

Exercise #5

February 14, 2023

Problem 1.

Consider the sets $\Omega_1 = \{x \in \mathbb{R}^d : ||x||_{\infty} \le 1\}$ and $\Omega_2 = \{x \in \mathbb{R}^d : ||x||_2 \le 1\}$.

- a) Show that Ω_1 and Ω_2 are non-empty, closed and convex sets.
- b) In dimension d = 2, determine the normal and tangent cones to the sets Ω_1 and Ω_2 at the point x = (1, 0). In addition, determine the normal and tangent cones to Ω_1 at the point (1, 1).
- c) Show that the projection π_{Ω_2} onto Ω_2 is explicitly given as

$$\pi_{\Omega_2}(z) = egin{cases} rac{z}{\|z\|_2} & ext{if } \|z\|_2 > 1, \ z & ext{else.} \end{cases}$$

d) Consider now the case d = 2 and let $f(x) = x_1^2 + (x_2 + 2)^2$. Find the global solution of the problem $\min_{x \in \Omega_2} f(x)$. Also, perform one step of the gradient projection method with the step length $\alpha = \frac{1}{2}$ and initial point $x^0 = (1, 1)$.

Solution.

a) Evidently, $0 \in \Omega_1$, Ω_2 . Therefore, Ω_1 and Ω_2 are non-empty, and closeness follows immediately from the continuity of the norm. Let $x_1, x_2 \in \Omega_i$, i = 1, 2 be arbitrary and $\lambda \in [0, 1]$. Further for all $\lambda \in [0, 1]$, we get

$$\|\lambda x_1 + (1 - \lambda)x_2\| \le \lambda \|x_1\| + (1 - \lambda)\|x_2\| \le 1,$$

which implies that $\lambda x_1 + (1 - \lambda)x_2 \in \Omega_i$, i = 1, 2. Therefore, Ω_1 and Ω_2 are convex sets.

b) We can rewrite the set Ω_1 in the following four smooth inequality constraints

$$c_1(x) = -x_1 + 1 \ge 0,$$

$$c_2(x) = x_1 + 1 \ge 0,$$

$$c_3(x) = -x_2 + 1 \ge 0,$$

$$c_4(x) = x_2 + 1 \ge 0.$$

It is evident that at the point $\hat{x} = (\hat{x}_1, \hat{x}_2) = (1, 0)$, only the inequality constraint $c_1(\hat{x})$ is active, and $\nabla c_1(\hat{x}) = (-1, 0)^T$. Therefore, the cone of linearized feasible directions at \hat{x} is defined as

$$F(\hat{x}) = \{ d = (d_1, d_2) \in \mathbb{R}^2 : d^T \nabla c_1(\hat{x}) \ge 0 \},\$$

1

which gives $F(\hat{x}) = \{d = (d_1, d_2) \in \mathbb{R}^2 : d_1 \leq 0\}$. Moreover, the set of active constraint gradient $\{\nabla c_1(\hat{x})\}$ is linearly independent. Therefore LICQ (linear independence constraint qualification) holds. Now, Lemma 12.2 (N&W Book) implies that $F(\hat{x}) = T_{\Omega_1}(\hat{x}) = \{d = (d_1, d_2) \in \mathbb{R}^2 : d_1 \leq 0\}$ (or we can use the Lemma 12.7 (N&W Book)). Further, $N_{\Omega_1}(\hat{x}) = \{p = (p_1, p_2) \in \mathbb{R}^2 : p^T q \leq 0, \forall q \in T_{\Omega_1}(\hat{x})\} = \{p = (p_1, p_2) \in \mathbb{R}^2 : p_1 \geq 0 \text{ and } p_2 = 0\}$. For the set Ω_2 , the inequality constraint $c(x) = 1 - x_1^2 - x_2^2 \geq 0$ is active at $\hat{x} = (1, 0)$, and $\nabla c(\hat{x}) = (-2, 0)^T$.

For the set Ω_2 , the inequality constraint $c(x) = 1 - x_1^2 - x_2^2 \ge 0$ is active at $\hat{x} = (1, 0)$, and $\nabla c(\hat{x}) = (-2, 0)^I$. Therefore, the cone of linearized feasible directions at \hat{x} is defined as

$$F(\hat{x}) = \{ d = (d_1, d_2) \in \mathbb{R}^2 : d^T \nabla c(\hat{x}) \ge 0 \},\$$

which gives $F(\hat{x}) = \{d = (d_1, d_2) \in \mathbb{R}^2 : d_1 \leq 0\}$. Moreover, the set of active constraint gradient $\{\nabla c(\hat{x})\}$ is linearly independent. Therefore LICQ (linear independence constraint qualification) holds. Now, Lemma 12.2 (N&W Book) implies that $F(\hat{x}) = T_{\Omega_2}(\hat{x}) = \{d = (d_1, d_2) \in \mathbb{R}^2 : d_1 \leq 0\}$. Further, $N_{\Omega_2}(\hat{x}) = \{p = (p_1, p_2) \in \mathbb{R}^2 : p^T q \leq 0, \forall q \in T_{\Omega_2}(\hat{x})\} = \{p = (p_1, p_2) \in \mathbb{R}^2 : p_1 \geq 0 \text{ and } p_2 = 0\}$. The conclusion is $T_{\Omega_1}(\hat{x}) = T_{\Omega_2}(\hat{x})$ and $N_{\Omega_1}(\hat{x}) = N_{\Omega_2}(\hat{x})$.

For the last part, we see that the inequality constraints $c_1(x)$ and $c_3(x)$ are active at $\hat{x} = (1, 1)$, and $\nabla c_1(\hat{x}) = (-1, 0)^T$, $\nabla c_3(\hat{x}) = (0, -1)^T$. Therefore, the cone of linearized feasible directions at \hat{x} is defined as

$$F(\hat{x}) = \{ d = (d_1, d_2) \in \mathbb{R}^2 : d^T \nabla c_1(\hat{x}) \ge 0 \text{ and } d^T \nabla c_3(\hat{x}) \ge 0 \},\$$

which gives $F(\hat{x}) = \{d = (d_1, d_2) \in \mathbb{R}^2 : d_1, d_2 \leq 0\}$. Moreover, the set of active constraints gradient $\{\nabla c_1(\hat{x}), \nabla c_3(\hat{x})\}$ is linearly independent. Therefore LICQ (linear independence constraint qualification) holds. Now, Lemma 12.2 (N&W Book) implies that $F(\hat{x}) = T_{\Omega_1}(\hat{x}) = \{d = (d_1, d_2) \in \mathbb{R}^2 : d_1, d_2 \leq 0\}$ (or we can use the Lemma 12.7 (N&W Book)). Further, $N_{\Omega_1}(\hat{x}) = \{p = (p_1, p_2) \in \mathbb{R}^2 : p^T q \leq 0, \forall q \in T_{\Omega_1}(\hat{x})\} = \{p = (p_1, p_2) \in \mathbb{R}^2 : p_1, p_2 \geq 0\}$.

c) If $||z||_2 \le 1$, then we already have that $z \in \Omega_2$. Thus the projection of z is equal to z.

Now assume that $||z||_2 > 1$ and let $x \in \Omega_2$, that is, $||x||_2 \le 1$. Then

$$\left\langle \frac{z}{\|z\|_2} - z, x - \frac{z}{\|z\|_2} \right\rangle = \frac{\langle z, x \rangle}{\|z\|_2} - \langle z, x \rangle - 1 + \|z\|_2 = \left(\|z\|_2 - 1 \right) \left(1 + \frac{\langle z, x \rangle}{\|z\|_2^2} \right).$$

Since $||z||_2 > 1$, the first term in the last product is positive. Moreover, the Cauchy–Schwarz inequality implies that

$$\langle z, x \rangle \ge - \|z\| \|x\|_2.$$

Since $||x||_2 \le 1 < ||z||_2$, it follows that

$$1 + \frac{\langle z, x \rangle}{\|z\|_2^2} \ge 1 - \frac{\|x\|_2}{\|z\|_2} > 0$$

that is, the second term is positive as well. Together, we have thus shown that

$$\left\langle \frac{z}{\|z\|_2} - z, x - \frac{z}{\|z\|_2} \right\rangle > 0$$

for all $x \in \Omega_2$. Since this precisely the characterisation of the projection onto Ω_2 , this shows that $\pi_{\Omega_2}(z) = z/||z||_2$.

d) If we compare the objective function f(x) with the optimization problem (5) of the lecture note on convex optimization, we can say that we have to find a point in Ω_2 (global solution) which is closest to z = (0, -2). This is evidently the projection of z = (0, -2) on to Ω_2 , which is $x^* = (0, -1)$ (this is quite easy to understand if you sketch Ω_2).

We now perform the gradient projection method for the step length $\alpha = \frac{1}{2}$ and initial point $x^0 = (1, 1)$. We have $\nabla f(x^0) = (2x_1^0, 2(x_2^0 + 2))^T = (2, 6)^T$. By gradient projection method, we have

$$x^{1} = \pi_{\Omega_{2}}(x^{0} - \alpha \nabla f(x^{0})) = \pi_{\Omega_{2}}(0, -2) = (0, -1).$$

Therefore, the gradient projection method converges in one step.

Assume that $\Omega \subset \mathbb{R}^d$ is a non-empty, closed and convex set. Show that the projection mapping $\pi_{\Omega} \colon \mathbb{R}^d \mapsto \Omega$ is a non-expansive map in the sense that

$$\|\pi_{\Omega}(x) - \pi_{\Omega}(y)\|_{2} \leq \|x - y\|_{2} \quad \forall x, y \in \mathbb{R}^{d}.$$

Solution.

Let $z_1, z_2 \in \mathbb{R}^d$ be arbitrary. The variational characterization of the projection operator on to Ω yields that

$$\langle z_1 - \pi_{\Omega}(z_1), x - \pi_{\Omega}(z_1) \rangle \le 0, \ \forall \ x \in \Omega.$$
⁽¹⁾

Since $\pi_{\Omega}(z_2) \in \Omega$, the inequality (1) renders

$$\langle z_1 - \pi_{\Omega}(z_1), \pi_{\Omega}(z_2) - \pi_{\Omega}(z_1) \rangle \le 0.$$
⁽²⁾

By interchanging z_1 and z_2 in inequality (2), we obtain

$$\langle z_2 - \pi_\Omega(z_2), \pi_\Omega(z_1) - \pi_\Omega(z_2) \rangle \leq 0$$

which can be rewritten as

$$\langle \pi_{\Omega}(z_2) - z_2, \pi_{\Omega}(z_2) - \pi_{\Omega}(z_1) \rangle \le 0.$$
(3)

By adding inequalities (2) and (3), we get

$$\langle z_1 - z_2 + \pi_\Omega(z_2) - \pi_\Omega(z_1), \pi_\Omega(z_2) - \pi_\Omega(z_1) \rangle \le 0$$

By rearranging the above inequality implies

$$\|\pi_{\Omega}(z_2) - \pi_{\Omega}(z_1)\|_2^2 \le \langle z_2 - z_1, \pi_{\Omega}(z_2) - \pi_{\Omega}(z_1) \rangle$$

By applying Cauchy-Schwartz inequality property in the above inequality, we get

$$\|\pi_{\Omega}(z_{2}) - \pi_{\Omega}(z_{1})\|_{2}^{2} \leq \|z_{2} - z_{1}\|_{2}\|\pi_{\Omega}(z_{2}) - \pi_{\Omega}(z_{1})\|_{2}$$

which implies

$$\|\pi_{\Omega}(z_2) - \pi_{\Omega}(z_1)\|_2 \le \|z_2 - z_1\|_2.$$

Since $z_1, z_2 \in \mathbb{R}^d$ are arbitrary,

$$\|\pi_{\Omega}(z_2) - \pi_{\Omega}(z_1)\|_2 \le \|z_2 - z_1\|_2, \ \forall \ z_1, z_2 \in \mathbb{R}^d$$

Problem 3.

Let $A \in \mathbb{R}^{m \times d}$ with $m \ge d$ have full rank, let $b \in \mathbb{R}^m$, and let $\Omega \subset \mathbb{R}^d$ be non-empty, convex, and closed. Consider the restricted least squares problem

$$\min_{x \in \Omega} f(x) \qquad \text{with } f(x) = \frac{1}{2} \|Ax - b\|_2^2 \tag{4}$$

and the gradient projection algorithm

Show that this algorithm converges to the unique solution of (4) provided that $0 < \alpha < 2/\sigma_{\text{max}}^2$, where σ_{max} denotes the largest singular value of *A*.

 $x^{(k+1)} \leftarrow \pi_{\Omega} \big(x^{(k)} - \alpha \nabla f(x^{(k)}) \big).$

Hint: Show that the gradient descent step $x \mapsto x - \alpha \nabla f(x)$ is a contraction on \mathbb{R}^d , and then use the result of the previous exercise and Banach's fixed point theorem.

3

Solution.

We note first that the gradient of f is given as

$$\nabla f(x) = A^T (Ax - b).$$

Define now the mapping $G \colon \mathbb{R}^d \to \mathbb{R}^d$,

$$G(x) \coloneqq x - \alpha A^T (Ax - b),$$

which is just the result of one gradient descent step for f with step length α . We first want to show that G is a contraction. We have

$$||G(x) - G(y)|| = ||x - \alpha A^{T}(Ax - b) - y + \alpha A^{T}(Ay - b)|| = ||(I - \alpha A^{T}A)(x - y)||,$$

where $I \in \mathbb{R}^{d \times d}$ is the *d*-dimensional identity matrix. Next we note that the eigenvalues of the matrix $I - \alpha A^T A$ are the values $1 - \alpha \sigma_i^2$, where $0 < \sigma_1 \le \sigma_2 \le \ldots \le \sigma_d$ are the non-zero singular values of *A*. (Since *A* has rank *d*, it has *d* non-zero singular values.) In particular, the smallest eigenvalue of $I - \alpha A^T A$ is $1 - \alpha \sigma_d^2$, which is larger than -1, since we had chosen $\alpha < 2/\sigma_d^2$. On the other hand, the largest eigenvalue is $1 - \alpha \sigma_1^2$, which is smaller than +1, since $\alpha > 0$ and $\sigma_1 > 0$. Since $I - \alpha A^T A$ is symmetric, its singular values are precisely the absolute values of its eigenvalues. Thus we obtain from the previous considerations that all singular values of $I - \alpha A^T A$ are strictly smaller than 1. Since the spectral norm of a matrix is its largest singular value, it follows that

$$||I - \alpha A^T A||_2 =: L < 1.$$

Thus

$$||G(x) - G(y)|| = ||(I - \alpha A^T A)(x - y)|| \le L||x - y||$$

with 0 < L < 1, which shows that *G* is a contraction.

Using the previous exercise we now have that

$$\|\pi_{\Omega}(G(x)) - \pi_{\Omega}(G(y))\| \le \|G(x) - G(y)\| \le L \|x - y\|,$$

which shows that the projected gradient descent algorithm is generated by a contraction as well. From the Banach fixed point theorem we now obtain that the iteration $x^{(k)}$ converges to the unique point x^* satisfying

$$x^* = \pi_{\Omega} \left(x^* - \alpha A^T (Ax^* - b) \right),$$

which is precisely the solution of the optimisation problem (4) (as discussed in the lecture/the note on optimisation with convex constraints).

Problem 4. (Exercise 12.4, N&W Book)

If $f : \mathbb{R}^d \mapsto \mathbb{R}$ is convex and the feasible region Ω is convex, show that local solutions of the problem $\min_{x \in \Omega} f(x)$ are also global solutions. Show that the set of global solutions is convex.

Solution.

Let $x_0 \in \Omega$ be a local solution. It follows that there exists a neighborhood of x_0 , $N(x_0)$ such that

$$f(x_0) \le f(x), \ \forall \ x \in N(x_0) \cap \Omega.$$
(5)

Now, we have to show that x_0 is global solution too. We assume to the contrary that x_0 is not global solution, it follows that there exists $x \in N(x_0) \cap \Omega$ such that

$$f(\mathbf{x}) < f(\mathbf{x}_0). \tag{6}$$

Since, $N(x_0)$ and Ω are convex, $N(x_0) \cap \Omega$ is convex. Thus, for all $\lambda \in [0,1]$, $\lambda x_0 + (1 - \lambda)x \in N(x_0) \cap \Omega$. Convexity of the objective function *f* implies

$$f(\lambda x_0 + (1 - \lambda)x) \le \lambda f(x_0) + (1 - \lambda)f(x).$$
(7)

By combining inequalities (6) and (7), we obtain

$$f(\lambda x_0 + (1 - \lambda)x) < f(x_0),$$

which contradicts the inequality (5). Therefore, x_0 is the global solution.

For the next part, we consider *S* is the set of global minimizers. Now, we have to show that *S* is convex. Let $x_1, x_2 \in S$ be arbitrary. We have

$$f(x_1) \le f(x) \text{ and } f(x_2) \le f(x), \ \forall x \in \Omega.$$
 (8)

Since, Ω is convex, $\lambda x_1 + (1 - \lambda)x_2 \in \Omega$ for all $\lambda \in [0, 1]$. The convexity of the function *f* yields

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2).$$
(9)

Inequalities (8) and (9) imply

$$f(\lambda x_1 + (1 - \lambda)x_2) \le f(x), \ \forall \ x \in \Omega,$$

which implies that $\lambda x_1 + (1 - \lambda)x_2 \in S$. Therefore, *S* is the convex set.

Problem 5.

Consider the set

$$\Omega := \{ (x, y) \in \mathbb{R}^2 : y \ge 0 \text{ and } x^2(x+1) - y \ge 0 \}.$$

Determine the tangent cone and the cone of linearized feasible directions to Ω at the points $(x, y) = (-1, 0), (-\frac{2}{3}, 0)$, and (0, 0).

Solution.

We denote the feasible set by Ω , and inequality constraints by $c_1(x, y) = y \ge 0$ and $c_2(x, y) = x^2(x+1) - y \ge 0$. It is evident that at $(\hat{x}, \hat{y}) = (-1, 0)$, both the inequality constraints $c_1(\hat{x}, \hat{y})$ and $c_2(\hat{x}, \hat{y})$ are active, and $\nabla c_1(\hat{x}, \hat{y}) = (0, 1)^T$, $\nabla c_2(\hat{x}, \hat{y}) = (1, -1)^T$. Therefore, the cone of linearized feasible directions at (\hat{x}, \hat{y}) is defined as

$$F(\hat{x}, \hat{y}) = \{ d = (d_1, d_2) \in \mathbb{R}^2 : d^T \nabla c_1(\hat{x}, \hat{y}) \ge 0 \text{ and } d^T \nabla c_2(\hat{x}, \hat{y}) \ge 0 \},\$$

which gives $F(\hat{x}, \hat{y}) = \{d = (d_1, d_2) \in \mathbb{R}^2 : d_1 \ge d_2 \ge 0\}$. Moreover, the set of active constraints gradient $\{\nabla c_1(\hat{x}, \hat{y}), \nabla c_2(\hat{x}, \hat{y})\}$ is linearly independent. Therefore LICQ (linear independence constraint qualification) holds. Now, Lemma 12.2 (N&W Book) implies that $F(\hat{x}, \hat{y}) = T_{\Omega}(\hat{x}, \hat{y}) = \{d = (d_1, d_2) \in \mathbb{R}^2 : d_1 \ge d_2 \ge 0\}$.

It is evident that at $(\hat{x}, \hat{y}) = (-\frac{2}{3}, 0)$, only the inequality constraint $c_1(\hat{x}, \hat{y})$ is active, and $\nabla c_1(\hat{x}, \hat{y}) = (0, 1)^T$. Therefore, the cone of linearized feasible directions at (\hat{x}, \hat{y}) is defined as

$$F(\hat{x}, \hat{y}) = \{ d = (d_1, d_2) \in \mathbb{R}^2 \colon d^T \nabla c_1(\hat{x}, \hat{y}) \ge 0 \},\$$

which gives $F(\hat{x}, \hat{y}) = \{d = (d_1, d_2) \in \mathbb{R}^2 : d_2 \ge 0\}$. Moreover, the set of active constraints gradient $\{\nabla c_1(\hat{x}, \hat{y})\}$ is linearly independent. Therefore LICQ (linear independence constraint qualification) holds. Now, Lemma 12.2 (N&W Book) implies that $F(\hat{x}, \hat{y}) = T_{\Omega}(\hat{x}, \hat{y}) = \{d = (d_1, d_2) \in \mathbb{R}^2 : d_2 \ge 0\}$.

It is evident that at $(\hat{x}, \hat{y}) = (0, 0)$, both the inequality constraints $c_1(\hat{x}, \hat{y})$ and $c_2(\hat{x}, \hat{y})$ are active, and $\nabla c_1(\hat{x}, \hat{y}) = (0, 1)^T$, $\nabla c_2(\hat{x}, \hat{y}) = (0, -1)^T$. Therefore, the cone of linearized feasible directions at (\hat{x}, \hat{y}) is defined as

$$F(\hat{x}, \hat{y}) = \{ d = (d_1, d_2) \in \mathbb{R}^2 : d^T \nabla c_1(\hat{x}, \hat{y}) \ge 0 \text{ and } d^T \nabla c_2(\hat{x}, \hat{y}) \ge 0 \},\$$

which gives $F(\hat{x}, \hat{y}) = \{d = (d_1, d_2) \in \mathbb{R}^2 : d_2 = 0\}$. Moreover, the set of active constraints gradient $\{\nabla c_1(\hat{x}, \hat{y}), \nabla c_2(\hat{x}, \hat{y})\}$ is linearly dependent. Thus LICQ (linear independence constraint qualification) does not hold. Now, we cannot be sure

that $F(\hat{x}, \hat{y}) = T_{\Omega}(\hat{x}, \hat{y})$. Therefore, we have to find the tangent cone $T_{\Omega}(\hat{x}, \hat{y})$ by definition. For that, we consider that $z_k = (p_k, q_k) = (\pm \frac{1}{k}, 0)$ is a feasible sequence, which clearly converges to (0, 0), and $t_k = \frac{\tau}{k}$ for $\tau > 0$. Then,

$$\lim_{k \to \infty} \frac{z_k - (0,0)}{t_k} = \left(\pm \frac{1}{\tau}, 0\right) \in T_{\Omega}(0,0).$$
(10)

Clearly, the point $(0,0) \in \Omega$, and the Lemma 12.2 (N&W Book) implies $T_{\Omega}(0,0) \subset F(0,0)$. Moreover, for the feasible sequence $z_k = (0,0)$,

$$\lim_{k \to \infty} \frac{z_k - (0, 0)}{t_k} = (0, 0) \in T_{\Omega}(0, 0).$$
⁽¹¹⁾

Now, by (10) and (11), we can say that $F(0, 0) \subset T_{\Omega}(0, 0)$. Finally, we have $T_{\Omega}(0, 0) = F(0, 0) = \{d = (d_1, d_2) \in \mathbb{R}^2 : d_2 = 0\}$.