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Solutions to exercise set 3

1 Consider the quadratic function

f(x) = 1
2x

TQx− bTx,

where Q ∈ Rd×d is a symmetric and positive definite matrix and b ∈ Rd.
a) Compute the gradient and the Hessian of the function f , verify that f is strictly

convex, and find the unique global minimum of f .

Solution: ∇f = Qx− b and ∇2f = Q from calculus. Since Q is symmetric
positive definite (SPD), it follows that f is strictly convex on Rd, and as such,
there is at most one global minimum of f . Furthermore, this global minimum x∗

must be a stationary point satisfying ∇f(x∗) = 0. We conclude that x∗ = Q−1b,
since Q is invertible (all eigenvalues of Q are positive, and hence, different from
zero).

b) Let x ∈ Rd, and let p ∈ Rd be a direction satisfying the inequality ∇f(x)Tp < 0.
Compute analytically the step length αx,p that solves the (exact) linesearch
problem minα>0 f(x+ αp).

Solution: First of all, to avoid trivial cases let us note that p 6= 0 and ∇f(x) =
Qx− b 6= 0 owing to the inequality ∇f(x)Tp < 0.
Now, let us look at the first order necessary conditions for αx,p to be a minimizer:

d

dα
f(x+ αx,pp) = pT∇f(x+ αx,pp) = pT[Q(x+ αx,pp)− b] = 0,

or

αx,p = −p
T[Qx− b]
pTQp

> 0,

since pTQp > 0 owing to Q being positive definite, and pT[Qx−b] = pT∇f(x) <
0 by our assumption.
Since d2/dα2f(x + αp) = pTQp > 0 the linesearch problem is strictly convex,
and therefore αx,p is the unique global minimum.

c) Recall the strong Wolfe conditions:

f(x+ αp) ≤ f(x) + c1α∇f(x)T p,

|∇f(x+ αp)T p| ≤ c2|∇f(x)T p|.

Let x, p ∈ Rd, and αx,p be as in the previous question. Show that the step
length αx,p satisfies the strong Wolfe conditions if and only if c1 ≤ 1/2.
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Solution: Clearly the strong curvature condition is satisfied because ∇f(x +
αx,pp)

Tp = d/dαf(x+αx,pp) = 0, thus the “new” slope is 0 and must be smaller
than or equal in magnitude than the slope we have started with.
We check the sufficient decrease condition now:

f(x+ αx,pp)− f(x) =
1

2
α2
x,pp

TQp+ αx,pp
T(Qx− b) = −1

2

[pT(Qx− b)]2

pTQp
< 0,

while

c1αx,p∇f(x)Tp = −c1
[pT(Qx− b)]2

pTQp
.

Thus the sufficient decrease condition is equivalent to the inequality c1 ≤ 1/2.

2 Assume that f : Rd → R is a strongly convex function, meaning that there exists
c > 0 such that the function x 7→ f(x)− c

2‖x‖
2 is convex.

a) Consider the Newton method with line search, the so-called damped Newton
method

xk+1 = xk + αkpk with pk = −∇2f(xk)
−1∇f(xk),

where the step length parameter αk is chosen according to backtracking Armijo
line search with parameters ᾱ > 0, 0 < c1 < 1, and 0 < ρ < 1.
Show that pk is a descent direction in each step, and that the sequence xk
converges to the unique minimizer x∗ of f .
Hint: Use Theorem 1 in the note “Convergence of descent methods with back-
tracking (Armijo) linesearch. . . ” by Anton Evgrafov.

We will now show that this method is invariant under affine transformations:

Assume that B ∈ Rd×d is a non-singular matrix (not necessarily orthogonal) and
that c ∈ Rd. Define the function

g(x) := f(Bx+ c).

b) Find expressions for ∇g(x) and ∇2g(x) in terms of f , B, and c.

Solution: For clarity, we set y := Bx+ c, so that g(x) = f(y(x)). We present
two ways of solving this problem. The first method is the explicit method,

∂g

∂xi
(x) =

n∑
k=1

∂f

∂yk
(Bx+ c)

∂yk
∂xi

=
n∑
k=1

∂f

∂yk
(Bx+ c)Bki,

∂2g

∂xi∂xj
(x) =

∂

∂xj

n∑
k=1

∂f

∂yk
(Bx+ c)Bki =

n∑
k=1

n∑
`=1

∂2f

∂yk∂y`
(Bx+ c)BkiB`j ,

and therefore
∇g(x) = BT∇f(Bx+ c),

∇2g(x) = BT∇2f(Bx+ c)B.

These calculations at ‘index’ level can be messy and exhaustive; there are al-
ternative methods of solving this problem, but perhaps the easiest is to sim-
ply memorize two basic chain-rules for ∇ and ∇2. For any (smooth) maps
h : Rd → R and H : Rd → Rd, the composition h ◦H satifies
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1. ∇(h(H)) = (JH)T∇h(H),
2. ∇2(h(H)) = (JH)T∇2h(H)JH ,

where JH is the Jacobian of H. With these in mind, the results follows imme-
diately as Jy = B.

c) Let x ∈ Rd and denote by x1 the result of one Newton step starting at x for
the minimisation of g with (Armijo) backtracking line search with parameters
0 < c1 < 1 and 0 < ρ < 1.
Moreover, let y = Bx+c and denote by y1 the result of one Newton step starting
at y for the minimisation of f with (Armijo) backtracking line search with the
same parameters 0 < c1 < 1 and 0 < ρ < 1.
Show that

y1 = Bx1 + c.

Solution: By Newtons method we have p0 = −[∇2g(x0)]
−1∇g(x0), and so

x1 = x0 + α0p0, where α0 = ρk0 and k0 ∈ {0, 1, 2, ...} is the smallest non-
negative integer where Armijo’s condition is satisfied:

g(x0 + α0p0) ≤ g(x0) + c1α0p
T
0∇g(x0).

Turning to the minimization of f with respect to y, we similarly obtain p̃0 =
−[∇2f(y0)]

−1∇g(y0) and y1 = y0 + α̃0p̃0, where α̃0 = ρk̃0 and k̃0 is the smallest
non-negative integer where Armijo’s condition is satisfied:

f(y0 + α̃0p̃0) ≤ f(y0) + c1α̃0p̃
T
0∇f(y0).

Our task is to prove that y1 = Bx1 + c, given that y0 = Bx0 + c. We start by
showing that Bp0 = p̃0. Indeed,

Bp0 = −B[∇2g(x0)]
−1∇g(x0)

= −B[BT∇2f(Bx0 + c)B]−1BT∇f(Bx0 + c)

= −[∇2f(y0)]
−1∇f(y0)

= p̃0.

This further implies that all α ∈ R satisfies the two equations

g(x0 + αp0) = f(y0 + αp̃0),

g(x0) + c1α0p
T
0∇g(x0) = f(y0) + c1α̃0p̃

T
0∇f(y0).

As a result, Armijo’s condition is satisfied in the (g, x)-regime exactly when it
is satisfied in the (f, y)-regime, that is, k0 = k̃0 and consequently α0 = α̃0. We
arrive at the desired conclusion

y1 = y0 + α̃0p̃0

= (Bx0 + c) + α0Bp0

= B(x0 + α0p0) + c

= Bx1 + c.
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3 Consider the function

f(x, y) = 2x2 + y2 − 2xy + 2x3 + x4.

a) Compute all stationary points of f and find all global or local minimisers of f .

Solution: We have

∇f = [4x− 2y + 6x2 + 4x3, 2y − 2x]T

and

∇2f =

[
4 + 12x+ 12x2 −2

−2 2

]
,

Hence, stationary points satisfy y = x by the first component of ∇f , while the
second component yields that 0 = 2x(1 + 3x+ 2x2) = x(x+ 1)(2x+ 1). Thus
critical points of f are (0, 0), (−1

2 ,−
1
2), and (−1,−1). Now,

∇2f(0, 0) =

[
4 −2
−2 2

]
= ∇2f(−1,−1) and ∇2f(−1

2 ,−
1
2) =

[
1 −2
−2 2

]
has eigenvalues 3±

√
5 > 0 and (3±

√
17)/2 (one positive, and one negative),

respectively. We conclude that (0, 0), and (−1,−1) are strict local minima,
while (−1

2 ,−
1
2) is a saddle point. Moreover, since ∇2f remains SPD both

for x > 0 and x < −1 (the value of y is irrelevant), it follows that (0, 0) and (−1,−1)
are the only candidates for global minima. Evaluating f(0, 0) = 0 = f(−1,−1),
shows that both are global minimisers of f .

b) Consider the gradient descent method with backtracking for the minimisation
of f . Use the parameters ρ = 1/2 and c1 = 1/4. Perform one step with starting
value (x0, y0) = (−1, 0). Does the method converge to a minimiser of f?

Solution: Gradient descent method gives (xk+1, yk+1) = (xk, yk) + pk, with pk = −∇fk.
Starting with preliminary step length α, ρ = 1/2, and c1 = 1/4, we accept a new
step provided

f
(
(x0, y0) + αp0

)
≤ f(x0, y0) + cα∇f(x0, y0)

Tp0 = 1− 2α

using that p0 = −∇f(x0, y0) = (2,−2).
Beginning with α = 1, we reject the first try since f

(
(x0, y0) + αp0

)
= 13 > −1.

Reducing to α 7→ ρα = 1/2, still gives rejection, but α = 1/4 succeeds, be-
cause f

(
(x0, y0) + αp0

)
= 1/16 ≤ 1/2. Hence, we put (x1, y1) = (−1

2 ,−
1
2),and

proceed with a new round. However, (x1, y1) is a critical (saddle) point for f ,
so the gradient method stops here, thereby failing to converge to a minimiser.

c) Consider Newton’s method with backtracking for the minimisation of f . Use
the parameters ρ = 1/2 and c1 = 1/4. Perform one step with starting value
(x0, y0) = (−1, 0). Does the method converge to a minimiser of f?

Solution: Similarly as in the previous exercise, the backtracking acceptance
criterion for Newton’s method reads

f
(
(x0, y0) + αp0

)
≤ f(x0, y0) + cα∇f(x0, y0)

Tp0 = 1− 1
2α,

March 16, 2021 Page 4 of 5



Solutions to exercise set 3

since p0 = −∇2f(x0, y0)
−1∇f(x0, y0) = (0,−1) and c1 = 1/4. Starting with α = 1,

we have f
(
(x0, y0) + αp0

)
= 0 ≤ 1/2, so the step is accepted. We then put

(x1, y1) = (x0, y0) + p0 = (−1,−1). This point is a global minimiser, the con-
clusion being that Newton’s method converged in one step.
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