
TMA4180 Optimisation 1
Spring 2023 Exercise #10

Exercise #10

March 21, 2023

Problem 1. (Exercise 16.1 in N&W )

Consider the quadratic programme

𝑓 (𝑥, 𝑦) := 2𝑥 + 3𝑦 + 4𝑥2 + 2𝑥𝑦 + 𝑦2 → min

subject to
𝑥 − 𝑦 ≥ 0, 𝑥 + 𝑦 ≤ 4, 𝑥 ≤ 3.

a) Solve the quadratic program and sketch its geometry (that is, the domain of the problem and the level lines of the
function 𝑓 ).

b) What happens if one replaces the function 𝑓 by −𝑓 ? Does the problem still have solutions or local solutions?

Solution.

a) We can see that the problem is a quadratic minimization problem

min
1
2
𝑋>𝐺𝑋 + 𝑐>𝑋 s.t. 𝑎>𝑖 𝑋 − 𝑏𝑖 ≥ 0,

where

𝐺 =

[
8 2
2 2

]
, 𝑐 =

[
2
3

]
, 𝑎1 =

[
1
−1

]
, 𝑎2 =

[
−1
−1

]
, 𝑎3 =

[
−1
0

]
,

and 𝑋 = (𝑥, 𝑦)𝑇 , 𝑏1 = 0, 𝑏2 = −4 and 𝑏3 = −3. We can check that𝐺 is positive de�nite, so by Theorem 16.4 in N&W,
the KKT conditions are necessary and su�cient for minimizers. We therefore set up the KKT conditions:

8𝑥 + 2𝑦 + 2 − 𝜆1 + 𝜆2 + 𝜆3 = 0 (1a)
2𝑥 + 2𝑦 + 3 + 𝜆1 + 𝜆2 = 0 (1b)

𝜆1 (𝑥 − 𝑦) = 0 (1c)
𝜆2 (4 − 𝑥 − 𝑦) = 0 (1d)

𝜆3 (3 − 𝑥) = 0 (1e)
𝑥 − 𝑦 ≥ 0 (1f)

4 − 𝑥 − 𝑦 ≥ 0 (1g)
3 − 𝑥 ≥ 0. (1h)

We see from (1a) and (1b) that

𝑥 =
1
6
+ 1
3
𝜆1 −

1
6
𝜆3

𝑦 = −5
3
− 5
6
𝜆1 −

1
2
𝜆2 +

1
6
𝜆3.
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Now, we can go through the usual procedure of considering all options for active constraints. With no active
constraints, i.e. 𝜆1 = 𝜆2 = 𝜆3 = 0, we get (𝑥, 𝑦) = ( 16 ,−

5
3 ) which is, in fact, a KKT point and as such a global

solution of the problem. We should end the search for a minimum here, since the problem is strictly convex and
the minimizer is unique, as con�rmed by Figure 1. However, since the following discussion will prove useful in part
b), we carry on looking for KKT points.

Next, we consider cases where only one constraint is active.

First, if 𝜆1 = 𝜆2 = 0, i.e. 3 − 𝑥 = 0, we get 𝜆3 = −17 and (𝑥, 𝑦) = (3,− 9
2 ). Since 𝜆3 < 0, this is not minimizer but a

candidate for a maximizer.

Next, if 𝜆1 = 𝜆3 = 0, i.e. 4 − 𝑥 − 𝑦 = 0, we get 𝜆2 = −11 and (𝑥, 𝑦) = ( 16 ,
23
6 ), which breaks constraint (1f).

Lastly, if 𝜆2 = 𝜆3 = 0, i.e. 𝑥 − 𝑦 = 0, we get 𝜆1 = − 11
7 and (𝑥, 𝑦) = (− 5

14 ,−
5
14 ). It is a feasible point, but has a negative

Lagrange multiplier, meaning it is a candidate for a maximizer. This will prove useful in part b).

Next, we consider cases where two constraints are active.

First, if 𝜆1 = 0, i.e. 3 − 𝑥 = 0 and 4 − 𝑥 − 𝑦 = 0, we get (𝑥, 𝑦) = (3, 1) with corresponding Lagrange multi-
pliers 𝜆2 = −11 and 𝜆3 = −17, meaning it is not a KKT point but a candidate of maximizer.

Next, if 𝜆2 = 0, i.e. 3 − 𝑥 = 0 and 𝑥 − 𝑦 = 0, we get (𝑥, 𝑦) = and (𝑥, 𝑦) = (3, 3), which breaks constraint (1g).

Lastly, if 𝜆3 = 0, i.e. 𝑥 − 𝑦 = 0 and 4 − 𝑥 − 𝑦 = 0, we get (𝑥, 𝑦) = (2, 2) with corresponding Lagrange multipliers
𝜆1 =

11
2 and 𝜆2 = − 33

2 , meaning it is not a KKT point.

There are no points in which all three constraints are active. Thus, we have one candidate for a minimizer,
(𝑥, 𝑦) = ( 16 ,−

5
3 ), which is the global minimizer. Figure 1 shows the feasible domain and the contour lines of the

objective function which con�rm our observations.

b) Replacing 𝑓 by −𝑓 will turn minima into maxima and vice versa. Especially of note is that since 𝑓 → ∞ as
𝑥2 + 𝑦2 → ∞, then −𝑓 → −∞, meaning there is no global solution to the minimization problem. However, we
found three candidates for maximizer (3,− 9

2 ), (−
5
14 ,−

5
14 ) and (3, 1) in the last problem. The two candidates (3,− 9

2 )
and (− 5

14 ,−
5
14 ) cannot be maximizer because they are not on the vertex, see �gure 1. Only (3, 1) lies on the vertex

and hence it is a local maximizer.

Problem 2. (Exercise 13.1 in N&W )

Convert the following linear program to standard form:

max
𝑥,𝑦

(𝑐𝑇𝑥 + 𝑑𝑇 𝑦) subject to 𝐴1𝑥 = 𝑏1, 𝐴2𝑥 + 𝐵2𝑦 ≤ 𝑏2, 𝑙 ≤ 𝑦 ≤ 𝑢, (2)

where there are no explicit bounds on 𝑥 .

Solution.

We want to rewrite (2) in the following standard form

min
𝑧

𝑒𝑇𝑧 subject to 𝐴𝑧 = 𝑏, 𝑧 ≥ 0. (3)

First, we turn (2) into a minimization problem,

max
𝑥,𝑦

(𝑐𝑇𝑥 + 𝑑𝑇 𝑦) = min
𝑥,𝑦

(−𝑐𝑇𝑥 − 𝑑𝑇 𝑦).
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Feasible set and contour lines

Figure 1: Feasible set (light blue) and contour lines of the function. Note: The feasible set extends further toward in�nity.

The �rst constraint is already an equality constraint, so we keep it for now. For the other constraints, we de�ne slack
variables 𝑟, 𝑡 ≥ 0 and a surplus variable 𝑠 ≥ 0, so that the constraints can be written as

𝐴1𝑥 = 𝑏1,

𝐴2𝑥 + 𝐵2𝑦 + 𝑟 = 𝑏2,

𝑦 − 𝑠 = 𝑙,

𝑦 + 𝑡 = 𝑢.

The next trick is to split 𝑥 and 𝑦 into nonnegative and nonpositive parts,

𝑥 = 𝑥+ − 𝑥− where 𝑥+ = max(𝑥, 0) ≥ 0, 𝑥− = max(−𝑥, 0) ≥ 0.

𝑦 = 𝑦+ − 𝑦− where 𝑦+ = max(𝑦, 0) ≥ 0, 𝑦− = max(−𝑦, 0) ≥ 0.

We can now write our original system (2) in standard form (3) with

𝑧 =

©­­­­­­­­­«

𝑥+

𝑥−

𝑦+

𝑦−

𝑟

𝑠

𝑡

ª®®®®®®®®®¬
, 𝑒 =

©­­­­­­­­­«

−𝑐
𝑐

−𝑑
𝑑

0
0
0

ª®®®®®®®®®¬
, 𝐴 =

©­­­«
𝐴1 −𝐴1 0 0 0 0 0
𝐴2 −𝐴2 𝐵2 −𝐵2 𝐼 0 0
0 0 𝐼 −𝐼 0 0 𝐼

0 0 𝐼 −𝐼 0 −𝐼 0

ª®®®¬ , 𝑏 =

©­­­«
𝑏1
𝑏2
𝑢

𝑙

ª®®®¬ .

Problem 3.

Assume that 𝑓 : R𝑑 → R is strictly concave and consider the optimization problem

min
𝑥

𝑓 (𝑥) subject to 𝐴𝑥 ≥ 𝑏, (4)
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where 𝐴 ∈ R𝑚×𝑑 and 𝑏 ∈ R𝑚 . Assume that 𝑥∗ is a local solution of (4). Show that 𝑥∗ is a vertex of the polyhedron
𝑃 = {𝑥 ∈ R𝑑 : 𝐴𝑥 ≥ 𝑏}.

Solution.

We assume to the contrary that 𝑥∗ is not the vertex of the polyhedron 𝑃 = {𝑥 ∈ R𝑑 : 𝐴𝑥 ≥ 𝑏} . It follows that there exists
𝑢 ≠ 𝑣 ∈ 𝑃 and 𝜆 ∈ (0, 1) such that

𝑥∗ = 𝜆𝑢 + (1 − 𝜆)𝑣 .

Note that 𝑃 is convex and thus the whole line segment {𝜆𝑢 + (1 − 𝜆)𝑣 : 𝜆 ∈ (0, 1)} is contained in 𝑃 . Thus, by replacing 𝑢
and 𝑣 with suitable other points on this line segment, we may assume without loss of generality that 𝑥∗ = 1

2 (𝑢 + 𝑣). Now
let 𝑝 = 1

2 (𝑣 −𝑢) and de�ne 𝑣𝜖 = 𝑥∗ + 𝜖𝑝 , 𝑢𝜖 = 𝑥∗ − 𝜖𝑝 . Then 𝑣𝜖 ↦→ 𝑥∗ and 𝑢𝜖 ↦→ 𝑥∗ as 𝜖 ↦→ 0 and 𝑥∗ = 1
2 (𝑢𝜖 + 𝑣𝜖 ) for all 𝜖 .

The strict concavity of the function 𝑓 implies that

𝑓 (𝑥∗) > 1
2
(𝑓 (𝑢𝜖 ) + 𝑓 (𝑣𝜖 )), ∀ 𝜖 > 0.

In particular, for each 𝜖 > 0 at least one of the inequalities 𝑓 (𝑥∗) > 𝑓 (𝑢𝜖 ) or 𝑓 (𝑥∗) > 𝑓 (𝑣𝜖 ) holds. Choose therefore for
𝜖 > 0 some 𝑧𝜖 ∈ {𝑢𝜖 , 𝑣𝜖 } such that 𝑓 (𝑥∗) > 𝑓 (𝑧𝜖 ). By construction 𝑧𝜖 ↦→ 𝑥∗ and 𝑓 (𝑥∗) > 𝑓 (𝑧𝜖 ) for all 𝜖 > 0.
Moreover, 𝑧𝜖 lies on the line segment {𝜆𝑢 + (1 − 𝜆)𝑣 : 𝜆 ∈ [0, 1]} for 0 < 𝜖 ≤ 1, and thus 𝑧𝜖 ∈ 𝑃 for 0 < 𝜖 ≤ 1. Together
this is a contradiction to the assumption that 𝑥∗ is a local solution of min

𝑥 ∈𝑃
𝑓 (𝑥). Therefore, 𝑥∗ has to be a vertex of 𝑃 . �
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