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Finally, we will discuss the situation where the convex set (2 is the
solution set of a number of inequalities. That is, we are given functions
ci: R" - R, i € Z, for some (finite) index set Z and define

Q={r e R"¢(x) >0, i €Z}.

The problem reads

min f(x) (P)

zeN

Lemma
Assume that the functions c¢;: R” — R are concave. Then the set Q is
convex.
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Proof.
Assume that z, y € €, and that 0 < A < 1. Then the concavity of the
functions ¢; implies that

ci(Az + (1= XNy) = Aci(x) + (1 = A)ei(y) (1)

for all i € Z. Now the assumption that z, y € Q implies that ¢;(z),
¢i(y) > 0. Moreover, we have that A, 1 — A > 0. As a consequence, the
right hand side in (1) is non-negative, which in turn shows that

Mz +(1=XNy)>0

for all i € Z. This, however, shows that Az + (1 — \)y € Q, and thus Q is
convex. O



Slater's Constraint Qualification

In order to obtain reasonable optimality conditions for optimization
problems with concave inequality constraints, we have to impose
additional restrictions on the constraints that guarantee that the tangent
and normal cones to 2 can be easily described by means of the gradients
of the constraints. In the general context of constrained optimization,
such conditions are called “constraint qualifications.”

Definition

We say that Slater’s constraint qualification is satisfied, if there exists

Z € R™ such that

ci(%) >0 for all i € 7.
Recall that the set of active constraints at x € ) is given by
A(z) = {i € I|c;(z) = 0}

(note that here, £ = 0).
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Theorem
Assume that Slater’s constraint qualification holds and that = € Q. Then

To(x) = {p € R"|p"Vei(z) >0 for all i € A(z)}. (2)
Proof.

Let p € To(x). Theorem!(and the definition of feasible directions) implies
that there exist convergent sequences x; C ) and t; > 0 such that

p= lim tx(xx — ).
k— o0

Moreover, due to the concavity of ¢;2, we note that for every i € A(x)
we have

0 < ci(xr) < ci(x) + Ve (2) T (xp — ) = Ve (2) T (2 — ).

1Theorem: The tangent cone T () to the convex set  at the point = € Q is the
closure of the set of all feasible directions at z.

2¢; is concave <= for any z, ), € Q (Q convex):
ci(x1) — ci(x) < Ve () (z, — )
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Thus
p'Vei(x) = klim ti(xy — )T Vei(x) >0
—00

for all i € A(x). That is, every vector p € To(x) has the form given
in (2).

Auxiliary result: Now, let p € R" be such that p? V¢;(z) > 0 for
all i € A(x). Then there exists ¢ > 0 such that for all ¢ € T

ci(x +tp) = ci(x) + tp” Vei(z) + ot) > 0.

As a consequence, we can write such a vector p as p = (& — z)/t
with & = = + tp € Q. This shows that all vectors p € R™ with
pT'Vei(x) > 0 for all i € A(z) are feasible directions at x.

Finally, let p € R™ be such that p? V¢;(x) > 0 for all i € A(z).
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Let moreover & € © be such that ¢;(&) > 0 for all i € Z (such a point
exists because of Slater’s constraint qualification) and define

1
pri=p+ E(az —z).
Then
1 1
Vei(2) 'py = Vei(x)Tp + %Vci(x)T(i‘ —z) > %Vci(x)T(i: —z). (3)
However, because of the concavity of ¢; we have that

0<c(2) < m(x)  +Ve) (@ —2)=Ve(2) (@ — )
——
=0, as i€ A(x)

for all i € A(x).
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Together with (3), this shows that
Vci(:v)Tpk >0

for all i € A(x), which in turn, by the auxiliary result, shows that all the
vectors py are feasible directions at x. As a consequence, p is the limit of
a sequence of feasible directions at . Using Theorem?, we obtain that

p € To(x). O

3Theorem: The tangent cone T (z) to the convex set Q at the point = € Q is the
closure of the set of all feasible directions at z.



Farkas' Lemma

Theorem: Farkas' Lemma
Let s, j € J finite, be vectors in R™, and let g € R™. Then exactly one
of the following statements is true:

1. There exist A; > 0, j € J, such that

Z Ajsj =g.

JET

2. There exists p € R™ such that ¢”p < 0 and szp >0forall jeJ.

Proof.

See e.g.: Lemma 12.4 in Nocedal&Wright or Sec. I11.4.3 in J.-B. Hiriart-Urruty
and C. Lemaréchal: Convex analysis and minimization algorithms. I, volume
305 of Grundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1993. O
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Theorem
Assume that Slater’s constraint qualification holds and that z* is a local

minimizer of the problem (P). Then there exists a Lagrange multiplier
M* € Rl such that

Vi) =) A Ve,

i€l 4
A >0, 1 €1, ( )
A=, i ¢ Az,

Conversely, if additionally f is convex and (4) holds, then z* is a global
solution of (P).
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Proof.

Since x* is a local minimizer of the problem (P), it follows that
Vf(x*)Tp > 0 for all p € To(x*). (2) in the previous theorem implies
that this is equivalent to stating that V f(z*)%p > 0 for all p € R™ with
Vei(z*)Tp >0, i € A(z*). In other words, there does not exist a vector
p € R™ with Vf(2*)Tp < 0 and Ve;(z*)Tp > 0 for all i € A(z*). Thus,
Farkas' Lemma implies that we can write

Vi) = Y AVe(a)

i€A(x*)

for some \f >0, i € A(z*). Setting A =0 for i € T\ A(z*), we obtain
the desired representation of V f(x*).

The converse direction follows from the fact that the condition
Vf(xz*)Tp >0 forall p € To(x*) is a sufficient optimality condition in
the convex case. O
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Remark
One can generalize these results to the case where €2 is given by concave
inequality constraints and linear equality constraints:

Q={zeR"e¢(z)>0,i€Z, and Az = b},

with ¢;: R™® — R concave, and A € R™*™ b € R™. In such a case,
Slater's constraint qualification reads: There exists & € R™ with
¢i(Z) > 0,1 €Z, and Az = b. If this condition is satisfied, one can show
(by essentially following the same argumentation as above) that a
necessary optimality condition is the existence of \* € R? and p* € R™
such that

Vit =ATp" +3 A Vei(a®)

i€T

with A¥ >0 for all i € Z, and A} =0 for all ¢ & A(z*).
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