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Solutions to exercise set 6

1 Consider a constrained minimisation problem with continuously differentiable objec-
tive function and constraints. Which of the following statements are true?

(CQ . . . constraint qualification)

1. x∗ is a global minimum =⇒ x∗ is a KKT point.

2. x∗ is a local minimum and CQ holds =⇒ x∗ is a KKT point.

3. x∗ is a KKT point and CQ holds =⇒ x∗ is a local minimum.

4. x∗ is a global minimum and the problem is convex =⇒ x∗ is a KKT point.

5. x∗ is a KKT point and the problem is convex =⇒ x∗ is a global minimum.

Solution:

1. False; one needs CQ.

2. True; KKT is necessary for local minima when CQ holds.

3. False; consider the minimization of −x2 subject to −1 ≤ x ≤ 1, then x∗ = 0 is
a KKT point where CQ holds.

4. False; consider the convex problem of minimizing x, subject to −x2 − y2 ≥ 0.

5. True; KKT is sufficient for global minima when the function is convex.

2 For the following two examples, sketch the region Ω defined by the constraints and
compute for each point in Ω both the tangent cone and the set of linearized feasible
directions. For which points is the LICQ satisfied?

Note that the sets Ω considered in this example occur again in problems 5 and 6 on
this exercise sheet.

a) The region Ω ⊂ R2 defined by the inequalities

y ≥ x and y4 ≤ x3.

Solution: We first define constraint functions

c1(x, y) = y − x and c2(x, y) = x3 − y4,

so that Ω = {(x, y) ∈ R2 : c1(x, y) ≥ 0 and c2(x, y) ≥ 0}, and sketch the region
in Figure 1 below.
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Figure 1: Region Ω in grey, with colors on the boundary specifiying the active constraints.

In order to characterise the tangent cone TΩ(x, y) and the set of linearised
feasible directions F(x, y), we employ Lemma 12.2 in N&W, which states that
if the LICQ condition holds at a feasible point (x, y), then TΩ(x, y) = F(x, y).
Note first that the LICQ condition holds vacuously in the interior of Ω because
all constraints are inactive, and therefore, TΩ(x, y) = F(x, y) = R2 (why?) at
interior points.
Next we consider boundary points with precisely one active constraint. Starting
with points for which c1(x, y) = 0—and excluding (0, 0) and (1, 1) where also c2
is active—we find that ∇c1(x, y) = (−1, 1). Since ∇c1 6= 0, the LICQ condition
holds, and so

TΩ(x, y) = F(x, y) =
{
d ∈ R2 : ∇c1(x, y)>d ≥ 0

}
=
{
d ∈ R2 : d2 ≥ d1

}
,

where d is short for (d1, d2).
Similarly, if only c2 is active, we observe that the LICQ condition holds be-
cause ∇c2(x, y) = (3x2,−4y3) 6= 0 away from (0, 0). This yields

TΩ(x, y) = F(x, y) =
{
d ∈ R2 : ∇c2(x, y)>d ≥ 0

}
=
{
d ∈ R2 : 3x2d1 ≥ 4y3d2

}
.

Constraint gradients at (1, 1) equal ∇c1 = (−1, 1) and ∇c2 = (3,−4), which are
linearly independent. Thus the LICQ condition is true, and

TΩ(1, 1) = F(1, 1) =
{
d ∈ R2 : ∇c1(1, 1)>d ≥ 0 and ∇c2(1, 1)>d ≥ 0

}
=
{
d ∈ R2 : 3d1 ≥ 4d2

}
.

Lastly, since ∇c1(0, 0) = (−1, 1) and ∇c2(0, 0) = 0, the LICQ condition fails
at (0, 0), and we cannot expect that TΩ(0, 0) = F(0, 0). Readily,

F(0, 0) =
{
d ∈ R2 : ∇c1(0, 0)>d ≥ 0 and ∇c2(0, 0)>d ≥ 0

}
=
{
d ∈ R2 : d2 ≥ d1

}
.
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In order to find the tangent cone, we first consider limiting directions along the
constraint boundaries c1(x, y) = 0 and c2(x, y) = 0 as (x, y)→ (0, 0). Travelling
towards (0, 0) when c1 is active, we may put, using the notation in N&W,

zk = (1/k, 1/k) and tk = 1/k,

and obtain the limiting direction

d = lim
k→∞

zk − (0, 0)

tk
= (1, 1).

Note: the length of d is irrelevant; we only care about its direction. Similarly,
travelling along c2(x, y) = 0 yields d = (0, 1), using for example, the sequences

zk =
(
k−1/3, k−1/4

)
and tk = k−1/4.

It can furthermore be seen that approaching (0, 0) from the interior of Ω gives
tangent directions “between” these borderline cases, and so

TΩ(0, 0) =
{
d ∈ R2 : d2 ≥ d1 ≥ 0

}
.

b) The region Ω ⊂ R2 defined by the inequalities

y ≥ x4 and y ≤ x3.

Solution: Defining

c1(x, y) = y − x4 and c2(x, y) = x3 − y

gives Ω = {(x, y) ∈ R2 : c1(x, y) ≥ 0 and c2(x, y) ≥ 0}, which is shown in Fig-
ure 2.
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Figure 2: Region Ω in grey, with colors on the boundary specifiying the active constraints.

Omitting details—the process is very similar to the previous question—we ob-
tain that the LICQ condition holds at all feasible points except (0, 0). More-
over, TΩ(x, y) = F(x, y) if (x, y) lies in the interior of Ω;

TΩ(x, y) = F(x, y) =
{
d ∈ R2 : d2 ≥ 4x3d1

}
April 6, 2021 Page 3 of 10



Solutions to exercise set 6

when only c1 is active;

TΩ(x, y) = F(x, y) =
{
d ∈ R2 : 3x2d1 ≥ d2

}
when only c2 is active;

TΩ(1, 1) = F(1, 1) =
{
d ∈ R2 : 3d1 ≥ d2 ≥ 4d1

}
;

and

F(0, 0) =
{
d ∈ R2 : d2 = 0

}
and TΩ(0, 0) =

{
d ∈ R2 : d2 = 0 and d1 ≥ 0

}
.

3 Assume that one wants to solve the optimisation problem

max
x

f(x) such that

{
ci(x) = 0 for all i ∈ E ,
ci(x) ≥ 0 for all i ∈ I.

How do the KKT conditions have to be modified such that one obtains (first order)
necessary conditions for this maximisation problem?

Solution: Let
L(x, λ) = f(x)−

∑
i∈E∪I

λici(x)

be the Lagrangian associated with the maximisation problem. Since solvingmaxx f(x)
is equivalent to solving minx−f(x), we can state the KKT conditions for the min-
imisation problem. To this end, let

L̂(x, µ) = −f(x)−
∑
i∈E∪I

µici(x)

be the Lagrangian for the minimisation problem, so that the KKT conditions become

−∇f(x)−
∑
i∈E∪I

µi∇ci(x) = ∇xL̂(x, µ) = 0,

ci(x) = 0 for all i ∈ E ,

ci(x) ≥ 0 for all i ∈ I,

µi ≥ 0 for all i ∈ I,

µici(x) = 0 for all i ∈ E ∪ I.

Since
L(x,−µ) = −L̂(x, µ) and ∇xL(x,−µ) = −∇xL̂(x, µ),

we see that changing the signs of the Lagrange multipliers, that is, putting λ = −µ,
is the only modification in the KKT conditions for the maximisation problem.

4 Consider the constrained optimization problem

x2 + y2 → min such that


x+ y ≥ 1,

y ≤ 2,

y2 ≥ x.
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a) Formulate the KKT-conditions for this optimization problem.

Solution: We begin by stating the problem in standard form, writing x =
[x, y]T :

min
x∈R2

f(x) s.t. ci(x) ≥ 0, i = 1, 2, 3,

where

f(x) = x2 + y2,

c1(x) = x+ y − 1,

c2(x) = 2− y,
c3(x) = y2 − x.

The KKT conditions can now be stated as follows:

2x∗ − λ∗1 + λ∗3 = 0 (1a)
2y∗ − λ∗1 + λ∗2 − 2y∗λ∗3 = 0 (1b)

x∗ + y∗ − 1 ≥ 0 (1c)
2− y∗ ≥ 0 (1d)

y∗2 − x∗ ≥ 0 (1e)
λ∗i ≥ 0, i = 1, 2, 3 (1f)

λ∗1(x
∗ + y∗ − 1) = 0 (1g)
λ∗2(2− y∗) = 0 (1h)

λ∗3(y
∗2 − x∗) = 0. (1i)

b) Find all KKT points for this optimization problem.

Solution: The feasible set is sketched in Figure 3.
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Figure 3: Feasible set. Note: The lower "triangle" extends further toward infinity.

We will find all KKT points by systematically considering all possible active sets
of constraints. Remember that a constraint ci is active at a point x if ci(x) = 0.
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Also, the LICQ conditions are satisfied at every point we consider here; with
one active constraint, the LICQ conditions hold trivially, and in the cases with
two constraints it is not hard to check that the LICQ conditions do hold.
Observe that if x∗ = [x∗, y∗]T is a KKT point, then from (1a) and (1b) we have:

x∗ =
λ∗1 − λ∗3

2
, y∗ =

λ∗1 − λ∗2
2(1− λ∗3)

.

From here on, we will drop the asterisk in the notation and write x for x∗, etc.

First, suppose that the active set is empty, i.e. neither of (1c)-(1e) are equali-
ties. This corresponds to the interior of the domain. Then, by (1g)-(1i), we have
λ1 = λ2 = λ3 = 0, and so x = y = 0. But this point is not feasible, since it vi-
olates condition (1c). Thus, with the active set empty, there are no KKT points.

Next, we consider the case when the active set contains one index, i.e. ex-
actly one of (1c)-(1e) is an equality. This corresponds to the boundaries of the
domain, excepting the corner points. If (1c) is active, then λ2 = λ3 = 0 while
λ1 ≥ 0. We get

x =
λ1
2
, y =

λ1
2
,

and inserting this into (1c) (which is now an equality), we get the condition

λ1
2

+
λ1
2
− 1 = 0⇒ λ1 = 1,

giving us the point (x, y) = (12 ,
1
2). But this point violates condition (1e), so

(12 ,
1
2) is not a KKT point.

If (1d) is active, then λ1 = λ3 = 0 while λ2 ≥ 0, so

x = 0, y = −λ2
2
.

Inserting this into the equality (1d), we get

2 +
λ2
2

= 0⇒ λ2 = −4.

Since the Lagrange multiplier is negative, KKT conditions are not satisfied at
this point.

If (1e) is active, then λ1 = λ2 = 0 while λ3 ≥ 0, so

x = −λ3
2
, y = 0.

Inserting this into the equality (1e), we get

λ3
2

= 0⇒ λ3 = 0.

This gives the candidate point (0, 0), which is not feasible since it violates (1c),
and thereby is not a KKT point.
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Having considered all possible active sets of one index, we now turn to the
cases with two indices, i.e. exactly two of (1c)-(1e) are equalities. This cor-
responds to the corner points of the domain. First, if (1c) and (1d) are both
active, then λ3 = 0 while λ1, λ2 ≥ 0. This gives us

x =
λ1
2
, y =

λ1 − λ2
2

.

Plugging this into equalities (1c) and (1d) yields:

λ1
2

+
λ1 − λ2

2
− 1 = 0

2− λ1 − λ2
2

= 0,

with solutions λ1 = −2 and λ2 = −6. Since the multipliers are negative, this is
not a KKT point.

Next, if (1c) and (1e) are both active, then λ2 = 0 while λ1, λ3 ≥ 0, which
means

x =
λ1 − λ3

2
, y =

λ1
2(1− λ3)

.

Plugging this into equalities (1c) and (1e) yields:

λ1 − λ3
2

+
λ1

2(1− λ3)
− 1 = 0

λ21
4(1− λ3)2

− λ1 − λ3
2

= 0.

Solving this set of equations yields λ1 = 5± 9√
5
and λ3 = 2± 4√

5
, thereby giving

the candidate points (x, y) = (12(3 ±
√
5), 12(−1 ∓

√
5)) which both satisfy the

KKT conditions. Since λ1, λ3 ≥ 0, these points are minimizer candidates. Note:
This result can be arrived upon by the easier approach of first finding the points
(x, y) where c1 and c3 are both active, then working out what λ1 and λ3 are.

Finally, we check the case where (1d) and (1e) are both active, i.e. λ1 = 0
while λ2, λ3 ≥ 0. This gives us

x = −λ3
2
, y = − λ2

2(1− λ3)
.

Plugging this into equalities (1d) and (1e) yields:

2 +
λ2

2(1− λ3)
= 0

λ22
4(1− λ3)2

+
λ3
2

= 0,

which can be solved to find λ2 = −28 and λ3 = −8. Since the multipliers are
negative, this is not a KKT point.
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Concerning the case with all constraints active, we may conclude that no KKT
point exists; all three constraint functions cannot be active at the same point.
The investigation is summarized in the table below.

Point λ1 λ2 λ3 KKT?
(0,2) 0 -4 0 No

(12(3 +
√
5), 12(−1−

√
5)) 5 + 9√

5
0 2 + 4√

5
Yes

(12(3−
√
5), 12(−1 +

√
5)) 5− 9√

5
0 2− 4√

5
Yes

(-1,2) -2 -6 0 No
(4,2) 0 -28 -8 No

c) Find all local and global minima for this optimization problem.

Solution: To determine whether the KKT points that are minimizer candidates
are in fact local minimizers, we check the second order sufficient conditions from
Theorem 12.6 in N&W, i.e. whether

wT∇2
xxL(x, λ)w > 0 ∀w ∈ C(x, λ), w 6= 0, (2)

where, C(x, λ) is the critical cone at x, given by (12.53) in N&W.

For both candidates, i.e. (12(3 ±
√
5), 12(−1 ∓

√
5)), we have that the critical

cone is simply given as C(x, λ) = {0}. This is because any w ∈ C(x, λ) must be
orthogonal to the ∇ci(x) for which λi > 0, of which there are two for each point.
Since the LICQ conditions hold at both points, these two vectors are linearily
independent and thus span R2. The only vector orthogonal to R2 is the zero
vector. Thereby, the only vector in C(x, λ) is the zero vector for these points,
and thus condition (2) holds. We can conclude that (12(3 ±

√
5), 12(−1 ∓

√
5))

are strict local minimizers.

We note that f(12(3 −
√
5), 12(−1 +

√
5)) < f(12(3 +

√
5), 12(−1 −

√
5)) and

f(x) → ∞ in the unbounded region of the feasible domain. This means that
(12(3−

√
5), 12(−1 +

√
5)) is a global minimizer and (12(3 +

√
5), 12(−1−

√
5)) is

a local minimizer.

5 Consider the constrained optimization problem

x→ min such that

{
y ≥ x4,
y ≤ x3.

Find all KKT points and local minima for this optimization problem.

Solution: We begin by stating the problem in standard form, writing x = [x, y]T :

min
x∈R2

f(x) s.t. ci(x) ≥ 0, i = 1, 2

where

f(x) = x,

c1(x) = y − x4

c2(x) = x3 − y
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The KKT conditions for this problem can be stated as follows:

1 + 4x3λ1 − 3x2λ2 = 0 (3a)
−λ1 + λ2 = 0 (3b)

y − x4 ≥ 0 (3c)

x3 − y ≥ 0 (3d)
λi ≥ 0, i = 1, 2 (3e)

λ1(y − x4) = 0 (3f)

λ2(x
3 − y) = 0. (3g)

Now, we can take a shortcut; from (3b), we see that λ1 = λ2, and from (3a) we
see that there cannot exist any KKT point for which λ1 = λ2 = 0. Therefore, the
cases with no active constraints (λ1 = λ2 = 0) and one active constraint (λ1 = 0 or
λ2 = 0) cannot produce KKT points. We are left with considering the case where
both constraints are active, i.e. the corner points (0,0) and (1,1).

In the point (1,1), we find (by (3a) and (3b)) that λ1 = λ2 = −1, and therefore
this is not a KKT point.

The last point is (0,0), for which we cannot write the gradient of f at (0,0) (which
is [1, 0]T ) as a non-negative linear combination of the gradients of the constraints,
and which therefore is not a KKT point. This does not, however, mean that it is
not a minimizer. Applying common sense, it is clearly a local minimum, as no other
points with x = 0 are feasible, and x = 0 is the lowest possible value of the objective
function.

6 In this task, we fill in the details of Theorem 17.4 (p. 509) in Nocedal & Wright.

We consider the constrained optimisation problem

min
x
f(x) subject to ci(x) = 0, i ∈ E , ci(x) ≥ 0, i ∈ I

and the associated `1 penalty function

φ1(x; µ) = f(x) + +µ
∑
i∈E
|ci(x̂)|+ µ

∑
i∈I

[ci(x̂)]
−

with [y]− = max{−y, 0}.
Suppose that x̂ is a stationary point of the penalty function φ1(x; µ) for all µ greater
than a certain threshold µ̂ > 0.

a) Suppose that x̂ is feasible for the constrained optimisation problem. Prove that

D(φ1(x̂;µ); p) = ∇f(x̂)T p+ µ
∑
i∈E

∣∣∇ci(x̂)T p∣∣+ µ
∑

i∈I∩A(x̂)

[
∇ci(x̂)T p

]−
.

As usual, A(x) denotes the active set, i.e. the set of active constraints.
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Solution: We start by noting that

D(|x|; a) =


a, x > 0,

−a, x < 0,

|a|, x = 0.

Accordingly, using the chain rule, we have that

D(|ci(x)|; p) =


∇ci(x)T p, ci(x) > 0,

−∇ci(x)T p, ci(x) < 0,

|∇ci(x)T p|, ci(x) = 0.

Since x̂ is feasible, we must have that ci(x̂) = 0, meaning that D(|ci(x)|; p) =
|∇ci(x)T p| for all i ∈ E . For a similar argument, we have that

D([ci(x)]
−; p) =


0, ci(x) > 0,

−∇ci(x)T p, ci(x) < 0,

[∇ci(x)T p]−, ci(x) = 0.

This holds for all i ∈ I. For the non-active constraints, this evaluates to zero.
Thus, we conclude that

D(φ1(x̂;µ); p) = D(f(x̂); p) + µ
∑
i∈E

D(|ci(x̂)|; p) + µ
∑

i∈I∩A(x̂)

D([ci(x̂)]
−; p)

= ∇f(x̂)T p+ µ
∑
i∈E

∣∣∇ci(x̂)T p∣∣+ µ
∑

i∈I∩A(x̂)

[
∇ci(x̂)T p

]−
.

It is then possible to prove that x̂ satisfies the KKT conditions.

b) Suppose that x̂ is infeasible, i.e. that it does not satisfy the KKT conditions.
Prove that x̂ is an infeasible stationary point of the penalty function φ1.
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