=\frac{s_{k}}{y_{k}}=\frac{x_{k+1}-x_{k}}{f^{\prime}\left(x_{k+1}\right)-f^{\prime}\left(x_{k}\right)},
$$

and hence

$$
x_{k+1}=x_{k}-\frac{x_{k}-x_{k-1}}{f^{\prime}\left(x_{k}\right)-f^{\prime}\left(x_{k-1}\right)} f^{\prime}\left(x_{k}\right) .
$$

Problem 2. (See N\&W, Problem 6.1.a)

Consider a line search method $x_{k+1}=x_{k}+\alpha_{k} p_{k}$ with search direction

$$
p_{k}=-B_{k}^{-1} \nabla f\left(x_{k}\right),
$$

where $B_{k} \in \mathbb{R}^{d \times d}$ is a positive definite, symmetric matrix. Denote $s_{k}=x_{k+1}-x_{k}$ and $y_{k}=\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)$.

Show that the curvature condition (see N\&W, eq. (6.7))

$$
\left\langle s_{k}, y_{k}\right\rangle>0
$$

holds for all step lengths $\alpha_{k}>0$, if f is a strictly convex function and $\nabla f\left(x_{k}\right) \neq 0$.

Solution.

The strict convexity of the function f implies

$$
\begin{equation*}
f\left(x_{k+1}\right)-f\left(x_{k}\right)>\left\langle\nabla f\left(x_{k}\right), x_{k+1}-x_{k}\right\rangle . \tag{2}
\end{equation*}
$$

By interchanging x_{k+1} and x_{k} in (2), we get

$$
\begin{equation*}
f\left(x_{k}\right)-f\left(x_{k+1}\right)>\left\langle\nabla f\left(x_{k+1}\right), x_{k}-x_{k+1}\right\rangle . \tag{3}
\end{equation*}
$$

By adding equations 2 and 3, we obtain

$$
\left\langle x_{k+1}-x_{k}, \nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)\right\rangle>0,
$$

which is

$$
\left\langle s_{k}, y_{k}\right\rangle>0 .
$$

Problem 3.

One possibility for lowering the memory requirements of the BFGS-method is to reset the matrix B_{k} (or its inverse H_{k}) to the identity matrix after each j-th step for some fixed number $j .{ }^{1}$ For $j=1$ this leads (with the notation of the lecture and Nocedal \& Wright, Chapter 6) to the update

$$
H_{k+1}=\left(\operatorname{Id}-\frac{s_{k} y_{k}^{T}}{y_{k}^{T} s_{k}}\right)\left(\operatorname{Id}-\frac{y_{k} s_{k}^{T}}{y_{k}^{T} s_{k}}\right)+\frac{s_{k} s_{k}^{T}}{y_{k}^{T} s_{k}} .
$$

Assume now that this method is implemented with an exact line search. Show that this yields a non-linear CG-method, where the search directions are defined by

$$
p_{k+1}=-\nabla f_{k+1}+\beta_{k+1} p_{k}
$$

with

$$
\beta_{k+1}=\frac{\nabla f_{k+1}^{T}\left(\nabla f_{k+1}-\nabla f_{k}\right)}{\left(\nabla f_{k+1}-\nabla f_{k}\right)^{T} p_{k}}
$$

(this is the Hestenes-Stiefel method, cf. Nocedal \& Wright, p. 123).
(Hint: You may need to show in a first step that an exact line search implies that $\nabla f_{k+1}^{T} p_{k}=0=\nabla f_{k+1}^{T} s_{k}$.)

Solution.

Observe first that exact line search implies that $\nabla f_{k+1}^{T} p_{k}=0$ (and $\nabla f_{k+1}^{T} s_{k}=0$ because $s_{k}=\alpha_{k} p_{k}$). Indeed, minimizing f at the current iterate x_{k} in the direction p_{k}, that is, finding an optimal step length α_{k} satisfying

$$
\alpha_{k} \in \underset{\alpha>0}{\arg \min } f\left(x_{k}+\alpha p_{k}\right) .
$$

[^0]NTNU

Let $\phi(\alpha)=f\left(x_{k}+\alpha p_{k}\right)$. Then we have the optimization problem $\min _{\alpha>0} \phi(\alpha)$ and α_{k} is a stationary point of it. Therefore, we have

$$
0=\phi^{\prime}\left(\alpha_{k}\right)=\nabla f\left(x_{k}+\alpha p_{k}\right) p_{k}=\nabla f_{k+1} p_{k}
$$

as desired.
Note next that both this variant of the BFGS method and the Hestenes-Stiefel method iterate on the form $x_{k+1}=x_{k}+\alpha_{k} p_{k}$. Therefore, assuming exact line search and $p_{0}=-\nabla f_{0}$, it suffices to show that the search directions for the two methods coincide. With

$$
s_{k}=x_{k+1}-x_{k}=\alpha_{k} p_{k} \text { and } y_{k}=\nabla f_{k+1}-\nabla f_{k},
$$

we calculate search directions in the BFGS variant as

$$
\begin{aligned}
p_{k+1} & =-H_{k+1} \nabla f_{k+1} \\
& =-\left(\operatorname{Id}-\frac{s_{k} y_{k}^{T}}{y_{k}^{T} s_{k}}\right)\left(\nabla f_{k+1}-\frac{y_{k}}{y_{k}^{T} s_{k}}\left(s_{k}^{T} \nabla f_{k+1}\right)\right)+\frac{s_{k} s_{k}^{T}}{y_{k}^{T} s_{k}} \nabla f_{k+1} \\
& =-\left(\operatorname{Id}-\frac{s_{k} y_{k}^{T}}{y_{k}^{T} s_{k}}\right) \nabla f_{k+1} \\
& =-\nabla f_{k+1}+\frac{\nabla f_{k+1}^{T} y_{k}}{y_{k}^{T} s_{k}} s_{k} \\
& =-\nabla f_{k+1}+\frac{\nabla f_{k+1}^{T} y_{k}}{y_{k}^{T} p_{k}} p_{k} \\
& =-\nabla f_{k+1}+\frac{\nabla f_{k+1}^{T}\left(\nabla f_{k+1}-\nabla f_{k}\right)}{\left(\nabla f_{k+1}-\nabla f_{k}\right)^{T} p_{k}} p_{k} \\
& =-\nabla f_{k+1}+\beta_{k+1} p_{k} .
\end{aligned}
$$

Since β_{k+1} equals that of the Hestenes-Stiefel method, we are done now.

Problem 4.

Implement the BFGS method for the minimisation of the Rosenbrock function.
Note that you will require a Wolfe line search in order to ensure that the matrices stay positive definite and the search directions are actually descent directions.

Solution.

See the implementation on the wiki page.

[^0]: ${ }^{1}$ More sophisticated methods are described in Nocedal \& Wright, Chapter 7.2.

