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Optimization with Concave Inequality Constraints I

Finally, we will discuss the situation where the convex set Ω is the
solution set of a number of inequalities. That is, we are given functions
ci : Rn → R, i ∈ I, for some (�nite) index set I and de�ne

Ω = {x ∈ Rn|ci(x) ≥ 0, i ∈ I}.

The problem reads

min
x∈Ω

f(x) (P )

Lemma

Assume that the functions ci : Rn → R are concave. Then the set Ω is
convex.
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Optimization with Concave Inequality Constraints II

Proof.

Assume that x, y ∈ Ω, and that 0 < λ < 1. Then the concavity of the
functions ci implies that

ci(λx+ (1− λ)y) ≥ λci(x) + (1− λ)ci(y) (1)

for all i ∈ I. Now the assumption that x, y ∈ Ω implies that ci(x),
ci(y) ≥ 0. Moreover, we have that λ, 1− λ ≥ 0. As a consequence, the
right hand side in (1) is non-negative, which in turn shows that

ci(λx+ (1− λ)y) ≥ 0

for all i ∈ I. This, however, shows that λx+ (1− λ)y ∈ Ω, and thus Ω is
convex.
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Slater's Constraint Quali�cation

In order to obtain reasonable optimality conditions for optimization
problems with concave inequality constraints, we have to impose
additional restrictions on the constraints that guarantee that the tangent
and normal cones to Ω can be easily described by means of the gradients
of the constraints. In the general context of constrained optimization,
such conditions are called �constraint quali�cations.�

De�nition

We say that Slater's constraint quali�cation is satis�ed, if there exists
x̂ ∈ Rn such that

ci(x̂) > 0 for all i ∈ I.

Recall that the set of active constraints at x ∈ Ω is given by

A(x) = {i ∈ I|ci(x) = 0}

(note that here, E = ∅).
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Optimization with Concave Inequality Constraints

Theorem

Assume that Slater's constraint quali�cation holds and that x ∈ Ω. Then

TΩ(x) = {p ∈ Rn|pT∇ci(x) ≥ 0 for all i ∈ A(x)}. (2)

Proof.

Let p ∈ TΩ(x). Theorem1(and the de�nition of feasible directions) implies
that there exist convergent sequences xk ⊂ Ω and tk > 0 such that

p = lim
k→∞

tk(xk − x).

Moreover, due to the concavity of ci
2, we note that for every i ∈ A(x)

we have

0 ≤ ci(xk) ≤ ci(x) +∇ci(x)T (xk − x) = ∇ci(x)T (xk − x).

1Theorem: The tangent cone TΩ(x) to the convex set Ω at the point x ∈ Ω is the
closure of the set of all feasible directions at x.

2ci is concave ⇐⇒ for any x, xk ∈ Ω (Ω convex):
ci(xk)− ci(x) ≤ ∇ci(x)T (xk − x) 5



Optimization with Concave Inequality Constraints I

Thus

pT∇ci(x) = lim
k→∞

tk(xk − x)T∇ci(x) ≥ 0

for all i ∈ A(x). That is, every vector p ∈ TΩ(x) has the form given
in (2).

Auxiliary result: Now, let p ∈ Rn be such that pT∇ci(x) > 0 for
all i ∈ A(x). Then there exists t > 0 such that for all i ∈ I

ci(x+ tp) = ci(x) + tpT∇ci(x) + o(t) > 0.

As a consequence, we can write such a vector p as p = (x̃ − x)/t
with x̃ = x + tp ∈ Ω. This shows that all vectors p ∈ Rn with
pT∇ci(x) > 0 for all i ∈ A(x) are feasible directions at x.

Finally, let p ∈ Rn be such that pT∇ci(x) ≥ 0 for all i ∈ A(x).
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Optimization with Concave Inequality Constraints I

Let moreover x̂ ∈ Ω be such that ci(x̂) > 0 for all i ∈ I (such a point
exists because of Slater's constraint quali�cation) and de�ne

pk := p+
1

k
(x̂− x).

Then

∇ci(x)T pk = ∇ci(x)T p+
1

k
∇ci(x)T (x̂− x) ≥ 1

k
∇ci(x)T (x̂− x). (3)

However, because of the concavity of ci we have that

0 < ci(x̂) ≤ xi(x)︸ ︷︷ ︸
=0, as i∈A(x)

+∇ci(x)T (x̂− x) = ∇ci(x)T (x̂− x)

for all i ∈ A(x).
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Optimization with Concave Inequality Constraints I

Together with (3), this shows that

∇ci(x)T pk > 0

for all i ∈ A(x), which in turn, by the auxiliary result, shows that all the
vectors pk are feasible directions at x. As a consequence, p is the limit of
a sequence of feasible directions at x. Using Theorem3, we obtain that
p ∈ TΩ(x).

3Theorem: The tangent cone TΩ(x) to the convex set Ω at the point x ∈ Ω is the
closure of the set of all feasible directions at x.
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Farkas' Lemma

Theorem: Farkas' Lemma

Let sj , j ∈ J �nite, be vectors in Rn, and let g ∈ Rn. Then exactly one
of the following statements is true:

1. There exist λj ≥ 0, j ∈ J , such that∑
j∈J

λjsj = g.

2. There exists p ∈ Rn such that gT p < 0 and sTj p ≥ 0 for all j ∈ J .

Proof.
See e.g.: Lemma 12.4 in Nocedal&Wright or Sec. III.4.3 in J.-B. Hiriart-Urruty
and C. Lemaréchal: Convex analysis and minimization algorithms. I, volume
305 of Grundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1993.
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Optimization with Concave Inequality Constraints:

Optimality Condition

Theorem

Assume that Slater's constraint quali�cation holds and that x∗ is a local
minimizer of the problem (P ). Then there exists a Lagrange multiplier

λ∗ ∈ R|I| such that

∇f(x∗) =
∑
i∈I

λ∗i∇ci(x∗),

λi ≥ 0, i ∈ I,
λi = 0, i 6∈ A(x∗).

(4)

Conversely, if additionally f is convex and (4) holds, then x∗ is a global
solution of (P ).
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Optimization with Concave Inequality Constraints:

Optimality Condition

Proof.

Since x∗ is a local minimizer of the problem (P ), it follows that
∇f(x∗)T p ≥ 0 for all p ∈ TΩ(x∗). (2) in the previous theorem implies
that this is equivalent to stating that ∇f(x∗)T p ≥ 0 for all p ∈ Rn with
∇ci(x∗)T p ≥ 0, i ∈ A(x∗). In other words, there does not exist a vector
p ∈ Rn with ∇f(x∗)T p < 0 and ∇ci(x∗)T p ≥ 0 for all i ∈ A(x∗). Thus,
Farkas' Lemma implies that we can write

∇f(x∗) =
∑

i∈A(x∗)

λ∗i∇ci(x∗)

for some λ∗i ≥ 0, i ∈ A(x∗). Setting λ∗i = 0 for i ∈ I \ A(x∗), we obtain
the desired representation of ∇f(x∗).
The converse direction follows from the fact that the condition
∇f(x∗)T p ≥ 0 for all p ∈ TΩ(x∗) is a su�cient optimality condition in
the convex case.
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Optimization with Concave Inequality Constraints:

Optimality Condition

Remark

One can generalize these results to the case where Ω is given by concave
inequality constraints and linear equality constraints:

Ω = {x ∈ Rn|ci(x) ≥ 0, i ∈ I, and Ax = b},

with ci : Rn → R concave, and A ∈ Rm×n, b ∈ Rm. In such a case,
Slater's constraint quali�cation reads: There exists x̂ ∈ Rn with
ci(x̂) > 0, i ∈ I, and Ax̂ = b. If this condition is satis�ed, one can show
(by essentially following the same argumentation as above) that a
necessary optimality condition is the existence of λ∗ ∈ RI and µ∗ ∈ Rm

such that
∇f(x∗) = ATµ∗ +

∑
i∈I

λ∗i∇ci(x∗)

with λ∗i ≥ 0 for all i ∈ I, and λ∗i = 0 for all i 6∈ A(x∗).
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