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Problem and Feasible Sequences

min
x∈Rn

f(x)

subject to ci(x) = 0, i ∈ E .
ci(x) ≥ 0, i ∈ I.

(P)

Feasible set: Ω = {x|ci(x) = 0, i ∈ E , ci(x) ≥ 0, i ∈ I}

Definition: Feasible Sequences
Given a feasible point x, we call {zk} a feasible sequence approaching
x if zk ∈ Ω for all k sufficiently large and zk −→ x.
Recall that p was called a feasible direction at x if there exists t > 0
such that x+ tp ∈ Ω.
If zk is a feasible sequence approaching x, then zk is also a feasible
direction: Define pk := zk − x. Then zk = x+ pk ∈ Ω, and so, zk is a
feasible direction at x.
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Problem and Feasible Sequences
Example: A Single Equality Constraint

minx1 + x2 s. t. x2
1 + x2

2 − 2 = 0.

x∗ = (−1,−1)T is the global minimizer. Consider x = (−
√

2, 0)T . Note
that Ω is not convex.
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Problem and Feasible Sequences

Example: A Single Equality Constraint
Then

zk =

(
−
√

2− 1/k2

−1/k

)
is a feasible sequence, as for big enough k (here: for all k), it fulfills the
constraints:

(−
√

2− 1/k2)2 + (−1/k)2 − 2 = 2− 1/k2 + 1/k2 − 2 = 0

Note that the objective function f(x) = x1 + x2 increases as we move
along the sequence:

f(zk+1) = (−
√

2− 1/(k + 1)2)2 + (−1/(k + 1))2 − 2

> (−
√

2− 1/k2)2 + (−1/k)2 − 2 = f(zk).

Since we with increasing k, f(zk) increases and f(zk) < f(x) for all
k = 1, 2, 3, . . . we see that x cannot be a (local) minimizer.
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Problem and Feasible Sequences
Example: A Single Equality Constraint
Let us look at the sequence

zk =

(
−
√

2− 1/k2

1/k

)
which is also a feasible sequence, as for big enough k (here: for all k), it
fulfills the constraints:

(−
√

2− 1/k2)2 + (1/k)2 − 2 = 2− 1/k2 + 1/k2 − 2 = 0

Note that the objective function f(x) = x1 + x2 decreases as we move
along the sequence:

f(zk+1) = (−
√

2− 1/(k + 1)2)2 + (−1/(k + 1))2 − 2

< (−
√

2− 1/k2)2 + (−1/k)2 − 2 = f(zk).

Note that here, f(zk) > f(x), which (falsely) might suggest that x is a
local minimizer. But: A local minimizer is a point x at which all feasible
sequences have the property that f(zk) ≥ f(x) for all k sufficiently large.
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Cones

Definition: Cone
A cone C is a set such that

c ∈ C =⇒ ∀λ > 0 : λc ∈ C.
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Tangents

Definition: Tangent / Tangent Vector / Tangent Cone
The vector d is said to be a tangent (or tangent vector) to Ω at a point
x if there are a feasible sequence {zk} approaching x and a sequence of
positive scalars {tk} with tk −→ 0 such that

lim
k→∞

zk − x
tk

= d.

The set of all tangents to Ω at x is called the tangent cone and is
denoted by TΩ(x).
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Tangents
TΩ(x) is indeed a cone: Let d ∈ TΩ(x). Then λd (λ > 0) also belongs to
TΩ(x), because tk can be replaced by tk/λ:

lim
k→∞

zk − x
tk/λ

= λ lim
k→∞

zk − x
tk

= λd.

So, to understand what vectors TΩ(x) contains, it is enough to
understand what unit vectors it contains. Then the rest of them are the
multiples of those unit vectors. The reason to focus on the unit vectors
in TΩ(x) is that they are easier to find: we can take tk = ||zk − x|| in the
definition. In other words, a unit vector u belongs to TΩ(x) if and only if
there is a sequence zk → x such that

zk − x
||zk − x||

→ u.

We can visualize this formula: You stand at x looking at approaching zk,
and mark the directions from which they hit you. The set of all these
directions (normalized vectors zk − x) gives all the unit vectors contained
in the tangent cone.
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Tangent Cone
Example: A Single Equality Constraint

minx1 + x2 s. t. x2
1 + x2

2 − 2 = 0.

x∗ = (−1,−1)T is the global minimizer. Consider x = (−
√

2, 0)T .
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TΩ(x) = {(0, d2)T |d2 ∈ R}.
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Tangent Cone: Example I

Example: A Single Equality Constraint

minx1 + x2 s. t. x2
1 + x2

2 − 2 = 0.

Consider x = (−
√

2, 0)T . The tangent cone is given by all vectors of the
form (0, d2)T with d2 ∈ R: TΩ(x) = {(0, d2)T |d2 ∈ R}. To show this (in

part), we consider the sequence (zk) :=

(
−
√

2− 1/k2

1/k

)
. Let

g1(x):=−
√

2− x2, g2(x) := x. It holds g′1(x) = x√
2−x2

, g′2(x) ≡ 1. For
the first component of zk−x

tk
with tk := 1

k , we obtain

lim
k→∞

(
zk − x
tk

)
1

= lim
1
k=:h→0

g1(h)− g1(0)

h

= g′1(0) = 0 .
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Tangent Cone: Example II

and for the second component, we get

lim
k→∞

(
zk − x0

tk

)
2

= lim
k→∞

1/k − 0

1/k

= 1 ,

and therefore d := (0, 1)T ∈ TΩ(x).
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Linearized Feasible Directions
Definition: Set of Linearized Feasible Directions
Given a feasible point x and the active constraint set A(x), the set of
linearized feasible directions F(x) is

F(x) =
{
d|dT∇ci(x) = 0, for all i ∈ E , dT∇ci(x) ≥ 0 for all i ∈ A(x) ∩ I

}

x
Oci(x)

d

d

x
Oci(x)

d

d
d

d

Left: Equality constraint ci(x) = 0. Right: Inequality constraint
ci(x) ≥ 0.
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Linearized Feasible Directions

It is important to note that the linearized feasible direction set depends
on the definition of the constraint functions ci, i ∈ E ∪ I. For example,
consider the following constraint functions:
Example: A Single Equality Constraint

minx1 + x2 s. t. c1(x) := x2
1 + x2

2 − 2 = 0.

Consider x = (−
√

2, 0)T . Then
dT∇c1(x) = dT (2x1, 2x2)|x=(−

√
2,0)T = dT (−2

√
2, 0) = −2

√
2d1

!
= 0.

Thus, F(x) = {(0, d2)T |d2 ∈ R}.
If we define c1(x) := (x2

1 + x2
2 − 2)2 = 0, then Ω is unchanged, but:

dT∇c1(x) = dT (4x1(x2
1 + x2

2 − 2), 4x2(x2
1 + x2

2 − 2))|x=(−
√

2,0)T =

dT (0, 0) = 0. Thus, F(x) = R2.
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Linear Independence Constraint Qualification

Definition: Linear Independence Constraint Qualification
(LICQ)
Given a feasible point x and the active constraint set A(x), we say that
the linear independence constraint qualification (LICQ) holds if the
set of active constraint gradients {∇ci(x), i ∈ A(x)} is linearly
independent.
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Linear Independence Constraint Qualification

Example: A Single Equality Constraint

minx1 + x2 s. t. x2
1 + x2

2 − 2 = 0.

Consider x = (−
√

2, 0)T . Then
∇c1(x) = (2x1, 2x2)T |x=(−

√
2,0)T = (−2

√
2, 0)T . The set {(−2

√
2, 0)T }

is linearly independent, and so, TΩ(x) = F(x) (see next slide).
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Relation between Tangent Cone and Set of Linearized
Feasible Directions

Lemma
Let x be a feasible point. The following two statements are true.
1. TΩ(x) ⊆ F(x).
2. If the LICQ condition is satisfied at x, then TΩ(x) = F(x).

Proof: See Nocedal & Wright, Lemma 12.2 (page 323).
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First-Order Necessary Optimality Conditions

A local minimizer is a point x at which all feasible sequences have the
property that f(zk) ≥ f(x) for all k sufficiently large. We have the
following result:

Theorem
If x∗ is a local minimizer, then we have

∇f(x∗)T d ≥ 0 ∀d ∈ TΩ(x∗).

Proof: See Nocedal & Wright, Lemma 12.3 (page 325).
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Farkas Lemma

Lemma: Farkas
Let K := {By + Cw|y ≥ 0}. Given any vector g ∈ Rn, we have either
that g ∈ K or that there exists d ∈ Rn satisfying

gT d < 0, BT d ≥ 0, CT d = 0.

but not both.
Proof: See Nocedal & Wright, Lemma 12.4 (page 327).
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First-Order Necessary Optimality Conditions
Lagrangian function:

L(x, λ) = f(x)−
∑

i∈E∪I
λici(x).

Theorem: First-Order Necessary Optimality Conditions
Suppose that x∗ is a local minimizer of (P), that the functions f and ci
in are continuously differentiable, and that the LICQ holds at x∗. Then
there is a Lagrange multiplier vector λ∗ with components λ∗i , i ∈ E ∪ I,
such that the following conditions are satisfied at (x∗, λ∗):

∇xL(x∗, λ∗) = 0

ci(x
∗) = 0, for all i ∈ E ,

ci(x
∗) ≥ 0, for all i ∈ I,
λi ≥ 0, for all i ∈ I,

λ∗i ci(x
∗) = 0, for all i ∈ E ∪ I.
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Proof
Let x∗ be a local minimizer of (P). Then ∇f(x∗)T d ≥ 0 ∀d ∈ TΩ(x∗).
As the LICQ condition is satisfied at x∗, then TΩ(x∗) = F(x∗). By
applying Farkas Lemma to the cone N defined by∑

i∈A(x∗)

λi∇ci(x∗), λi ≥ 0 for i ∈ A(x∗) ∩ I,

and setting g = ∇f(x∗), we have that either

∇f(x∗) = λi∇ci(x∗) = A(x∗)Tλ∗, λi ≥ 0 for i ∈ A(x∗) ∩ I, (1)

or else there is a direction d such that dT∇f(x∗) < 0 and d ∈ F(x∗),
which according to above is not true. Thus, there is a vector λ such that
(1) holds. We now define the vector λ∗ by

λ∗i =

{
λi (i ∈ A(x))
0 (i ∈ I \ A(x))

It can be seen quite easily that with this vector λ∗, the conditions given
in the theorem are satisfied.
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