
Chapter 4

Vector Programming

Book: Johannes Jahn: Vector Optimization. Theory, Applications, and Extensions. Springer, 2011.

Example 4.0.0.1. Assume that you want to buy a bicycle. The two objectives are:

• minimal price;

• minimal weight.

Clearly, these objectives are contradicting, as there is most likely no bicycle that has the smallest price
as well as the smallest weight (otherwise, the problem would be easy to solve). The question is: How can
we compare the bicycles in terms of these both objectives? The issue is the non-totality of the order in
Rn.
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Figure 4.1: x1 and x2 are - intuitively - good options for bicycles. The bicycle x3 is pricier than x2, with
the same weight, and heavier than x1, with the same price. Therefore, x3 would not be a good option.

4.1 Optimality Notions

For modeling the notion of optimality in a real linear space (vector space, for example Rn), we need to
recall the notion of cones:

Definition 4.1.1 (Cone). Let C be a nonempty subset of a real linear space X.

1. The set C is called a cone if
x 2 C,� � 0 =) �x 2 C.

2. A cone C is called pointed if
C \ (�C) = {0X}.
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Figure 4.2: Left: C is pointed. Right: C is not pointed.

x x �x

S

Figure 4.3: x 2 core(S).

Definition 4.1.2 (Core). The set

core(S) := {x 2 S|8x 2 X9� > 0 s.t. 8� 2 [0,�] : x+ �x 2 S}

is called the algebraic interior of S (or the core of S).

In the following we will often talk about partial orders; hence, we first define this term.

Definition 4.1.3. Let X be a real linear space.

1. Each nonempty subset R of the product space X ⇥ X is called a binary relation R on X (we
write xRy for (x, y) 2 R).

2. Every binary relation  on X is called a partial ordering on X if the following axioms are satisfied
(for arbitrary w, x, y, z 2 X):

(a) x  x (reflexive);

(b) x  y, y  z =) x  z (transitive);

(c) x  y, w  z =) x+ w  y + z (compatibility with addition);

(d) x  y, ↵ 2 R+ =) ↵x  ↵y (compatibility with nonnegative scalar multiplication).

3. A partial ordering  on X is called antisymmetric if for all x, y 2 X:

x  y and y  x =) x = y.

Definition 4.1.4 (Partially Ordered Linear Space). A real linear space equipped with a partial ordering
is called a partially ordered linear space.

It is important to note that in a partially ordered linear space two arbitrary elements cannot be
compared, in general, in terms of the partial ordering. A significant characterization of a partial ordering
in a real linear space is given by
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Theorem 4.1.5. Let X be a real linear space.

1. If  is a partial ordering on X, then the set

C := {x 2 X|0X  x}

is a convex cone. If, in addition,  is antisymmetric, then C is pointed.

2. If C is a convex cone in X, then the binary relation

C := {(x, y) 2 X ⇥X|y � x 2 C}

is a partial ordering on X. If, in addition, C is pointed, then C is antisymmetric.

Definition 4.1.6. Let S be a nonempty subset of a partially ordered linear space with an ordering cone
C.

1. An element x⇤ 2 S is called a minimal element of the set S if

({x⇤}� C) \ S ✓ {x⇤}+ C.

2. An element x⇤ 2 S is called a maximal element of the set S if

({x⇤}+ C) \ S ✓ {x⇤}� C.
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Figure 4.4: x⇤ 2 S is a minimal element of the set S, where C is a halfspace.

If, in addition, the ordering cone C has nonempty algebraic interior, we call an element x⇤ 2 S

1. a weakly minimal element of S if ({x⇤}� core(C)) \ S = ;;

2. a weakly maximal element of S if ({x⇤}+ core(C)) \ S = ;.
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Figure 4.5: Here: C = R2

+
. Left: The so-called Pareto-frontier of S, which consists of all minimal

elements (here, S is a discrete set consisting of a finite number of vectors in R2). Right: The weakly
minimal elements (red) and the minimal element (blue), where S is a continuous set.
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Figure 4.6:

Remark 4.1.6.1. If the ordering cone C is pointed, then the above inclusions in Definition 4.1.3 can
be replaced by the set equations

({x⇤}� C) \ S = {x⇤}, ({x⇤}+ C) \ S = {x⇤}.

Example 4.1.6.1 (Exercise). Sketch the minimal and weakly minimal elements in the following images
of bicriteria optimization problems with C = R2

+
(see Figure 4.6).

Lemma 4.1.7. Let S be a nonempty subset of a partially ordered linear space X with an ordering cone
C ✓ X, core(C) 6= ; and C 6= X. Then every minimal (maximal, resp.) element of S is also a weakly
minimal (maximal, resp.) element of S.

Proof. Let x⇤ be a minimal element in S, hence,

({x⇤}� C) \ S ✓ {x⇤}+ C. (4.1)

We have:

({x⇤}� core(C)) \ S ✓ ({x⇤}� C) \ S
(4.1)

✓ {x⇤}+ C.

Hence, in other words, if y 2 S and y 2 {x⇤}� core(C), then y 2 {x⇤}+ C. This implies

y � x⇤ 2 � core(C) and y � x⇤ 2 C.
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However, we have (� core(C)) \ C = ;, as C 6= X. Therefore,

({x⇤}� core(C)) \ S = ;,

which means that x⇤ is a weakly minimal element in S.

Of course, we could replace x⇤ in the above definition by f(x⇤) if we are minimizing a function
f : X ◆ S ! Y . However, here, we stick with finding minimal elements in S. The results to come are
however easily adaptable to the case of minimizing a function f .

The following lemma indicates that the minimal elements of a set S and the minimal elements of the
set S + C, where C denotes the ordering cone, are closely related.

Lemma 4.1.8. Let S be a nonempty subset of a partially ordered linear space with a convex ordering
cone C. Then every minimal element of the set S is also a minimal element of the set S + C.

Proof. Take an arbitrary minimal element x⇤ 2 S of the set S, and choose any x 2 ({x⇤}�C)\ (S+C).
Then there are elements s 2 S and c 2 C so that x = s + c. Consequently, we obtain s = x � c 2
{x⇤}�C �C ✓ {x⇤}�C (as C is convex), and since x⇤ is a minimal element of the set S, we conclude
s 2 {x⇤}+ C. But then we get also x 2 {x⇤}+ C. This completes the proof.

Remark 4.1.8.1. The converse direction of the above lemma holds true if C is pointed, see [Jahn,
Lemma 4.7, p. 106].

4.2 Jahn-Graef-Younes Methods

Here we investigate the special case that we want to determine the minimal elements of a set of finitely
many points. In practice, such a set consists of many points so that it is not possible to use only the
definition of minimality. Here we present a reduction approach which can be used for the elimination of
non-minimal elements in such a set and for the determination of all minimal elements. In the following
let S be a nonempty discrete subset of Rn being partially ordered in a natural way. In case we are given
a continuous set, a discrete set can be obtained by discretization. Let S consist of many vectors. We are
interested in the determination of all minimal elements of S.

For complexity reasons it does not make sense to determine all minimal elements using the definition.
Therefore, one tries to reduce the set S, that is to eliminate those elements in S which cannot be minimal.
Such a reduction of S can be carried out with the Graef- Younes method.

Algorithm 4.2.1. (Graef-Younes-Method for sorting out non-minimal elements of a discrete set S)

Input: S := {y1, . . . , ym} ⇢ Rn, ordering cone C ⇢ Rn

% Initialization
T := {y1},
% Iteration loop
for j = 2 : 1 : m do

if ({yj}� C) \ T ✓ {yj}+ C then
T := T [ {yj}

end if
end for
Output: T

Theorem 4.2.2 (Theorem 12.18 in Jahn). 1. Algorithm 4.2.1 is well-defined.

2. Algorithm 4.2.1 generates a nonempty T ✓ S.

3. Every minimal element of S belongs to the set T generated by algorithm 4.2.1.

Proof. As the assertions under 1. and 2. are obvious, we prove only part 3. Let yj be a minimal element
of S. Suppose that yj /2 T . Obviously, j 6= 1. As yj is a minimal element of S, we have

�
{yj}� C

�
\ S ✓

�
yj
 
+ C.
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Because T ✓ S, it holds that
�
{yj}� C

�
\ T ✓

�
{yj}� C

�
\ S ✓

�
yj
 
+ C.

This means that the if-condition in Algorithm 4.2.1 is fulfilled and yj will be added to the set T . This
is a contradiction to our assumption.

Algorithm 4.2.1 is a self learning method which becomes better and better step by step. The following
example points out that the reduction gains of the Graef-Younes method may be very large.

Next we discuss an extension of the Graef-Younes method. Algorithm 4.2.1 starts with a set S and
generates a subset T . If we apply Algorithm 4.2.1 to this set T with the modification that we check the
elements of T from the right to the left, i.e. backwards with respect to the indices, we get the following
method which generates all minimal elements of the set S under the assumption that the ordering cone
C is pointed.

Algorithm 4.2.3. (Jahn-Graef-Younes-Method with backward iteration for determining minimal ele-
ments of a discrete set S)

Input: S := {y1, . . . , ym} ⇢ Rn, pointed ordering cone C ⇢ Rn

% Initialization
T := {y1}
% Iteration loop: Forward iteration
for j = 2 : 1 : m do

if ({yj}� C) \ T = {yj} then
T := T [ {yj}

end if
end for
{y1, . . . , yp} := T
U := {yp}
% Backward iteration
for j = p� 1 : �1 : 1 do

if ({yj}� C) \ U = {yj} then
U := U [ {yj}

end if
end for
Output: U

We need the following notion in order to show that the above Jahn-Graef-Younes algorithm does in
fact find all minimal elements of S.

Definition 4.2.4 (External Stability). Let the set of minimal elements of S w.r.t. C be denoted by
SC

min
. If for all non-minimal elements y 2 S there exists a minimal element ȳ 2 SC

min
with ȳ 2 y � C,

then SC

min
is called externally stable.

Remark 4.2.4.1. It is well-known that every nonempty finite subset of a general preordered set is
externally stable (see, e.g., Podinovskĭı and Nogin: Pareto optimal solutions of multicriteria optimization
problems (in Russian), Nauka, Moscow, 1982. p. 21).

Theorem 4.2.5. Let C be a pointed ordering cone. The set U , generated by Algorithm 4.2.3, consists
of exactly all minimal elements of S.

Proof. We know from Theorem 4.2.2 that all minimal elements of S are included in U . Now let us show
that any element yj 2 U is minimal in S. After the forward iteration, we get

({yj}� C) \ T = {yj},

where T := {y1, . . . , yj�1}. The backward iteration yields

({yj}� C) \ U = {yj},

where U = {yp, . . . , yj+1}. This implies

({yj}� C) \ V = {yj},
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where V := {y1, . . . , yj�1, yj+1, yp}. Because 0 2 C (otherwise, C would not be a cone), we also have
({yj} � C) \ {yj} = {yj} ✓ {yj} + C and thus, yj is minimal in V := V [ {yj}. Suppose that {yj} is
not a minimal element in S. Then

({yj}� C) \ S 6= {yj},

which means that there exists yk 2 S which is minimal in S with yk 2 yj �C, hence yk 2 ({yj}�C)\S,
but yk 6= yj . As, due to Theorem 4.2.2, all minimal elements of S are included in U , we have that
yk 2 U . Since yj 2 U , we also have

({yj}� C) \ U = {yj}.

As yk 2 U and yk 2 yj � C, we obtain yk = yj , a contradiction.

4.3 Scalarization

Here, we assume that X is a linear space (for example, X = Rn) and that S,C ⇢ X.

Definition 4.3.1 (Dual Cone). The dual cone to a cone C is denoted by

C⇤ := {` 2 X⇤ | 8 c 2 C : `(c) � 0}.

Theorem 4.3.2. Let x⇤ 2 S. If there exists an ` 2 C⇤ \ {0} with

8x 2 S \ {x⇤} : `(x) < `(x⇤),

then x⇤ is a minimal element in S.

Proof. Assume that x⇤ is not minimal. Then

({x⇤}� C) \ S 6✓ {x⇤}+ C.

Hence, there exists an x 2 S with x 2 {x⇤} � C, but x /2 {x⇤} + C. The first assertion leads to
x⇤ � x 2 C and therefore `(x)  `(x⇤) for any ` 2 C⇤, while the second assertion ensures that x⇤ 6= x.
This contradicts the assumption.

The inverse direction of the above assertion is in general not true.

S

x⇤

x1

x2

Figure 4.7: Here, C = R2

+
. We have ({x⇤}� C) \ S ✓ {x⇤}+ C; thus, x⇤ is minimal in S. However, x⇤

can not be found be means of linear scalarization. In fact, for this example, only the endpoints x1, x2

would be found by linear scalarization techniques.

Example 4.3.2.1. In the finite-dimension case X = Rn, the above result is called weighted sum
scalarization, and the result reduces to: If there exists a weight vector w 2 Rn

+
\ {0} with

8x 2 S \ {x⇤} :
nX

i=1

wix
⇤
i
<

nX

i=1

wixi,

then x⇤ is a minimal element in S, where C = Rn

+
.
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Theorem 4.3.3 (Basic Version of a Separation Theorem). Let S and T be nonempty and convex subsets
of a real linear space X with core(S) 6= ;. Then cor(S) \ T = ; if and only if there exist a linear
functional ` 2 X⇤ \ {0} and a real number ↵ with

8s 2 S, t 2 T : `(s)  ↵  `(t)

and for all s 2 cor(S):
`(s) < ↵.

Theorem 4.3.4. Let C be a convex cone, S + C be closed and convex and core(S + C) 6= ;. If x⇤ is a
minimal element in S, then there exists an ` 2 C⇤ \ {0} s.t.

8x 2 S : `(x⇤)  `(x).

Proof. If x⇤ is a minimal element in S, then x⇤ is also minimal in S + C due to Lemma 4.1.8. That is,

({x⇤}� C) \ (S + C) ✓ {x⇤}+ C.

Because {x⇤} � C and S + C are convex, core(S + C) 6= ; and x⇤ /2 core(S + C), by the separation
theorem 4.3.3 there are a linear functional ` 2 X⇤ \ {0} and a real number ↵ with

8x 2 S, c1, c2 2 C : `(x⇤ � c1)  ↵  `(x+ c2).

Since C is a cone, we immediately obtain ` 2 C⇤ \ {0} (otherwise, we would get a contradiction). By
setting c1 = c2 = 0, we get

8x 2 S : `(x⇤)  `(x).


