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NTNU

Exercise #5

February 14, 2023

Problem 1.

Consider the sets Q; = {x € R?: ||x|lo <1} and Q; = {x € R?: ||x]||; < 1}.
a) Show that Q; and Q; are non-empty, closed and convex sets.

b) In dimension d = 2, determine the normal and tangent cones to the sets Q; and Q, at the point x = (1,0). In
addition, determine the normal and tangent cones to Q; at the point (1,1).

c) Show that the projection 7q, onto Q; is explicitly given as

z
—  ifz] > 1,

70, (2) = { 12112

z else.

d) Consider now the case d = 2 and let f(x) = x + (x; + 2)°. Find the global solution of the problem mgl f(x). Also,
x€Q,

perform one step of the gradient projection method with the step length a = % and initial point x° = (1,1).

Solution.

a) Evidently, 0 € Q;, Q,. Therefore, Q; and Q, are non-empty, and closeness follows immediately from the continuity
of the norm. Let x3, x; € Q;, i = 1,2 be arbitrary and A € [0, 1]. Further for all A € [0,1], we get

1Ax1 + (1 = Dxzl| < M|l + (1= D]l < 1,
which implies that Ax; + (1 — A)x; € Q;, i =1, 2. Therefore, Q; and Q, are convex sets. O
b) We can rewrite the set Q; in the following four smooth inequality constraints
ci(x)==-x+1>0,

co(x)=x1+12>0,
C3(x) =-x2+120,
cy(x) =x+120.

It is evident that at the point £ = (%, %) = (1,0), only the inequality constraint ¢; (%) is active, and V¢, (%) = (=1,0)7.
Therefore, the cone of linearized feasible directions at x is defined as

F(%) = {d = (dy, dy) € R?: dTV¢ (%) > 0},
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d)

which gives F(%) = {d = (d},dz) € R?: d; < 0}. Moreover, the set of active constraint gradient {Ve;(%)} is linearly
independent. Therefore LICQ (linear independence constraint qualification) holds. Now, Lemma 12.2 (N&W Book)
implies that F(%) = T, (%) = {d = (d,d2) € R?*: d; < 0} (or we can use the Lemma 12.7 (N&W Book)). Further,
No, (%) = {p = (pp2) €R*: pTq <0, Vq €T, (R)}={p=(pipz:) €R*: pi = 0and p, = 0}.

For the set Q,, the inequality constraint ¢(x) = 1—x? — x5 > 0 is active at £ = (1,0), and Vc(%) = (-2, 0)T.
Therefore, the cone of linearized feasible directions at x is defined as

F(x) ={d = (d,dy) € R?: d"Vc(x) > 0},

which gives F(£) = {d = (d;,d,) € R*: d; < 0}. Moreover, the set of active constraint gradient {Vc(%)} is
linearly independent. Therefore LICQ (linear independence constraint qualification) holds. Now, Lemma 12.2 (N&W
Book) implies that F(%) = Tq,(%) = {d = (di,d;) € R?: d; < 0}. Further, No, (%) = {p = (p.p2) € R?: pTq <
0,VqeTo (%)} ={p=(p,pz) € R*: p; > 0and p, = 0}. The conclusion is To, (£) = To, (%) and Ng, (X) = Ng, ().

For the last part, we see that the inequality constraints ¢;(x) and c3(x) are active at £ = (1,1), and V¢ (%) =
(=1,0)T, Ves(%) = (0, 1), Therefore, the cone of linearized feasible directions at % is defined as

F(%) ={d = (d,dy) € R*: d"V¢i(%) > 0 and d7 Ves(%) > 0},
which gives F(%) = {d = (di,dy) € R?: d;, d; < 0}. Moreover, the set of active constraints gradient {Vc; (%), Ve3 (%)}
is linearly independent. Therefore LICQ (linear independence constraint qualification) holds. Now, Lemma 12.2

(N&W Book) implies that F(%) = To, (%) = {d = (di,d2) € R*: d;,d> < 0} (or we can use the Lemma 12.7 (N&W
Book)). Further, No, (%) = {p = (p1,p2) € R?: pTq <0, Vq € To, (%)} = {p = (p1, p2) € R%: p1,p2 > 0}.

If ||z||2 < 1, then we already have that z € Q,. Thus the projection of z is equal to z.

Now assume that ||z||; > 1 and let x € Q,, that is, ||x||, < 1. Then

lIzll2

z z \ (z,x) _ B @
(e = )=, — @0 = 1+ lell = (lells = ) 1+ ||z||§)'

Since ||z||2 > 1, the first term in the last product is positive. Moreover, the Cauchy-Schwarz inequality implies that
(zx) = —|lzllllx]l2-

Since ||x||2 <1 < ||z]|2, it follows that
@x) il

1+ >1-
[E4[Fs [E41P

>

that is, the second term is positive as well. Together, we have thus shown that

< z z >>0
—zx—
lzllz 7 llzll2

for all x € Q,. Since this precisely the characterisation of the projection onto Qj, this shows that g, (z) = z/||z||2-

If we compare the objective function f(x) with the optimization problem (5) of the lecture note on convex opti-
mization, we can say that we have to find a point in Q; (global solution) which is closest to z = (0, —2). This is
evidently the projection of z = (0, —2) on to Q,, which is x* = (0, —1) (this is quite easy to understand if you sketch
Q).

We now perform the gradient projection method for the step length a = 3 and initial point x° = (1,1). We have
VF(x%) = (2x),2(x) + 2))T = (2,6)T. By gradient projection method, we have
x! = 1, (x° = aVf(x%)) = 70, (0,-2) = (0,-1).

Therefore, the gradient projection method converges in one step.
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Problem 2.

Assume that Q ¢ R? is a non-empty, closed and convex set. Show that the projection mapping 7q: R? - Qis a
non-expansive map in the sense that

70 (x) = 2o (M)l < llx = yll2 ¥ x, y € RY.

Solution.
Let z;, z, € R? be arbitrary. The variational characterization of the projection operator on to Q yields that
(71 — mq(z1), x — mq(z1)) <0, Vx € Q. (1)
Since 7 (z;) € Q, the inequality (1) renders
(71 = ma(z1), o (22) — ma(21)) < 0. (2)
By interchanging z; and z; in inequality (2), we obtain
(22 — ma(22), ma(z1) — 7a(z2)) <0,

which can be rewritten as
(ma(22) — 22, 0 (22) — ma(21)) < 0. (3)

By adding inequalities (2) and (3), we get

(71 — 22 + ma(22) — ma(21), ma(22) — ma(z1)) < 0.
By rearranging the above inequality implies

I70 (22) — ma (2|5 < (22 — 21, 10 (22) — 7w (21))-

By applying Cauchy-Schwartz inequality property in the above inequality, we get

I7a(22) = ma(20)l5 < llz2 = 21l2ll7ma (22) = 70 (21) ll2,
which implies
lIma(z2) = ma(z0)ll2 < llz2 = 212

Since z, z5 € R? are arbitrary,
70 (22) = ma(20)ll2 < llzz = zill2, ¥ 21,22 € RY.

Problem 3.

Let A € R™ with m > d have full rank, let b € R™, and let Q ¢ R? be non-empty, convex, and closed. Consider the
restricted least squares problem

min f(x) with f(x) = %HAx — b (@)

and the gradient projection algorithm
D o (x B — aVF(xR)).

Show that this algorithm converges to the unique solution of (1) provided that 0 < & < 2/0?2,_ ., where opmax denotes the

largest singular value of A.

ax?

Hint: Show that the gradient descent step x — x — aV f(x) is a contraction on R?, and then use the result of the previous
exercise and Banach’s fixed point theorem.
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Solution.
We note first that the gradient of f is given as
Vi(x) = AT(Ax - b).
Define now the mapping G: R¢ — RY,
G(x) == x — aAT (Ax - b),

which is just the result of one gradient descent step for f with step length a. We first want to show that G is a contraction.
We have
IG(x) = Gl = llx — aA” (Ax = b) = y + aAT (Ay = D) = [|(I - 2ATA) (x = y).

where I € R® is the d-dimensional identity matrix. Next we note that the eigenvalues of the matrix I — AT A are the

values 1 — acriz, where 0 < 01 < 02 < ... < gy are the non-zero singular values of A. (Since A has rank d, it has d non-zero
singular values.) In particular, the smallest eigenvalue of I — AT A is 1 — ac?, which is larger than —1, since we had
chosen o < 2/ 02. On the other hand, the largest eigenvalue is 1 — aalz, which is smaller than +1, since a > 0 and o7 > 0.
Since I — aAT A is symmetric, its singular values are precisely the absolute values of its eigenvalues. Thus we obtain from
the previous considerations that all singular values of I — «AT A are strictly smaller than 1. Since the spectral norm of a
matrix is its largest singular value, it follows that

Il - aATA|, =L <1.

Thus
IG(x) = Gl = (I - aATA)(x = y)|| < Llix - yll

with 0 < L < 1, which shows that G is a contraction.

Using the previous exercise we now have that

70(G(x)) = ma(G(Y)I < IG(x) = G(MI| < Lllx =yl

which shows that the projected gradient descent algorithm is generated by a contraction as well. From the Banach fixed
point theorem we now obtain that the iteration x¥) converges to the unique point x* satisfying

x* = mo (x* — aAT (Ax" - b)),

which is precisely the solution of the optimisation problem (4) (as discussed in the lecture/the note on optimisation with
convex constraints).

Problem 4. (Exercise 12.4, N&W Book)

If f: R? > R is convex and the feasible region Q is convex, show that local solutions of the problem mié} f(x) are also
xXe

global solutions. Show that the set of global solutions is convex.

Solution.

Let xo € Q be alocal solution. It follows that there exists a neighborhood of x, N(x¢) such that

f(x0) < f(x), ¥ x € N(x0) N Q. ()

Now, we have to show that x; is global solution too. We assume to the contrary that x, is not global solution, it follows
that there exists x € N(xp) N Q such that

f(x) < f(xo). (6)

Since, N(xp) and Q are convex, N(xy) N Q is convex. Thus, for all A € [0, 1], Axo + (1 — A)x € N(xp) N Q. Convexity of
the objective function f implies

fAxg + (1= Dx) < Af (xo) + (1= A)f(x). (7)
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By combining inequalities (6) and (7), we obtain

f(Axo + (1— A)x) < f(x0),

which contradicts the inequality (5). Therefore, x, is the global solution.

For the next part, we consider S is the set of global minimizers. Now, we have to show that S is convex. Let x;, x; € S be
arbitrary. We have

f(x)) < f(x) and f(x3) < f(x), Vx € Q. (8)
Since, Q is convex, Ax; + (1 — A)x; € Q for all A € [0,1]. The convexity of the function f yields
FAx1+ (1= )xz) < Af (1) + (1= 1) f (x2). ©)

Inequalities (8) and (9) imply
fAx+ (1-A)x) < f(x), Vx € Q,

which implies that Ax; + (1 — A)x; € S. Therefore, S is the convex set. ]

Problem 5.

Consider the set
Q:={(x,y) eR*:y>0andx*(x+1) — y > 0}.

Determine the tangent cone and the cone of linearized feasible directions to Q at the points (x, y) = (-1, 0), (—%, 0), and
(0,0).

Solution.

We denote the feasible set by Q, and inequality constraints by ¢;(x, y) = y > 0 and ¢3(x, y) = x*(x +1) — y > 0. It is
evident that at (%, §) = (=1,0), both the inequality constraints c;(%, §) and c;(%, §) are active, and Vc;(%, §) = (0,1)7,
Vey (%, 9) = (1, -1)T. Therefore, the cone of linearized feasible directions at (%, ) is defined as

F(%,9) ={d = (d,dy) € R?: d"V¢y(%, ) > 0 and d? Ve, (%, §) > 0},

which gives F(%, §) = {d = (d},d2) € R%: d; > d, > 0}. Moreover, the set of active constraints gradient { Ve, (%, ), Veo (%, §)}
is linearly independent. Therefore LICQ (linear independence constraint qualification) holds. Now, Lemma 12.2 (N&W
Book) implies that F(%, y) = To(%, §) = {d = (di,d,) € R?: d; > d; > 0}.

It is evident that at (x, y) = (—%, 0), only the inequality constraint ¢; (X, ) is active, and Ve, (%, §) = (0,1)7. Therefore,
the cone of linearized feasible directions at (%, y) is defined as

F(%,9) = {d = (d,dz) € R*: d"Vei(%,9) > 0},
which gives F(%, §) = {d = (d1,d,) € R%: d; > 0}. Moreover, the set of active constraints gradient {Vc; (%, §)} is linearly

independent. Therefore LICQ (linear independence constraint qualification) holds. Now, Lemma 12.2 (N&W Book) implies
that F(%,9) = To(%, ) = {d = (di,d2) € R?: d, > 0}.

It is evident that at (£, §) = (0, 0), both the inequality constraints ¢;(%, y) and ¢, (%, ) are active, and Ve, (%, §) = (0,1)7,
Ve (%, ) = (0, —1)T. Therefore, the cone of linearized feasible directions at (%, y) is defined as

F(%,9) = {d = (did) € R?: d" Ve (%, §) = 0 and d Ve (%, §) > 0},

which gives F(%, ) = {d = (d;,d;) € R?: d, = 0}. Moreover, the set of active constraints gradient {Vc;(%, 9), Vea (%, 9)}
is linearly dependent. Thus LICQ (linear independence constraint qualification) does not hold. Now, we cannot be sure
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that F(%, y) = To(%, y). Therefore, we have to find the tangent cone T, (%, y) by definition. For that, we consider that
zk = (Pr, Qi) = (J_r%, 0) is a feasible sequence,which clearly converges to (0, 0), and f;, = % for 7 > 0. Then,

. Zk — (05 0)
llm _— =
k—o0 52

(i%,o) € T (0,0). (10)

Clearly, the point (0,0) € Q, and the Lemma 12.2 (N&W Book) implies To(0,0) c F(0,0). Moreover, for the feasible
sequence z; = (0,0),
- (0,0
im =0 _ 6 0y e To(0,0). (11)
k—oc0 b
Now, by (10) and (11), we can say that F(0,0) C Tq(0,0). Finally, we have To(0,0) = F(0,0) = {d = (d},dz) € R?: d, =

0}.
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