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Consider the quadratic function

f(z) = %xTQx — bl

where @ € R*? is a symmetric and positive definite matrix and b € R

a)

b)

Compute the gradient and the Hessian of the function f, verify that f is strictly
convex, and find the unique global minimum of f.

Solution: Vf = Qz —b and V2f = @ from calculus. Since @ is symmetric
positive definite (SPD), it follows that f is strictly convex on R?, and as such,
there is at most one global minimum of f. Furthermore, this global minimum z*
must be a stationary point satisfying V f(2*) = 0. We conclude that z* = Q~1b,
since @ is invertible (all eigenvalues of ) are positive, and hence, different from
Z€ero).

Let z € R?, and let p € R be a direction satisfying the inequality V f(x)Tp < 0.
Compute analytically the step length o, that solves the (exact) linesearch
problem min,~o f(x + ap).

Solution: First of all, to avoid trivial cases let us note that p # 0 and V f(z) =
Qx — b # 0 owing to the inequality V f(z)Tp < 0.
Now, let us look at the first order necessary conditions for ¢, to be a minimizer:

d
Go @+ awpp) =P V(w4 azpp) = p1 Q@ + agpp) =8 = 0,

or -
o - P [Qz—Y
o pTQp
since pT Qp > 0 owing to Q being positive definite, and p* [Qz—b] = pTV f(x) <
0 by our assumption.

> 0,

Since d?/da?f(x 4+ ap) = pTQp > 0 the linesearch problem is strictly convex,
and therefore o, is the unique global minimum.

Recall the strong Wolfe conditions:

flz+ap) < f(z) + c1aVf(z) p,
IVf(z+ap)Tp| < ea|Vf(x) pl.

Let z, p € R%, and oz p be as in the previous question. Show that the step
length o, satisfies the strong Wolfe conditions if and only if ¢; < 1/2.
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Solution: Clearly the strong curvature condition is satisfied because V f(x +
azpp)Tp = d/daf(x+ g pp) = 0, thus the “new” slope is 0 and must be smaller
than or equal in magnitude than the slope we have started with.

We check the sufficient decrease condition now:

1[p"(Qz —b)]?

f(x+ azpp) — f(z) = %O‘;Zg,ppTQP + ozx’ppT(Qq: —b)=—=

<0,
2 pfQp

while
[pT(Qz — b))
pTQp

Thus the sufficient decrease condition is equivalent to the inequality ¢; < 1/2.

claLpr(x)Tp =—C

Assume that f: R — R is a strongly convex function, meaning that there exists
¢ > 0 such that the function z — f(z) — §||z||? is convex.

a) Consider the Newton method with line search, the so-called damped Newton
method

Tht1 = Tk + QxDk with pr ==V f(zr) 'V f(zp),

where the step length parameter o is chosen according to backtracking Armijo
line search with parameters @ > 0,0 <c¢; < 1,and 0 < p < 1.

Show that pj is a descent direction in each step, and that the sequence xj
converges to the unique minimizer x* of f.

Hint: Use Theorem 1 in the note “Convergence of descent methods with back-
tracking (Armijo) linesearch. ..” by Anton Evgrafov.

We will now show that this method is invariant under affine transformations:

Assume that B € R?? is a non-singular matrix (not necessarily orthogonal) and
that ¢ € R%. Define the function

g(z) := f(Bz +¢).
b) Find expressions for Vg(x) and V2g(z) in terms of f, B, and c.

Solution: For clarity, we set y := Bx + ¢, so that g(z) = f(y(x)). We present
two ways of solving this problem. The first method is the explicit method,

ayk
8$Z Z 8yk axl Z 3yk; B':L‘ + c Bk‘za
Py ) o of 0
- —(B By = B By By;
amiaxj (513) 8$j Z ayk< x + C) ki £ ; 8yk8yg< T + C) kiDej,

and therefore

Vy(z) = B'Vf(Bz + c),
V2g(z) = BY'V?f(Bx + ¢)B.
These calculations at ‘index’ level can be messy and exhaustive; there are al-
ternative methods of solving this problem, but perhaps the easiest is to sim-

ply memorize two basic chain-rules for V and V2. For any (smooth) maps
h:R?* - R and H: R? — R%, the composition h o H satifies
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L. V(h(H)) = (Ju)"Vh(H),
2. V2(h(H)) = (Jg)"V2h(H)Jy,
where Jyr is the Jacobian of H. With these in mind, the results follows imme-

diately as J, = B.

Let z € RY and denote by z1 the result of one Newton step starting at x for
the minimisation of g with (Armijo) backtracking line search with parameters
0<c<landO<p<l1.

Moreover, let y = Bx+c and denote by y; the result of one Newton step starting
at y for the minimisation of f with (Armijo) backtracking line search with the
same parameters 0 < ¢; < 1land 0 < p < 1.

Show that
y1 = Bx1 +c.

Solution: By Newtons method we have py = —[VZ%g(x0)]"*Vg(x0), and so
r1 = x9 + agopo, where ag = pko and ko € {0,1,2,...} is the smallest non-
negative integer where Armijo’s condition is satisfied:

9(z0 + aopo) < g(w0) + cr1c0pg V(o).

Turning to the minimization of f with respect to y, we similarly obtain py =
—[V2f(y0)] 7' Vg(yo) and y1 = yo + Gopo, where dg = p* and ky is the smallest
non-negative integer where Armijo’s condition is satisfied:

Fyo + Gopo) < f(yo) + créopy V £ (1o)-

Our task is to prove that y; = Bz + ¢, given that yg = Bxg + ¢. We start by
showing that Bpg = pg. Indeed,

Bpo = —B[V?g(x0)] ' Vg(zo)
= —B[BTV?f(Bxo + ¢)B] ' BV f(Bxg + ¢)
= —[V?f(%0)] "'V f(10)
= Po-
This further implies that all a € R satisfies the two equations

g(xo + apo) = f(yo + apo),
g(x0) + craopy V(o) = f(yo) + c1éopy V£ (yo)-

As a result, Armijo’s condition is satisfied in the (g, z)-regime exactly when it
is satisfied in the (f,y)-regime, that is, kg = ko and consequently oy = a9. We
arrive at the desired conclusion

Y1 = Yo + Qopo
= (Bzo + ¢) + apBpo
= B(xo + aopo) + ¢
= Bz +c.
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Consider the function

fz,y) = 222 + % — 22y + 223 + 2.

a) Compute all stationary points of f and find all global or local minimisers of f.

Solution: We have
Vf=[4z — 2y + 622 + 423, 2y — 2z]*

and )
44122 + 122 -2
2r
Hence, stationary points satisfy y = x by the first component of V f, while the
second component yields that 0 = 2x(1 + 3z + 22%) = z(z + 1)(2z + 1). Thus
critical points of f are (0,0), (—3,—3), and (—1,—1). Now,

V00 = |y | =YL md Vrhob=| Ly )

has eigenvalues 3 ++/5 > 0 and (3 4 1/17)/2 (one positive, and one negative),
respectively.  We conclude that (0,0), and (—1,—1) are strict local minima,
while (—%, —%) is a saddle point. Moreover, since V2f remains SPD both
forx > 0and x < —1 (the value of y is irrelevant), it follows that (0,0) and (-1, —1)
are the only candidates for global minima. Evaluating f(0,0) =0 = f(—1,—-1),
shows that both are global minimisers of f.

b) Consider the gradient descent method with backtracking for the minimisation
of f. Use the parameters p = 1/2 and ¢; = 1/4. Perform one step with starting
value (zg,y0) = (—1,0). Does the method converge to a minimiser of f?

Solution: Gradient descent method gives (41, Yk+1) = (Tk, Yk) + Pr, With pp = =V fi.
Starting with preliminary step length a,, p = 1/2, and ¢; = 1/4, we accept a new
step provided

F((@o,0) + apo) < f(x0,90) + caV f(zo,0) 'po = 1 — 2a

using that po = =V f(zo,v0) = (2, -2).

Beginning with a = 1, we reject the first try since f((mo, Yo) + apo) =13 > —1.
Reducing to a+— pa =1/2; still gives rejection, but o =1/4 succeeds, be-
cause f((zo,y0) + apo) = 1/16 < 1/2. Hence, we put (z1,41) = (—3, —3),and
proceed with a new round. However, (z1,y1) is a critical (saddle) point for f,
so the gradient method stops here, thereby failing to converge to a minimiser.

c) Consider Newton’s method with backtracking for the minimisation of f. Use
the parameters p = 1/2 and ¢; = 1/4. Perform one step with starting value
(z0,y0) = (—1,0). Does the method converge to a minimiser of f?

Solution: Similarly as in the previous exercise, the backtracking acceptance
criterion for Newton’s method reads

F((xo,y0) + apo) < f(zo, yo) + caV f(zo,y0) "'po = 1 — 3av,
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since pg = —V2f(z0,y0) 'V f(z0,40) = (0,—1) and ¢; = 1/4. Starting with o = 1,
we have f((xo,yo) + apo) =0<1/2, so the step is accepted. We then put
(z1,y1) = (z0,Y0) + po = (—1,—1). This point is a global minimiser, the con-
clusion being that Newton’s method converged in one step.
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