
TMA4180 Optimisation 1
Spring 2023 Exercise #5

Exercise #5

February 14, 2023

Problem 1.

Consider the sets Ω1 = {𝑥 ∈ R𝑑 : ‖𝑥 ‖∞ ≤ 1} and Ω2 = {𝑥 ∈ R𝑑 : ‖𝑥 ‖2 ≤ 1}.

a) Show that Ω1 and Ω2 are non-empty, closed and convex sets.

b) In dimension 𝑑 = 2, determine the normal and tangent cones to the sets Ω1 and Ω2 at the point 𝑥 = (1, 0). In
addition, determine the normal and tangent cones to Ω1 at the point (1, 1).

c) Show that the projection 𝜋Ω2 onto Ω2 is explicitly given as

𝜋Ω2 (𝑧) =


𝑧

‖𝑧‖2
if ‖𝑧‖2 > 1,

𝑧 else.

d) Consider now the case 𝑑 = 2 and let 𝑓 (𝑥) = 𝑥21 + (𝑥2 + 2)2. Find the global solution of the problem min
𝑥 ∈Ω2

𝑓 (𝑥). Also,

perform one step of the gradient projection method with the step length 𝛼 = 1
2 and initial point 𝑥0 = (1, 1).

Solution.

a) Evidently, 0 ∈ Ω1, Ω2. Therefore, Ω1 and Ω2 are non-empty, and closeness follows immediately from the continuity
of the norm. Let 𝑥1, 𝑥2 ∈ Ω𝑖 , 𝑖 = 1, 2 be arbitrary and _ ∈ [0, 1]. Further for all _ ∈ [0, 1], we get

‖_𝑥1 + (1 − _)𝑥2‖ ≤ _‖𝑥1‖ + (1 − _)‖𝑥2‖ ≤ 1,

which implies that _𝑥1 + (1 − _)𝑥2 ∈ Ω𝑖 , 𝑖 = 1, 2. Therefore, Ω1 and Ω2 are convex sets. �

b) We can rewrite the set Ω1 in the following four smooth inequality constraints

𝑐1 (𝑥) = −𝑥1 + 1 ≥ 0,

𝑐2 (𝑥) = 𝑥1 + 1 ≥ 0,

𝑐3 (𝑥) = −𝑥2 + 1 ≥ 0,

𝑐4 (𝑥) = 𝑥2 + 1 ≥ 0.

It is evident that at the point 𝑥 = (𝑥1, 𝑥2) = (1, 0), only the inequality constraint 𝑐1 (𝑥) is active, and ∇𝑐1 (𝑥) = (−1, 0)𝑇 .
Therefore, the cone of linearized feasible directions at 𝑥 is dened as

𝐹 (𝑥) = {𝑑 = (𝑑1, 𝑑2) ∈ R2 : 𝑑𝑇∇𝑐1 (𝑥) ≥ 0},
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which gives 𝐹 (𝑥) = {𝑑 = (𝑑1, 𝑑2) ∈ R2 : 𝑑1 ≤ 0}. Moreover, the set of active constraint gradient {∇𝑐1 (𝑥)} is linearly
independent. Therefore LICQ (linear independence constraint qualication) holds. Now, Lemma 12.2 (N&W Book)
implies that 𝐹 (𝑥) = 𝑇Ω1 (𝑥) = {𝑑 = (𝑑1, 𝑑2) ∈ R2 : 𝑑1 ≤ 0} (or we can use the Lemma 12.7 (N&W Book)). Further,
𝑁Ω1 (𝑥) = {𝑝 = (𝑝1, 𝑝2) ∈ R2 : 𝑝𝑇𝑞 ≤ 0, ∀ 𝑞 ∈ 𝑇Ω1 (𝑥)} = {𝑝 = (𝑝1, 𝑝2) ∈ R2 : 𝑝1 ≥ 0 and 𝑝2 = 0}.
For the set Ω2, the inequality constraint 𝑐 (𝑥) = 1 − 𝑥21 − 𝑥22 ≥ 0 is active at 𝑥 = (1, 0), and ∇𝑐 (𝑥) = (−2, 0)𝑇 .
Therefore, the cone of linearized feasible directions at 𝑥 is dened as

𝐹 (𝑥) = {𝑑 = (𝑑1, 𝑑2) ∈ R2 : 𝑑𝑇∇𝑐 (𝑥) ≥ 0},

which gives 𝐹 (𝑥) = {𝑑 = (𝑑1, 𝑑2) ∈ R2 : 𝑑1 ≤ 0}. Moreover, the set of active constraint gradient {∇𝑐 (𝑥)} is
linearly independent. Therefore LICQ (linear independence constraint qualication) holds. Now, Lemma 12.2 (N&W
Book) implies that 𝐹 (𝑥) = 𝑇Ω2 (𝑥) = {𝑑 = (𝑑1, 𝑑2) ∈ R2 : 𝑑1 ≤ 0}. Further, 𝑁Ω2 (𝑥) = {𝑝 = (𝑝1, 𝑝2) ∈ R2 : 𝑝𝑇𝑞 ≤
0, ∀𝑞 ∈ 𝑇Ω2 (𝑥)} = {𝑝 = (𝑝1, 𝑝2) ∈ R2 : 𝑝1 ≥ 0 and 𝑝2 = 0}. The conclusion is𝑇Ω1 (𝑥) = 𝑇Ω2 (𝑥) and𝑁Ω1 (𝑥) = 𝑁Ω2 (𝑥).

For the last part, we see that the inequality constraints 𝑐1 (𝑥) and 𝑐3 (𝑥) are active at 𝑥 = (1, 1), and ∇𝑐1 (𝑥) =
(−1, 0)𝑇 , ∇𝑐3 (𝑥) = (0,−1)𝑇 . Therefore, the cone of linearized feasible directions at 𝑥 is dened as

𝐹 (𝑥) = {𝑑 = (𝑑1, 𝑑2) ∈ R2 : 𝑑𝑇∇𝑐1 (𝑥) ≥ 0 and 𝑑𝑇∇𝑐3 (𝑥) ≥ 0},

which gives 𝐹 (𝑥) = {𝑑 = (𝑑1, 𝑑2) ∈ R2 : 𝑑1, 𝑑2 ≤ 0}. Moreover, the set of active constraints gradient {∇𝑐1 (𝑥),∇𝑐3 (𝑥)}
is linearly independent. Therefore LICQ (linear independence constraint qualication) holds. Now, Lemma 12.2
(N&W Book) implies that 𝐹 (𝑥) = 𝑇Ω1 (𝑥) = {𝑑 = (𝑑1, 𝑑2) ∈ R2 : 𝑑1, 𝑑2 ≤ 0} (or we can use the Lemma 12.7 (N&W
Book)). Further, 𝑁Ω1 (𝑥) = {𝑝 = (𝑝1, 𝑝2) ∈ R2 : 𝑝𝑇𝑞 ≤ 0, ∀ 𝑞 ∈ 𝑇Ω1 (𝑥)} = {𝑝 = (𝑝1, 𝑝2) ∈ R2 : 𝑝1, 𝑝2 ≥ 0}.

c) If ‖𝑧‖2 ≤ 1, then we already have that 𝑧 ∈ Ω2. Thus the projection of 𝑧 is equal to 𝑧.

Now assume that ‖𝑧‖2 > 1 and let 𝑥 ∈ Ω2, that is, ‖𝑥 ‖2 ≤ 1. Then〈 𝑧

‖𝑧‖2
− 𝑧, 𝑥 − 𝑧

‖𝑧‖2

〉
=
〈𝑧, 𝑥〉
‖𝑧‖2

− 〈𝑧, 𝑥〉 − 1 + ‖𝑧‖2 =
(
‖𝑧‖2 − 1

) (
1 + 〈𝑧, 𝑥〉
‖𝑧‖22

)
.

Since ‖𝑧‖2 > 1, the rst term in the last product is positive. Moreover, the Cauchy–Schwarz inequality implies that

〈𝑧, 𝑥〉 ≥ −‖𝑧‖‖𝑥 ‖2 .

Since ‖𝑥 ‖2 ≤ 1 < ‖𝑧‖2, it follows that
1 + 〈𝑧, 𝑥〉
‖𝑧‖22

≥ 1 − ‖𝑥 ‖2‖𝑧‖2
> 0,

that is, the second term is positive as well. Together, we have thus shown that〈 𝑧

‖𝑧‖2
− 𝑧, 𝑥 − 𝑧

‖𝑧‖2

〉
> 0

for all 𝑥 ∈ Ω2. Since this precisely the characterisation of the projection onto Ω2, this shows that 𝜋Ω2 (𝑧) = 𝑧/‖𝑧‖2.

d) If we compare the objective function 𝑓 (𝑥) with the optimization problem (5) of the lecture note on convex opti-
mization, we can say that we have to nd a point in Ω2 (global solution) which is closest to 𝑧 = (0,−2). This is
evidently the projection of 𝑧 = (0,−2) on to Ω2, which is 𝑥∗ = (0,−1) (this is quite easy to understand if you sketch
Ω2).

We now perform the gradient projection method for the step length 𝛼 = 1
2 and initial point 𝑥0 = (1, 1). We have

∇𝑓 (𝑥0) = (2𝑥01 , 2(𝑥02 + 2))𝑇 = (2, 6)𝑇 . By gradient projection method, we have

𝑥 1 = 𝜋Ω2 (𝑥0 − 𝛼∇𝑓 (𝑥0)) = 𝜋Ω2 (0,−2) = (0,−1).

Therefore, the gradient projection method converges in one step.
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Problem 2.

Assume that Ω ⊂ R𝑑 is a non-empty, closed and convex set. Show that the projection mapping 𝜋Ω : R𝑑 ↦→ Ω is a
non-expansive map in the sense that

‖𝜋Ω (𝑥) − 𝜋Ω (𝑦)‖2 ≤ ‖𝑥 − 𝑦 ‖2 ∀ 𝑥, 𝑦 ∈ R𝑑 .

Solution.

Let 𝑧1, 𝑧2 ∈ R𝑑 be arbitrary. The variational characterization of the projection operator on to Ω yields that

〈𝑧1 − 𝜋Ω (𝑧1), 𝑥 − 𝜋Ω (𝑧1)〉 ≤ 0, ∀ 𝑥 ∈ Ω. (1)

Since 𝜋Ω (𝑧2) ∈ Ω, the inequality (1) renders

〈𝑧1 − 𝜋Ω (𝑧1), 𝜋Ω (𝑧2) − 𝜋Ω (𝑧1)〉 ≤ 0. (2)

By interchanging 𝑧1 and 𝑧2 in inequality (2), we obtain

〈𝑧2 − 𝜋Ω (𝑧2), 𝜋Ω (𝑧1) − 𝜋Ω (𝑧2)〉 ≤ 0,

which can be rewritten as
〈𝜋Ω (𝑧2) − 𝑧2, 𝜋Ω (𝑧2) − 𝜋Ω (𝑧1)〉 ≤ 0. (3)

By adding inequalities (2) and (3), we get

〈𝑧1 − 𝑧2 + 𝜋Ω (𝑧2) − 𝜋Ω (𝑧1), 𝜋Ω (𝑧2) − 𝜋Ω (𝑧1)〉 ≤ 0.

By rearranging the above inequality implies

‖𝜋Ω (𝑧2) − 𝜋Ω (𝑧1)‖22 ≤ 〈𝑧2 − 𝑧1, 𝜋Ω (𝑧2) − 𝜋Ω (𝑧1)〉.

By applying Cauchy-Schwartz inequality property in the above inequality, we get

‖𝜋Ω (𝑧2) − 𝜋Ω (𝑧1)‖22 ≤ ‖𝑧2 − 𝑧1‖2‖𝜋Ω (𝑧2) − 𝜋Ω (𝑧1)‖2,

which implies
‖𝜋Ω (𝑧2) − 𝜋Ω (𝑧1)‖2 ≤ ‖𝑧2 − 𝑧1‖2 .

Since 𝑧1, 𝑧2 ∈ R𝑑 are arbitrary,
‖𝜋Ω (𝑧2) − 𝜋Ω (𝑧1)‖2 ≤ ‖𝑧2 − 𝑧1‖2, ∀ 𝑧1, 𝑧2 ∈ R𝑑 .

�

Problem 3.

Let 𝐴 ∈ R𝑚×𝑑 with𝑚 ≥ 𝑑 have full rank, let 𝑏 ∈ R𝑚 , and let Ω ⊂ R𝑑 be non-empty, convex, and closed. Consider the
restricted least squares problem

min
𝑥 ∈Ω

𝑓 (𝑥) with 𝑓 (𝑥) = 1
2
‖𝐴𝑥 − 𝑏‖22 (4)

and the gradient projection algorithm
𝑥 (𝑘+1) ← 𝜋Ω

(
𝑥 (𝑘) − 𝛼∇𝑓 (𝑥 (𝑘) )

)
.

Show that this algorithm converges to the unique solution of (4) provided that 0 < 𝛼 < 2/𝜎2
max, where 𝜎max denotes the

largest singular value of 𝐴.

Hint: Show that the gradient descent step 𝑥 ↦→ 𝑥 − 𝛼∇𝑓 (𝑥) is a contraction on R𝑑 , and then use the result of the previous
exercise and Banach’s xed point theorem.
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Solution.

We note rst that the gradient of 𝑓 is given as

∇𝑓 (𝑥) = 𝐴𝑇 (𝐴𝑥 − 𝑏).

Dene now the mapping 𝐺 : R𝑑 → R𝑑 ,
𝐺 (𝑥) := 𝑥 − 𝛼𝐴𝑇 (𝐴𝑥 − 𝑏),

which is just the result of one gradient descent step for 𝑓 with step length 𝛼 . We rst want to show that𝐺 is a contraction.
We have

‖𝐺 (𝑥) −𝐺 (𝑦)‖ = ‖𝑥 − 𝛼𝐴𝑇 (𝐴𝑥 − 𝑏) − 𝑦 + 𝛼𝐴𝑇 (𝐴𝑦 − 𝑏)‖ = ‖(𝐼 − 𝛼𝐴𝑇𝐴) (𝑥 − 𝑦)‖,

where 𝐼 ∈ R𝑑×𝑑 is the 𝑑-dimensional identity matrix. Next we note that the eigenvalues of the matrix 𝐼 − 𝛼𝐴𝑇𝐴 are the
values 1−𝛼𝜎2

𝑖 , where 0 < 𝜎1 ≤ 𝜎2 ≤ . . . ≤ 𝜎𝑑 are the non-zero singular values of 𝐴. (Since 𝐴 has rank 𝑑 , it has 𝑑 non-zero
singular values.) In particular, the smallest eigenvalue of 𝐼 − 𝛼𝐴𝑇𝐴 is 1 − 𝛼𝜎2

𝑑
, which is larger than −1, since we had

chosen 𝛼 < 2/𝜎2
𝑑
. On the other hand, the largest eigenvalue is 1 − 𝛼𝜎2

1 , which is smaller than +1, since 𝛼 > 0 and 𝜎1 > 0.
Since 𝐼 − 𝛼𝐴𝑇𝐴 is symmetric, its singular values are precisely the absolute values of its eigenvalues. Thus we obtain from
the previous considerations that all singular values of 𝐼 − 𝛼𝐴𝑇𝐴 are strictly smaller than 1. Since the spectral norm of a
matrix is its largest singular value, it follows that

‖𝐼 − 𝛼𝐴𝑇𝐴‖2 =: 𝐿 < 1.

Thus
‖𝐺 (𝑥) −𝐺 (𝑦)‖ = ‖(𝐼 − 𝛼𝐴𝑇𝐴) (𝑥 − 𝑦)‖ ≤ 𝐿‖𝑥 − 𝑦 ‖

with 0 < 𝐿 < 1, which shows that 𝐺 is a contraction.

Using the previous exercise we now have that

‖𝜋Ω (𝐺 (𝑥)) − 𝜋Ω (𝐺 (𝑦))‖ ≤ ‖𝐺 (𝑥) −𝐺 (𝑦)‖ ≤ 𝐿‖𝑥 − 𝑦 ‖,

which shows that the projected gradient descent algorithm is generated by a contraction as well. From the Banach xed
point theorem we now obtain that the iteration 𝑥 (𝑘) converges to the unique point 𝑥∗ satisfying

𝑥∗ = 𝜋Ω
(
𝑥∗ − 𝛼𝐴𝑇 (𝐴𝑥∗ − 𝑏)

)
,

which is precisely the solution of the optimisation problem (4) (as discussed in the lecture/the note on optimisation with
convex constraints).

Problem 4. (Exercise 12.4, N&W Book)

If 𝑓 : R𝑑 ↦→ R is convex and the feasible region Ω is convex, show that local solutions of the problem min
𝑥 ∈Ω

𝑓 (𝑥) are also
global solutions. Show that the set of global solutions is convex.

Solution.

Let 𝑥0 ∈ Ω be a local solution. It follows that there exists a neighborhood of 𝑥0, 𝑁 (𝑥0) such that

𝑓 (𝑥0) ≤ 𝑓 (𝑥), ∀ 𝑥 ∈ 𝑁 (𝑥0) ∩ Ω. (5)

Now, we have to show that 𝑥0 is global solution too. We assume to the contrary that 𝑥0 is not global solution, it follows
that there exists 𝑥 ∈ 𝑁 (𝑥0) ∩ Ω such that

𝑓 (𝑥) < 𝑓 (𝑥0). (6)

Since, 𝑁 (𝑥0) and Ω are convex, 𝑁 (𝑥0) ∩ Ω is convex. Thus, for all _ ∈ [0, 1], _𝑥0 + (1 − _)𝑥 ∈ 𝑁 (𝑥0) ∩ Ω. Convexity of
the objective function 𝑓 implies

𝑓 (_𝑥0 + (1 − _)𝑥) ≤ _𝑓 (𝑥0) + (1 − _) 𝑓 (𝑥). (7)
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By combining inequalities (6) and (7), we obtain

𝑓 (_𝑥0 + (1 − _)𝑥) < 𝑓 (𝑥0),

which contradicts the inequality (5). Therefore, 𝑥0 is the global solution.

For the next part, we consider 𝑆 is the set of global minimizers. Now, we have to show that 𝑆 is convex. Let 𝑥1, 𝑥2 ∈ 𝑆 be
arbitrary. We have

𝑓 (𝑥1) ≤ 𝑓 (𝑥) and 𝑓 (𝑥2) ≤ 𝑓 (𝑥), ∀ 𝑥 ∈ Ω. (8)

Since, Ω is convex, _𝑥1 + (1 − _)𝑥2 ∈ Ω for all _ ∈ [0, 1]. The convexity of the function 𝑓 yields

𝑓 (_𝑥1 + (1 − _)𝑥2) ≤ _𝑓 (𝑥1) + (1 − _) 𝑓 (𝑥2). (9)

Inequalities (8) and (9) imply
𝑓 (_𝑥1 + (1 − _)𝑥2) ≤ 𝑓 (𝑥), ∀ 𝑥 ∈ Ω,

which implies that _𝑥1 + (1 − _)𝑥2 ∈ 𝑆 . Therefore, 𝑆 is the convex set. �

Problem 5.

Consider the set
Ω :=

{
(𝑥, 𝑦) ∈ R2 : 𝑦 ≥ 0 and 𝑥2 (𝑥 + 1) − 𝑦 ≥ 0

}
.

Determine the tangent cone and the cone of linearized feasible directions to Ω at the points (𝑥, 𝑦) = (−1, 0),
(
− 2

3 , 0
)
, and

(0, 0).

Solution.

We denote the feasible set by Ω, and inequality constraints by 𝑐1 (𝑥, 𝑦) = 𝑦 ≥ 0 and 𝑐2 (𝑥, 𝑦) = 𝑥2 (𝑥 + 1) − 𝑦 ≥ 0. It is
evident that at (𝑥, 𝑦) = (−1, 0), both the inequality constraints 𝑐1 (𝑥, 𝑦) and 𝑐2 (𝑥, 𝑦) are active, and ∇𝑐1 (𝑥, 𝑦) = (0, 1)𝑇 ,
∇𝑐2 (𝑥, 𝑦) = (1,−1)𝑇 . Therefore, the cone of linearized feasible directions at (𝑥, 𝑦) is dened as

𝐹 (𝑥, 𝑦) = {𝑑 = (𝑑1, 𝑑2) ∈ R2 : 𝑑𝑇∇𝑐1 (𝑥, 𝑦) ≥ 0 and 𝑑𝑇∇𝑐2 (𝑥, 𝑦) ≥ 0},

which gives 𝐹 (𝑥, 𝑦) = {𝑑 = (𝑑1, 𝑑2) ∈ R2 : 𝑑1 ≥ 𝑑2 ≥ 0}. Moreover, the set of active constraints gradient {∇𝑐1 (𝑥, 𝑦),∇𝑐2 (𝑥, 𝑦)}
is linearly independent. Therefore LICQ (linear independence constraint qualication) holds. Now, Lemma 12.2 (N&W
Book) implies that 𝐹 (𝑥, 𝑦) = 𝑇Ω (𝑥, 𝑦) = {𝑑 = (𝑑1, 𝑑2) ∈ R2 : 𝑑1 ≥ 𝑑2 ≥ 0}.

It is evident that at (𝑥, 𝑦) = (− 2
3 , 0), only the inequality constraint 𝑐1 (𝑥, 𝑦) is active, and ∇𝑐1 (𝑥, 𝑦) = (0, 1)𝑇 . Therefore,

the cone of linearized feasible directions at (𝑥, 𝑦) is dened as

𝐹 (𝑥, 𝑦) = {𝑑 = (𝑑1, 𝑑2) ∈ R2 : 𝑑𝑇∇𝑐1 (𝑥, 𝑦) ≥ 0},

which gives 𝐹 (𝑥, 𝑦) = {𝑑 = (𝑑1, 𝑑2) ∈ R2 : 𝑑2 ≥ 0}. Moreover, the set of active constraints gradient {∇𝑐1 (𝑥, 𝑦)} is linearly
independent. Therefore LICQ (linear independence constraint qualication) holds. Now, Lemma 12.2 (N&WBook) implies
that 𝐹 (𝑥, 𝑦) = 𝑇Ω (𝑥, 𝑦) = {𝑑 = (𝑑1, 𝑑2) ∈ R2 : 𝑑2 ≥ 0}.

It is evident that at (𝑥, 𝑦) = (0, 0), both the inequality constraints 𝑐1 (𝑥, 𝑦) and 𝑐2 (𝑥, 𝑦) are active, and ∇𝑐1 (𝑥, 𝑦) = (0, 1)𝑇 ,
∇𝑐2 (𝑥, 𝑦) = (0,−1)𝑇 . Therefore, the cone of linearized feasible directions at (𝑥, 𝑦) is dened as

𝐹 (𝑥, 𝑦) = {𝑑 = (𝑑1, 𝑑2) ∈ R2 : 𝑑𝑇∇𝑐1 (𝑥, 𝑦) ≥ 0 and 𝑑𝑇∇𝑐2 (𝑥, 𝑦) ≥ 0},

which gives 𝐹 (𝑥, 𝑦) = {𝑑 = (𝑑1, 𝑑2) ∈ R2 : 𝑑2 = 0}. Moreover, the set of active constraints gradient {∇𝑐1 (𝑥, 𝑦),∇𝑐2 (𝑥, 𝑦)}
is linearly dependent. Thus LICQ (linear independence constraint qualication) does not hold. Now, we cannot be sure

5 page 5 of 6



TMA4180 Optimisation 1
Spring 2023 Exercise #5

that 𝐹 (𝑥, 𝑦) = 𝑇Ω (𝑥, 𝑦). Therefore, we have to nd the tangent cone 𝑇Ω (𝑥, 𝑦) by denition. For that, we consider that
𝑧𝑘 = (𝑝𝑘 , 𝑞𝑘 ) =

(
± 1
𝑘
, 0
)
is a feasible sequence,which clearly converges to (0, 0), and 𝑡𝑘 = 𝜏

𝑘
for 𝜏 > 0. Then,

lim
𝑘→∞

𝑧𝑘 − (0, 0)
𝑡𝑘

=

(
± 1
𝜏
, 0
)
∈ 𝑇Ω (0, 0). (10)

Clearly, the point (0, 0) ∈ Ω, and the Lemma 12.2 (N&W Book) implies 𝑇Ω (0, 0) ⊂ 𝐹 (0, 0). Moreover, for the feasible
sequence 𝑧𝑘 = (0, 0),

lim
𝑘→∞

𝑧𝑘 − (0, 0)
𝑡𝑘

= (0, 0) ∈ 𝑇Ω (0, 0). (11)

Now, by (10) and (11), we can say that 𝐹 (0, 0) ⊂ 𝑇Ω (0, 0). Finally, we have 𝑇Ω (0, 0) = 𝐹 (0, 0) = {𝑑 = (𝑑1, 𝑑2) ∈ R2 : 𝑑2 =
0}.
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