Exam Optimization 1 - Spring 2021

Problem 1 (Existence of Minimizers) [5 points]

Let S be a nonempty, closed subset of \mathbb{R}^n , and let $f : S \to \mathbb{R}$ be continuous. Show that if the set $\hat{S} := \{x \in S \mid f(x) \leq f(\hat{x})\}$ is bounded for an $\hat{x} \in S$, then the optimization problem $\min_{x \in S} f(x)$ has a minimizer.

Solution: Because f is continuous, S closed and because of \leq in the definition of $\hat{S} \Rightarrow \hat{S}$ closed Therefore: \hat{S} is compact. Moreover, f is continuous.

By Weierstrass, there exists $\bar{x} \in \hat{S} : f(\bar{x}) \leq f(x) \quad \forall x \in \hat{S}.$ Note that $\bar{x} \in S$. Furthermore, $\forall x \in S \setminus \hat{S} \Rightarrow f(x) > f(\hat{x}) \geq f(\bar{x})$, and the claim follows.

Problem 2 (Karush-Kuhn-Tucker-Conditions I) [10 points]

Calculate all points (with according Lagrange-multipliers) which satisfy the Karush-Kuhn-Tucker-conditions for the following optimization problem:

$$\min_{\substack{x \in \mathbb{R}^2 \\ \text{subject to}}} -x_1 - x_2 \\ x_2 \ge x_1^2, \\ x_2 \le x_1 + 2.$$

Solution: The Lagrange function reads $\mathcal{L}(x, \lambda) = -x_1 - x_2 + \lambda_1(x_1^2 - x_2) + \lambda_2(x_1 - 2 - x_2)$. The KKT conditions are

$$\nabla_x \mathcal{L}(x,\lambda) = \begin{pmatrix} -1+2\lambda_1 x_1 - \lambda_2\\ -1 - \lambda_1 + \lambda_2 \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$$
(1)

$$\lambda_1(x_1^2 - x_2) = 0 \tag{2}$$

$$\lambda_2(-x_1 - 2 + x_2) = 0 \tag{3}$$

$$\lambda_1, \lambda_2 \ge 0 \tag{4}$$

 $x_2 \ge x_1^2$ $x_2 \le x_1 + 2.$

- $\lambda_1 = \lambda_2 = 0$: This contradicts (1).
- $\lambda_1 = 0, \lambda_2 > 0$: By (1), we get $\lambda_2 = -1$, a contradiction.
- $\lambda_2 = 0, \lambda_1 > 0$: By the second line in (1), we get $\lambda_1 = -1$, a contradiction.
- $\lambda_1 > 0, \lambda_2 > 0$: (3) yields $-x_1 2 + x_2 = 0$, thus $x_1 = x_2 2$. Together with (2), we get $x_2 = x_1^2 = (x_2 2)^2$ and thus $x_2 = 4$ and $x_2 = 2$. If $x_2 = 2$, (2) implies that $x_1 = 1$, but this contradicts (3). If x 2 = 4, we get from (3) that $x_1 = -2$. From the first line in (1) we get that $\lambda_1 = \frac{1}{3}$, and from the second line in (1), it follows that $\lambda_2 = \frac{4}{3}$. So, the pair (x, λ) with $x = (-2, 4)^{\top}$ and $\lambda = (\frac{1}{3}, \frac{4}{3})^{\top}$ is the only point that satisfies the KKT conditions.

Problem 3 (Karush-Kuhn-Tucker-Conditions II) [15 points] Here, we randomize with c = 1, 2, 3, 4, 5.

The point $x = (0, 0)^{\top} \in \mathbb{R}^2$ is a global minimizer of the problem

$$\lim_{\substack{x=(x_1,x_2)^{\top} \in \mathbb{R}^2}} x_1 \\
\text{subject to } cx_2 - x_1^3 \le 0 \\
-cx_2 - x_1^3 \le 0.$$
(5)

- a) Show that the Karush-Kuhn-Tucker conditions of problem (5) have no solution.
- b) Explain why the first-order necessary optimality conditions for constrained optimization problems are not applicable for $x = (0, 0)^{\top} \in \mathbb{R}^2$.

Solution:

(a) The Lagrange function is $\mathcal{L}(x,\lambda) = x_1 + \lambda_1(cx_2 - x_1^3) + \lambda_2(-cx_2 - x_1^3)$. We get

$$\nabla_x \mathcal{L}(x,\lambda) = \begin{pmatrix} 1 - 3c\lambda_1 x_1^2 - 3c\lambda_2 x_1^2 \\ c\lambda_1 - c\lambda_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
(6)

$$\lambda_1 (cx_2 - x_1^3) = 0 \tag{7}$$

$$\lambda_2(-cx_2 - x_1^3) = 0 \tag{8}$$

$$\lambda_1, \lambda_2 \ge 0 \tag{9}$$

$$x_2 \ge x_1^2$$

$$x_2 \le x_1 + 2$$

The second line in (6) implies $\lambda_1 = \lambda_2 \stackrel{(9)}{\geq} 0$. If $\lambda_1 = \lambda_2 = 0$, then the first line in (6) does not hold. If $\lambda_1 = \lambda_2 > 0$, then we have by (7) that $cx_2 - x_1^3 = 0$ and therefore $cx_2 = x_1^3$. By (8),

we get $-cx_2 - x_1^3$ and thus $-cx_2 = x_1^3$. Together, $x_1 = x_2 = 0$, in contradiction to the first line in (6). Therefore, the KKT conditions have no solution.

(b) Note that the linear independence constraint qualification (LICQ) does not hold:

$$\nabla c_1(x) = \begin{pmatrix} -3x_1^2 \\ c \end{pmatrix} \Big|_{x=(0,0)^\top} = \begin{pmatrix} 0 \\ c \end{pmatrix}$$
$$\nabla c_2(x) = \begin{pmatrix} -3x_1^2 \\ -c \end{pmatrix} \Big|_{x=(0,0)^\top} = \begin{pmatrix} 0 \\ -c \end{pmatrix}.$$

 $\{(0,c)^{\top}, (0,-c)^{\top}\}$ is **not** linearly independent. Therefore, the first-order necessary optimality conditions for constrained optimization problems are not applicable here.

Problem 4 (Linear Programs - Duality) [15 points]

Consider the following linear program

1. Write down (LP) as an (LP3), i.e., in the form

$$\min c^{\top} x$$

subject to $Ax = b, \ x \ge 0.$

- 2. Write down the corresponding dual program of the (LP3) and compute a solution of the dual program.
- 3. Use a duality result to compute all minimizers of (LP).

Solution:

1. We formulate (LP) as (LP3). Because there are no nonnegativity constraints on $x_2, x_4 \in \mathbb{R}$, we introduce the following variables for i = 2, 4:

$$x_i^+ = \begin{cases} x_i & (x_i \ge 0) \\ 0 & (x_i < 0) \end{cases}$$

Optimering I, Mai 2021

$$x_i^- = \begin{cases} 0 & (x_i > 0) \\ -x_i & (x_i \le 0). \end{cases}$$

This means $x_i = x_i^+ - x_i^-$ with $x_i^+, x_i^- \ge 0$ for i = 2, 4. So we have the following problem which is equivalent to (LP):

$$\min_{x} -2x_1 + 3x_2^+ - 3x_2^-$$

subject to
$$x_1 + x_2^+ - x_2^- - x_3 = 1$$
,
 $3x_1 - x_2^+ + x_2^- + x_4^+ - x_4^- - y_1 = 8$,
 $x_1, x_2^+, x_2^-, x_3, x_4^+, x_4^-, y_1 \ge 0$,

or

$$\min_{x} c^{\top} x \text{ subject to } Ax = b, \ x \ge 0$$

with
$$x = (x_1, x_2^+, x_2^-, x_3, x_4^+, x_4^-, y_1)^\top$$
, $A = \begin{pmatrix} -1 & 1 & -1 & -1 & 0 & 0 & 0 \\ 3 & -1 & 1 & 0 & 1 & -1 & -1 \end{pmatrix}$, $b = (1, 8)^\top$, $c = (-2, 3, -3, 0, 0, 0, 0)^\top$.

2. The dual problem now reads

$$b^{\top}u \to \max$$
 subject to $A^{\top}u \leq c$.

Therefore, we have for the dual problem:

$$u_{1} + 8u_{2} \to \max$$

subject to $-u_{1} + 3u_{2} \le -2$,
 $u_{1} - u_{2} \le 3$,
 $-u_{1} + u_{2} \le -3$
 $-u_{1} \le 0$
 $u_{2} \le 0$
 $-u_{2} \le 0$
 $-u_{2} \le 0$
 $u_{1}, u_{2} \in \mathbb{R}$,

or, equivalently

$$u_1 + 8u_2 \rightarrow \max$$

bei $-u_1 + 3u_2 \le -2,$
 $u_1 - u_2 = 3,$
 $u_1 \ge 0$
 $u_2 = 0.$

Page 4 of 9

Because $u_2 = 0$ and $u_1 - u_2 = 3$, we get $u_1 = 3$. Setting $\bar{u} := (3,0)^{\top}$. \bar{u} satisfies all constraints and $\{\bar{u}\}$ is therefore the set of all feasible points of the corresponding dual problem of (LP). Therefore, \bar{u} is the optimal solution of the dual problem, with optimal function value 3.

3. By our duality results, we get for the minimizer of (LP) that $-2x_1 + 3x_2 = 3$. Together with the constraints we get the system

$$-2x_1 + 3x_2 = 3, (10)$$

$$-x_1 + x_2 - x_3 = 1, (11)$$

$$3x_1 - x_2 + x_4 \ge 8,\tag{12}$$

$$x_1, x_3 \ge 0. \tag{13}$$

(10) implies $x_2 = \frac{2}{3}x_1 + 1$. Plugging this into (11) yields $-x_1 + \frac{2}{3}x_1 + 1 - x_3 = 1$. Therefore,

$$x_3 = -\frac{1}{3}x_1 \tag{14}$$

Putting this into (12) yields $3x_1 - \frac{2}{3}x_1 - 1 + x_4 \ge 8$, leading to

$$x_4 \ge -\frac{7}{3}x_1 + 9 \tag{15}$$

Because of (14) and $x_1, x_3 \ge 0$, we have $x_1 = x_3 = 0$.

Putting $x_1 = 0$ in (15) implies $x_4 \ge 9$.

Setting $x_1 = x_3 = 0$ in (11) yields $x_2 = 1$. Therefore, we can conclude that \bar{x} is a minimizer for (LP) if and only if \bar{x} has the form $\bar{x} = (0, 1, 0, x_4)^{\top}$ with $x_4 \ge 9$.

Problem 5 (Linear Programs) [10 points]

Consider the linear optimization problem:

$$\begin{array}{ll} \min_{\substack{x=(x_1,x_2)^{\top}} \\ \text{subject to} \\ x_1,x_2 \end{array} \stackrel{-c_1x_1-c_2x_2}{\leq 2} \\ x_1,x_2 \\ \geq 0 \end{array}$$

Determine coefficients (c_1, c_2) of the objective function such that

1. the problem has a unique minimizer.

- 2. the problem has multiple minimizers and the set of minimizers is bounded.
- 3. the problem has multiple minimizers and the set of minimizers is unbounded.
- 4. the problem has no minimizer.

Solution:

(a) $c = (1, -1)^{\top}$ opt value = 1 being attained at $(1, 0)^{\top}$ (b) $c = (0, -1)^{\top}$ opt value = 0, set is line segment from $(0, 0)^{\top}$ to $(1, 0)^{\top}$ (c) $c = (-1, 0)^{\top}$ opt value = 0, set goes along the x_2 -axis with $x_2 \ge 0$ (d) $c = (0, 1)^{\top}$

Problem 6 (Steepest Descent) [15 points] Consider the function $f : \mathbb{R}^n \to \mathbb{R}$,

$$f(x) = x^{\top} H x - b^{\top} x$$

with a symmetric positive definite matrix $H \in \mathbb{R}^{n,n}$. Let $x^0 - \tilde{x}$ be an eigenvector of H. Show that the iteration $x^{k+1} = x^k + \alpha_k p^k$ with the search direction $p^k = -\nabla f(x^k)$ finds the minimizer \tilde{x} in one step. Explain how α_k needs to be chosen for this result to hold.

Solution: We have $\nabla f = 2Hx - b$, and so, for a minimizer we get $\nabla f = 2H\tilde{x} - b = 0$, such that $\tilde{x} = \frac{1}{2}H^{-1}b$ (H^{-1} exists because H is a symmetric positive definite matrix). We get for

Optimering I, Mai 2021

the search direction: $p^k = -\nabla f(x^k) = -2Hx^k + b$, and so, $p^0 = b - 2Hx^0$. We want to show that $\tilde{x} = x^0 + \alpha p^0$, which is equivalent to

$$x^0 - \tilde{x} = -\alpha p^0. \tag{16}$$

We know: $-p^0 = 2Hx^0 - b = 2Hx^0 - 2H\tilde{x} = 2H(x^0 - \tilde{x})$. With this, our claim (16) is equivalent to

$$(I - 2\alpha_k H)(x^0 - \tilde{x}) = 0.$$
(17)

Since $x^0 - \tilde{x}$ is an eigenvector of H, we have

$$(x^0 - \tilde{x}) \cdot \underbrace{\lambda}_{\text{eigenvalue}} = H(x^0 - \tilde{x}),$$

or, equivalently,

$$(x^0 - \tilde{x}) \cdot (\lambda I - H) = 0.$$

Comparing this with (17), we see that $\alpha_k = \frac{1}{2\lambda}$ yields the desired result. Note that $\lambda > 0$, because *H* is symmetric positive definite, and so, α_k is well-defined.

Problem 7 (Wolfe Conditions) [15 points]

In the lecture, we have proven the following results: Let the function $f : \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable, p^k be a descent direction at x^k , and assume that f is bounded below along the ray $\{x^k + \alpha p^k | \alpha > 0\}$. Then, if $0 < c_1 < c_2 < 1$, there exist intervals of step lengths satisfying the Wolfe conditions. Show that such intervals may no longer exist if $0 < c_2 < c_1 < 1$ by providing and discussing an explicit counterexample for a specific function f.

Solution: The Wolfe conditions are:

$$\Phi(\alpha) \le \underbrace{f(x^k + c_1 \alpha \nabla f^{k^\top} p^k)}_{\text{sufficient decrease}}$$
(18)

$$\underbrace{\Phi'(\alpha) \le c_2 \Phi'(0)}_{\text{curvature condition}}$$
(19)

For example, let $f(x) = x^2$, $x^k = x = -1$, $p^k = p = 1$, $c_1 = 0.98$, $c_2 = 0.02$. Then $\Phi(\alpha) = f(x + \alpha p) = (x + \alpha p)^2 = x^2 + 2\alpha x p + \alpha^2 p^2 = \alpha^2 - 2\alpha + 1$. We also have $\Phi'(\alpha) = 2\alpha - 2$. The sufficient decrease condition (18) yields

$$\Phi(\alpha) \le f(x) + c_1 \alpha f'(x) p = 1 - 2c_1 \alpha.$$

Thus,

$$\Phi(\alpha) = \alpha^2 - 2\alpha - 1 \le 1 - 1.98\alpha,$$

Page 7 of 9

leading to $\alpha^2 - 0.02\alpha \leq 0$. This holds true only for $\alpha \in [0, 0.02]$. The curvature condition (19) leads to

$$\Phi'(\alpha) = 2\alpha - 2 \ge c_2 \cdot \Phi'(0) = -0.02,$$

which gives $\alpha \geq 0.99$, a contradiction.

Problem 8 (Trust-Region Method) [15 points] Let $x = (x_1, x_2)^{\top}$, $f(x) = x^4 + 2x^2 + 4x^4$

$$f(x) = x_1^4 + 3x_1^2 + 4x_2^2.$$

Compute, explicitly and in detail, one step for the **trust region method** (that is, until you reach x^1) with the model function $m(p) = f(x^k) + g^{k^{\top}}p + \frac{1}{2}p^{\top}H_kp$, with $g^k = \nabla f(x^k)$, $H_k = \nabla^2 f(x^k)$, trust-region radius $\Delta = 1$, parameters $\eta_1 = 0.2$, $\eta_2 = 0.9$, $\sigma_1 = 0.5$, $\sigma_2 = 2$ and starting point

$$x^0 = (-2, 0)^+$$
.

Solution: It holds

$$\nabla f(x) = \begin{pmatrix} 4x_1^3 + 6x_1 \\ 8x_2, \end{pmatrix}$$

and

$$abla^2 f(x) = \begin{pmatrix} 12x_1^2 + 6 & 0\\ 0 & 8 \end{pmatrix}.$$

Note that $\nabla^2 f(x)$ is symmetric and positive definite for all x:

$$\begin{aligned} x^{\top} \nabla^2 f(x) x &= (x_1, x_2) \begin{pmatrix} 12x_1^2 + 6 & 0 \\ 0 & 8 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \\ &= (12x_1^2 + 6)x_1^2 + 8x_2^2 > 0 \text{ for all } x \in \mathbb{R}^2 \end{aligned}$$

(or, because the matrix is symmetric and the eigenvalues are the elements in the diagonal, it can be seen that the eigenvalues are positive for all $x \in \mathbb{R}^2$, and thus the matrix is symmetric positive definite). We have

$$g^{0} = \nabla f(x^{0}) = \begin{pmatrix} 4 \cdot (-2)^{3} - 6 \cdot 2 \\ 0 \end{pmatrix} = \begin{pmatrix} -44 \\ 0 \end{pmatrix}$$

and

$$H_0 = \nabla^2 f(x^0) = \begin{pmatrix} 12 \cdot (-2)^2 + 6 & 0 \\ 0 & 8 \end{pmatrix} = \begin{pmatrix} 54 & 0 \\ 0 & 8 \end{pmatrix}.$$

We get

$$H_0^{-1} = \begin{pmatrix} \frac{1}{54} & 0\\ 0 & \frac{1}{8} \end{pmatrix}.$$

Page 8 of 9

Optimering I, Mai 2021

Furthermore,

$$||H_0^{-1}g^0|| = ||\begin{pmatrix} \frac{1}{54} & 0\\ 0 & \frac{1}{8} \end{pmatrix} \cdot \begin{pmatrix} -44\\ 0 \end{pmatrix}|| = ||\begin{pmatrix} -\frac{44}{54}\\ 0 \end{pmatrix}|| = ||\begin{pmatrix} -\frac{22}{27}\\ 0 \end{pmatrix}|| = \sqrt{\left(\frac{-22}{27}\right)^2} = \frac{22}{27} < 1 = \Delta.$$

Therefore, $p^0 = -H_0^{-1}g^0 = \begin{pmatrix} \frac{44}{54}\\ 0 \end{pmatrix} = \begin{pmatrix} \frac{22}{27}\\ 0 \end{pmatrix}$. So we get $\hat{x}^0 = x^0 + p^0 = \begin{pmatrix} -2\\ 0 \end{pmatrix} + \begin{pmatrix} \frac{22}{27}\\ 0 \end{pmatrix} = \begin{pmatrix} -\frac{32}{27}\\ 0 \end{pmatrix}$. We compute the decrease:

$$\delta_0 = \frac{f(x^0) - f(\hat{x}^0)}{\underbrace{m(0)}_{=f(x^0)} - \underbrace{m(p^0)}_{=28+g^{0^\top}p^0 + \frac{1}{2}p^{0^\top}H_0p^0 \approx -7.84} \approx \frac{28 - 6.187}{28 + 7.84} \approx 0.6085.$$

We have $\delta_0 \approx 0.6085 \in [\eta_1, \eta_2]$. Therefore, we choose $\Delta_1 \in [\sigma_1 \cdot \Delta, \Delta]$, which means that the trust-region radius will be shrinked. Moreover, $\delta_0 > \eta_1 = 0.2$, and so, $x^1 := \hat{x}^0$ is the new iteration point.