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Exercise #2

January 24, 2023

Problem 1.

Exercise #2

a) Show that a (not necessarily differentiable) function f: R" — R, is convex, if the function x +— log(f(x)) is

convex.

b) Show that an optimization problem m]%n f(x) has at most one global minimizer if the objective function f: R" — R
x€R™

is strictly convex. In addition, find a strictly convex objective function f that has no global minimizer at all.

Solution.

a) Define a function g: R" — R such that g(x) = log(f(x)), it follows that f(x) = exp(g(x)). Now, we have the

b)

function g is convex, and need to prove that the function f is convex.

Convexity of the function g implies that for all x, y € R” and A € [0, 1], we have the following inequality

g Ax+ (1-21)y) < Ag(x) + (1 - Dg(y).

The above inequality with the fact that exp (exponential function) is monotonic increasing yields that

exp(g(Ax + (1= 2A)y)) < exp(Ag(x) + (1= A)g(y)).

The above inequality can be rewritten as

fAx+(1-21)y) < exp(dg(x) + (1= )g(y))-

Now, we use the convexity of exp in the above inequality and obtain the following

fAx+(1-21)y) < dexp(g(x)) + (1= A1) exp(g9(y)) = Af(x) + (1= D) f(y).

Therefore, the function f is convex.

We assume to the contrary that this problem has two distinct minimizers, say, x;, x, € R", such that
f(x) = f(x2) =min f.
Since, the objective function f is strictly convex, we have
fAx1+ (1= A)x2) < Af(x1) + (1= A) f(x2), YA € (0,1).
By combining inequalities (1) and (2), we obtain

f(Ax; 4+ (1 - A)x2) < min f,

which is not possible because we cannot have a objective value of the function f smaller than the minimal value of

the function f (i.e., min f). Therefore, the mentioned optimization problem has unique solution.
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Further, we define a function f: R - R as f(x) = e*. We have the following
fo=¢,
f(x) =€ >0, ¥x € R.

Therefore, f is strictly convex function. However, f/(x) = e* # 0 for any x € R. Therefore, the optimization
problem miﬂrg f(x) has no global minimizer, though the objective function f is strictly convex. ]
X€e

Problem 2.

Show that the function f: R?2 > R,
flx,y) = log(ex + ey)

is convex.

Solution.
Further, for the given objective function f: R? = R as f(x, y) = log(e* + e¥), we get

T
eX 2 )

eX +eY eX +eY

Vil y) = (

exty 1 -1
VD= ey a1

-1 1
0 and 2. Therefore Hessian matrix is positive semi-definite for all (x, y) € R?. Consequently, the given function f is
convex.

Evidently, > 0 for all (x, y) € R?, and let’s say A =

ex+y
(eX+eY)?

] which is symmetric matrix and has eigen values

Problem 3.
Consider the optimization problem
min f(x),
where the objective function f: R* - R is defined as
fx,y,z)=2x* +xy+y* + yz+2° —6x =7y — 8z +9.

Prove that this optimization problem has a unique global minimizer and find it.

Solution.
The first order necessary condition for the optimization problem (??) implies
Vilx,y,2)=(4x+y—6,x+2y+z—-7,y+2z-8)T =0.

Now we have the following system of three equation

4x+y =06,
x+2y+z=7, (3)
y+2z=28.

By solving (3), we obtain the critical point (x, y, z) = (% g, %) Now, we find the Hessian matrix

4 1
Vif=11 2
0 1

N = O
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The approximate eigen values of the Hessian matrix are 4.48, 2.69, and 0.83. It is evident that the Hessian matrix is
symmetric and has non-zero positive eigenvalues. Therefore, Hessian matrix is positive definite and consequently the
objective function f is strictly convex. Eventually, we can conclude that the optimization problem has unique global
minimizer (6 s

5255 )
Problem 4.
a) Consider the function f: R? > R (see Exercise 1, Problem 3b),
f(x,y) = 2x* — 4xy + y* + 5% — 10y.

Perform one step of the gradient descent method with backtracking (Armijo) line search starting from the point
xo = (0, 0). Start with an initial step lenght « = 1 and use the parameters ¢ = 0.1 (sufficient decrease parameter) and
p = 0.1 (contraction factor).

b) Consider the function f: R? > R,
flx,y) =x*y* +x* —2x°y — 2x®y — x* + 2x + 2.

Perform one step of the gradient descent method with backtracking (Armijo) line search starting from the point
xo = (0,0). Start with an initial step length « = 1 and use the parameters ¢ = % (sufficient decrease parameter) and
p = 0.1 (contraction factor).

Solution.

a) First find the search direction py from the starting point x, = (0, 0), which is py = =V £(x0)T = (0,10)7. Now the
Armijo condition at xy and py with parameter ¢ = 0.1 gives

10%a* + 50002 < 90a. (4)

Since @ = 1 does not satisfy the inequality (4), we cannot take step length @« = 1. Then we try a = 0.1 which
satisfies (4). Therefore, we choose the step length « = 0.1. Thus the next iterate in the gradient descent method is
X1 =Xot+apy = (0, 1)

b) First find the search direction p, from the starting point x, = (0, 0), which is py = =V f(x0)T = (=2,0)7. Now the
Armijo condition at xo and p with parameter ¢ = 1, f(xo + apo) < f(xo) + caVf (xo)" po gives

16a* —4a® —4a+2 <2 - 2a.
The initial step length o = % in the above inequality implies
0<1

1

Therefore, a = ; satisfies the Armijo condition. Now, we can choose the step length a = % Thus the next iterate of
gradient descent method is x; = xg + apy = (-1, 0).

Problem 5.

a) Assume that the sequence {xy}rcn is generated by the gradient descent method with backtracking (Armijo)
line search for the minimization of a function f, and that Vf(x;) # 0 for all k. Moreover, assume that X is an
accumulation point of the sequence {xk }xen. Show that X is not a local maximum of f.

b) We consider a line search method of the form xj.; = x + axpx for the minimization of the function f: R" — R
with the search direction py given as

bk =~ Sgn((vf(xk))i)ei,
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where the index i is chosen such that |(Vf(xx));| is maximal. Here e; with 1 < i < n denotes i standard basis

vector in R”. Show that the direction py is a descent direction whenever xj is not a stationary point of f (that is,
Vf(xk) #0).

Solution.

a) Since the sequence xy is generated by using a back tracking line search method, it satisfies the Armijo condition

f(xks1) = f(xx + apr) < fxx) +carVE(x) pi,

with pr = =V (x¢) # 0, which implies that

F(an) < fx) = carllVF)lI? < f e,

which implies that f(xg+1) < f(xr). Therefore, the sequence {f(xx) }ren is strictly decreasing. Now, we have X is
an accumulation point of the sequence {xx }ren. Thus there exists a subsequence {x;/ } converging to x. Moreover,
f is continuous function, therefore, f(x,/) — f(x) too. Since f(xy) is strictly decreasing, f(x;) is also strictly
decreasing sequence, and we have f(x;/) — f(x), implying that f(x;/) > f(x) for every k" (because bounded
decreasing sequence converges to its infimum (greatest lower bound), and the sequence f(x;/) is convergent and
hence bounded too), which in turn shows that X is not a local maximum of f. O

b) We recall that py is a descent direction for f at x if and only if pIZV f(xx) < 0, which we have to prove. To this
end, assume that x; is not a stationary point of f, that is, Vf(xi) # 0. Since the index i in the direction of py is
chosen in such a way that |(V f(xx));| is maximal, we obtain in particular that [(Vf(xx));| > 0. Thus

PEVF(xi) = —sgn((Vf (xi))i)el VI (xx)

= —sgn((Vf (xx)):) (Vf (xx)):

BRI R P,
T

=—|(Vf(xK))il <o0.

Therefore, py is the descent direction. m]
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