# TMA4180 Optimization: Tangent Cone and Constraint Qualifications 

Elisabeth Köbis<br>NTNU, TMA4180, Optimering, Spring 2021

February 19th, 2021

## Problem and Feasible Sequences

$$
\begin{align*}
& \min _{x \in \mathbb{R}^{n}} f(x) \\
& \text { subject to } c_{i}(x)=0, i \in \mathcal{E}  \tag{P}\\
& c_{i}(x) \geq 0, i \in \mathcal{I}
\end{align*}
$$

Feasible set: $\Omega=\left\{x \mid c_{i}(x)=0, i \in \mathcal{E}, c_{i}(x) \geq 0, i \in \mathcal{I}\right\}$
Definition: Feasible Sequences
Given a feasible point $x$, we call $\left\{z_{k}\right\}$ a feasible sequence approaching $x$ if $z_{k} \in \Omega$ for all $k$ sufficiently large and $z_{k} \longrightarrow x$.
Recall that $p$ was called a feasible direction at $x$ if there exists $t>0$ such that $x+t p \in \Omega$.
If $z_{k}$ is a feasible sequence approaching $x$, then $z_{k}$ is also a feasible direction: Define $p_{k}:=z_{k}-x$. Then $z_{k}=x+p_{k} \in \Omega$, and so, $z_{k}$ is a feasible direction at $x$.

## Problem and Feasible Sequences

Example: A Single Equality Constraint

$$
\min x_{1}+x_{2} \quad \text { s. t. } \quad x_{1}^{2}+x_{2}^{2}-2=0 .
$$

$x^{*}=(-1,-1)^{T}$ is the global minimizer. Consider $x=(-\sqrt{2}, 0)^{T}$. Note that $\Omega$ is not convex.


## Problem and Feasible Sequences

Example: A Single Equality Constraint Then

$$
z_{k}=\binom{-\sqrt{2-1 / k^{2}}}{-1 / k}
$$

is a feasible sequence, as for big enough $k$ (here: for all $k$ ), it fulfills the constraints:

$$
\left(-\sqrt{2-1 / k^{2}}\right)^{2}+(-1 / k)^{2}-2=2-1 / k^{2}+1 / k^{2}-2=0
$$

Note that the objective function $f(x)=x_{1}+x_{2}$ increases as we move along the sequence:

$$
\begin{aligned}
f\left(z_{k+1}\right) & =\left(-\sqrt{2-1 /(k+1)^{2}}\right)^{2}+(-1 /(k+1))^{2}-2 \\
& >\left(-\sqrt{2-1 / k^{2}}\right)^{2}+(-1 / k)^{2}-2=f\left(z_{k}\right) .
\end{aligned}
$$

Since we with increasing $k, f\left(z_{k}\right)$ increases and $f\left(z_{k}\right)<f(x)$ for all $k=1,2,3, \ldots$ we see that $x$ cannot be a (local) minimizer.

## Problem and Feasible Sequences

## Example: A Single Equality Constraint

Let us look at the sequence

$$
z_{k}=\binom{-\sqrt{2-1 / k^{2}}}{1 / k}
$$

which is also a feasible sequence, as for big enough $k$ (here: for all $k$ ), it fulfills the constraints:

$$
\left(-\sqrt{2-1 / k^{2}}\right)^{2}+(1 / k)^{2}-2=2-1 / k^{2}+1 / k^{2}-2=0
$$

Note that the objective function $f(x)=x_{1}+x_{2}$ decreases as we move along the sequence:

$$
\begin{aligned}
f\left(z_{k+1}\right) & =\left(-\sqrt{2-1 /(k+1)^{2}}\right)^{2}+(-1 /(k+1))^{2}-2 \\
& <\left(-\sqrt{2-1 / k^{2}}\right)^{2}+(-1 / k)^{2}-2=f\left(z_{k}\right)
\end{aligned}
$$

Note that here, $f\left(z_{k}\right)>f(x)$, which (falsely) might suggest that $x$ is a local minimizer. But: A local minimizer is a point $x$ at which all feasible sequences have the property that $f\left(z_{k}\right) \geq f(x)$ for all $k$ sufficiently large.

## Cones

## Definition: Cone

A cone $C$ is a set such that

$$
c \in C \Longrightarrow \forall \lambda>0: \lambda c \in C
$$



## Tangents

Definition: Tangent / Tangent Vector / Tangent Cone The vector $d$ is said to be a tangent (or tangent vector) to $\Omega$ at a point $x$ if there are a feasible sequence $\left\{z_{k}\right\}$ approaching $x$ and a sequence of positive scalars $\left\{t_{k}\right\}$ with $t_{k} \longrightarrow 0$ such that

$$
\lim _{k \rightarrow \infty} \frac{z_{k}-x}{t_{k}}=d
$$

The set of all tangents to $\Omega$ at $x$ is called the tangent cone and is denoted by $T_{\Omega}(x)$.

## Tangents

$T_{\Omega}(x)$ is indeed a cone: Let $d \in T_{\Omega}(x)$. Then $\lambda d(\lambda>0)$ also belongs to $T_{\Omega}(x)$, because $t_{k}$ can be replaced by $t_{k} / \lambda$ :

$$
\lim _{k \rightarrow \infty} \frac{z_{k}-x}{t_{k} / \lambda}=\lambda \lim _{k \rightarrow \infty} \frac{z_{k}-x}{t_{k}}=\lambda d
$$

So, to understand what vectors $T_{\Omega}(x)$ contains, it is enough to understand what unit vectors it contains. Then the rest of them are the multiples of those unit vectors. The reason to focus on the unit vectors in $T_{\Omega}(x)$ is that they are easier to find: we can take $t_{k}=\left\|z_{k}-x\right\|$ in the definition. In other words, a unit vector $u$ belongs to $T_{\Omega}(x)$ if and only if there is a sequence $z_{k} \rightarrow x$ such that

$$
\frac{z_{k}-x}{\left\|z_{k}-x\right\|} \rightarrow u
$$

We can visualize this formula: You stand at $x$ looking at approaching $z_{k}$, and mark the directions from which they hit you. The set of all these directions (normalized vectors $z_{k}-x$ ) gives all the unit vectors contained in the tangent cone.

## Tangent Cone

Example: A Single Equality Constraint

$$
\min x_{1}+x_{2} \quad \text { s. t. } \quad x_{1}^{2}+x_{2}^{2}-2=0 .
$$

$x^{*}=(-1,-1)^{T}$ is the global minimizer. Consider $x=(-\sqrt{2}, 0)^{T}$.


$$
T_{\Omega}(x)=\left\{\left(0, d_{2}\right)^{T} \mid d_{2} \in \mathbb{R}\right\} .
$$

## Tangent Cone: Example I

Example: A Single Equality Constraint

$$
\min x_{1}+x_{2} \quad \text { s. t. } \quad x_{1}^{2}+x_{2}^{2}-2=0
$$

Consider $x=(-\sqrt{2}, 0)^{T}$. The tangent cone is given by all vectors of the form $\left(0, d_{2}\right)^{T}$ with $d_{2} \in \mathbb{R}: T_{\Omega}(x)=\left\{\left(0, d_{2}\right)^{T} \mid d_{2} \in \mathbb{R}\right\}$. To show this (in part), we consider the sequence $\left(z_{k}\right):=\binom{-\sqrt{2-1 / k^{2}}}{1 / k}$. Let $g_{1}(x):=-\sqrt{2-x^{2}}, g_{2}(x):=x$. It holds $g_{1}^{\prime}(x)=\frac{x}{\sqrt{2-x^{2}}}, g_{2}^{\prime}(x) \equiv 1$. For the first component of $\frac{z_{k}-x}{t_{k}}$ with $t_{k}:=\frac{1}{k}$, we obtain

$$
\begin{aligned}
\lim _{k \rightarrow \infty}\left(\frac{z_{k}-x}{t_{k}}\right)_{1} & =\lim _{\frac{1}{k}=: h \rightarrow 0} \frac{g_{1}(h)-g_{1}(0)}{h} \\
& =g_{1}^{\prime}(0)=0
\end{aligned}
$$

## Tangent Cone: Example II

and for the second component, we get

$$
\begin{aligned}
\lim _{k \rightarrow \infty}\left(\frac{z_{k}-x_{0}}{t_{k}}\right)_{2} & =\lim _{k \rightarrow \infty} \frac{1 / k-0}{1 / k} \\
& =1
\end{aligned}
$$

and therefore $d:=(0,1)^{T} \in T_{\Omega}(x)$.

## Linearized Feasible Directions

Definition: Set of Linearized Feasible Directions
Given a feasible point $x$ and the active constraint set $\mathcal{A}(x)$, the set of linearized feasible directions $\mathcal{F}(x)$ is
$\mathcal{F}(x)=\left\{d \mid d^{T} \nabla c_{i}(x)=0\right.$, for all $i \in \mathcal{E}, d^{T} \nabla c_{i}(x) \geq 0$ for all $\left.i \in \mathcal{A}(x) \cap \mathcal{I}\right\}$


Left: Equality constraint $c_{i}(x)=0$. Right: Inequality constraint $c_{i}(x) \geq 0$.

## Linearized Feasible Directions

It is important to note that the linearized feasible direction set depends on the definition of the constraint functions $c_{i}, i \in \mathcal{E} \cup \mathcal{I}$. For example, consider the following constraint functions:
Example: A Single Equality Constraint

$$
\min x_{1}+x_{2} \quad \text { s. t. } \quad c_{1}(x):=x_{1}^{2}+x_{2}^{2}-2=0
$$

Consider $x=(-\sqrt{2}, 0)^{T}$. Then
$d^{T} \nabla c_{1}(x)=\left.d^{T}\left(2 x_{1}, 2 x_{2}\right)\right|_{x=(-\sqrt{2}, 0)^{T}}=d^{T}(-2 \sqrt{2}, 0)=-2 \sqrt{2} d_{1} \stackrel{!}{=} 0$.
Thus, $\mathcal{F}(x)=\left\{\left(0, d_{2}\right)^{T} \mid d_{2} \in \mathbb{R}\right\}$.
If we define $c_{1}(x):=\left(x_{1}^{2}+x_{2}^{2}-2\right)^{2}=0$, then $\Omega$ is unchanged, but:
$d^{T} \nabla c_{1}(x)=\left.d^{T}\left(4 x_{1}\left(x_{1}^{2}+x_{2}^{2}-2\right), 4 x_{2}\left(x_{1}^{2}+x_{2}^{2}-2\right)\right)\right|_{x=(-\sqrt{2}, 0)^{T}}=$ $d^{T}(0,0)=0$. Thus, $\mathcal{F}(x)=\mathbb{R}^{2}$.

## Linear Independence Constraint Qualification

Definition: Linear Independence Constraint Qualification (LICQ)
Given a feasible point $x$ and the active constraint set $\mathcal{A}(x)$, we say that the linear independence constraint qualification (LICQ) holds if the set of active constraint gradients $\left\{\nabla c_{i}(x), i \in \mathcal{A}(x)\right\}$ is linearly independent.

## Linear Independence Constraint Qualification

Example: A Single Equality Constraint

$$
\min x_{1}+x_{2} \quad \text { s. t. } \quad x_{1}^{2}+x_{2}^{2}-2=0 .
$$

Consider $x=(-\sqrt{2}, 0)^{T}$. Then
$\nabla c_{1}(x)=\left.\left(2 x_{1}, 2 x_{2}\right)^{T}\right|_{x=(-\sqrt{2}, 0)^{T}}=(-2 \sqrt{2}, 0)^{T}$. The set $\left\{(-2 \sqrt{2}, 0)^{T}\right\}$ is linearly independent, and so, $T_{\Omega}(x)=\mathcal{F}(x)$ (see next slide).

## Relation between Tangent Cone and Set of Linearized Feasible Directions

## Lemma

Let $x$ be a feasible point. The following two statements are true.

1. $T_{\Omega}(x) \subseteq \mathcal{F}(x)$.
2. If the LICQ condition is satisfied at $x$, then $T_{\Omega}(x)=\mathcal{F}(x)$.

Proof: See Nocedal \& Wright, Lemma 12.2 (page 323).

## First-Order Necessary Optimality Conditions

A local minimizer is a point $x$ at which all feasible sequences have the property that $f\left(z_{k}\right) \geq f(x)$ for all $k$ sufficiently large. We have the following result:

Theorem
If $x^{*}$ is a local minimizer, then we have

$$
\nabla f\left(x^{*}\right)^{T} d \geq 0 \forall d \in T_{\Omega}\left(x^{*}\right)
$$

Proof: See Nocedal \& Wright, Lemma 12.3 (page 325).

## Farkas Lemma

Lemma: Farkas
Let $K:=\{B y+C w \mid y \geq 0\}$. Given any vector $g \in \mathbb{R}^{n}$, we have either that $g \in K$ or that there exists $d \in \mathbb{R}^{n}$ satisfying

$$
g^{T} d<0, B^{T} d \geq 0, C^{T} d=0
$$

but not both.
Proof: See Nocedal \& Wright, Lemma 12.4 (page 327).

## First-Order Necessary Optimality Conditions

Lagrangian function:

$$
\mathcal{L}(x, \lambda)=f(x)-\sum_{i \in \mathcal{E} \cup \mathcal{I}} \lambda_{i} c_{i}(x) .
$$

## Theorem: First-Order Necessary Optimality Conditions

Suppose that $x^{*}$ is a local minimizer of $(\mathrm{P})$, that the functions $f$ and $c_{i}$ in are continuously differentiable, and that the LICQ holds at $x^{*}$. Then there is a Lagrange multiplier vector $\lambda^{*}$ with components $\lambda_{i}^{*}, i \in \mathcal{E} \cup \mathcal{I}$, such that the following conditions are satisfied at $\left(x^{*}, \lambda^{*}\right)$ :

$$
\begin{aligned}
\nabla_{x} \mathcal{L}\left(x^{*}, \lambda^{*}\right) & =0 \\
c_{i}\left(x^{*}\right) & =0, \quad \text { for all } i \in \mathcal{E}, \\
c_{i}\left(x^{*}\right) & \geq 0, \quad \text { for all } i \in \mathcal{I}, \\
\lambda_{i} \geq 0, & \text { for all } i \in \mathcal{I}, \\
\lambda_{i}^{*} c_{i}\left(x^{*}\right) & =0, \quad \text { for all } i \in \mathcal{E} \cup \mathcal{I} .
\end{aligned}
$$

## Proof

Let $x^{*}$ be a local minimizer of $(\mathrm{P})$. Then $\nabla f\left(x^{*}\right)^{T} d \geq 0 \forall d \in T_{\Omega}\left(x^{*}\right)$. As the LICQ condition is satisfied at $x^{*}$, then $T_{\Omega}\left(x^{*}\right)=\mathcal{F}\left(x^{*}\right)$. By applying Farkas Lemma to the cone $N$ defined by

$$
\sum_{i \in \mathcal{A}\left(x^{*}\right)} \lambda_{i} \nabla c_{i}\left(x^{*}\right), \quad \lambda_{i} \geq 0 \text { for } i \in \mathcal{A}\left(x^{*}\right) \cap \mathcal{I}
$$

and setting $g=\nabla f\left(x^{*}\right)$, we have that either

$$
\begin{equation*}
\nabla f\left(x^{*}\right)=\lambda_{i} \nabla c_{i}\left(x^{*}\right)=A\left(x^{*}\right)^{T} \lambda^{*}, \lambda_{i} \geq 0 \text { for } i \in \mathcal{A}\left(x^{*}\right) \cap \mathcal{I} \tag{1}
\end{equation*}
$$

or else there is a direction $d$ such that $d^{T} \nabla f\left(x^{*}\right)<0$ and $d \in \mathcal{F}\left(x^{*}\right)$, which according to above is not true. Thus, there is a vector $\lambda$ such that (1) holds. We now define the vector $\lambda^{*}$ by

$$
\lambda_{i}^{*}= \begin{cases}\lambda_{i} & (i \in \mathcal{A}(x)) \\ 0 & (i \in \mathcal{I} \backslash \mathcal{A}(x))\end{cases}
$$

It can be seen quite easily that with this vector $\lambda^{*}$, the conditions given in the theorem are satisfied.

