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Exam Optimization 1 - Spring 2021

Problem 1 (Existence of Minimizers) [5 points]

Let S be a nonempty, closed subset of Rn, and let f : S → R be continuous. Show that if
the set Ŝ := {x ∈ S | f(x) ≤ f(x̂)} is bounded for an x̂ ∈ S, then the optimization problem
min
x∈S

f(x) has a minimizer.

Solution: Because f is continuous, S closed and because of ≤ in the definition of Ŝ ⇒ Ŝ
closed
Therefore: Ŝ is compact. Moreover, f is continuous.
By Weierstrass, there exists x̄ ∈ Ŝ : f(x̄) ≤ f(x) ∀x ∈ Ŝ.
Note that x̄ ∈ S.
Furthermore, ∀x ∈ S \ Ŝ ⇒ f(x) > f(x̂) ≥ f(x̄), and the claim follows.

Problem 2 (Karush-Kuhn-Tucker-Conditions I) [10 points]

Calculate all points (with according Lagrange-multipliers) which satisfy the Karush-Kuhn-
Tucker-conditions for the following optimization problem:

min
x∈R2

−x1 − x2

subject to x2 ≥ x2
1,

x2 ≤ x1 + 2.

Solution: The Lagrange function reads L(x, λ) = −x1 − x2 + λ1(x2
1 − x2) + λ2(x1 − 2− x2).

The KKT conditions are

∇xL(x, λ) =
(
−1 + 2λ1x1 − λ2
−1− λ1 + λ2

)
=
(

0
0

)
(1)

λ1(x2
1 − x2) = 0 (2)

λ2(−x1 − 2 + x2) = 0 (3)
λ1, λ2 ≥ 0 (4)

x2 ≥ x2
1

x2 ≤ x1 + 2.
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• λ1 = λ2 = 0: This contradicts (1).

• λ1 = 0, λ2 > 0: By (1), we get λ2 = −1, a contradiction.

• λ2 = 0, λ1 > 0: By the second line in (1), we get λ1 = −1, a contradiction.

• λ1 > 0, λ2 > 0: (3) yields −x1− 2 + x2 = 0, thus x1 = x2− 2. Together with (2), we get
x2 = x2

1 = (x2 − 2)2 and thus x2 = 4 and x2 = 2. If x2 = 2, (2) implies that x1 = 1, but
this contradicts (3). If x − 2 = 4, we get from (3) that x1 = −2. From the first line in
(1) we get that λ1 = 1

3 , and from the second line in (1), it follows that λ2 = 4
3 . So, the

pair (x, λ) with x = (−2, 4)> and λ = (1
3 ,

4
3)> is the only point that satisfies the KKT

conditions.

Problem 3 (Karush-Kuhn-Tucker-Conditions II) [15 points] Here, we randomize
with c = 1, 2, 3, 4, 5.

The point x = (0, 0)> ∈ R2 is a global minimizer of the problem

min
x=(x1,x2)>∈R2

x1

subject to cx2 − x3
1 ≤ 0

−cx2 − x3
1 ≤ 0.

(5)

a) Show that the Karush-Kuhn-Tucker conditions of problem (5) have no solution.

b) Explain why the first-order necessary optimality conditions for constrained optimization
problems are not applicable for x = (0, 0)> ∈ R2.

Solution:
(a) The Lagrange function is L(x, λ) = x1 + λ1(cx2 − x3

1) + λ2(−cx2 − x3
1). We get

∇xL(x, λ) =
(

1− 3cλ1x
2
1 − 3cλ2x

2
1

cλ1 − cλ2

)
=
(

0
0

)
(6)

λ1(cx2 − x3
1) = 0 (7)

λ2(−cx2 − x3
1) = 0 (8)

λ1, λ2 ≥ 0 (9)
x2 ≥ x2

1

x2 ≤ x1 + 2

The second line in (6) implies λ1 = λ2
(9)
≥ 0. If λ1 = λ2 = 0, then the first line in (6) does not

hold. If λ1 = λ2 > 0, then we have by (7) that cx2 − x3
1 = 0 and therefore cx2 = x3

1. By (8),
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we get −cx2−x3
1 and thus −cx2 = x3

1. Together, x1 = x2 = 0, in contradiction to the first line
in (6). Therefore, the KKT conditions have no solution.
(b) Note that the linear independence constraint qualification (LICQ) does not hold:

∇c1(x) =
(
−3x2

1
c

) ∣∣∣∣∣
x=(0,0)>

=
(

0
c

)

∇c2(x) =
(
−3x2

1
−c

) ∣∣∣∣∣
x=(0,0)>

=
(

0
−c

)
.

{
(0, c)>, (0,−c)>

}
is not linearly independent. Therefore, the first-order necessary optimality

conditions for constrained optimization problems are not applicable here.

Problem 4 (Linear Programs - Duality) [15 points]

Consider the following linear program

(LP) min
x∈R4

−2x1 +3x2

subject to −x1 +x2 −x3 = 1,
3x1 −x2 +x4 ≥ 8,
x1 ≥ 0,

x3 ≥ 0.

1. Write down (LP) as an (LP3), i.e., in the form

min c>x
subject to Ax = b, x ≥ 0.

2. Write down the corresponding dual program of the (LP3) and compute a solution of the
dual program.

3. Use a duality result to compute all minimizers of (LP).

Solution:

1. We formulate (LP) as (LP3). Because there are no nonnegativity constraints on x2, x4 ∈
R, we introduce the following variables for i = 2, 4:

x+
i =

{
xi (xi ≥ 0)
0 (xi < 0)
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x−i =
{

0 (xi > 0)
−xi (xi ≤ 0).

This means xi = x+
i −x−i with x+

i , x
−
i ≥ 0 for i = 2, 4. So we have the following problem

which is equivalent to (LP):
min
x
−2x1 + 3x+

2 − 3x−2
subject to − x1 + x+

2 − x−2 − x3 = 1,
3x1 − x+

2 + x−2 + x+
4 − x−4 − y1 = 8,

x1, x
+
2 , x

−
2 , x3, x

+
4 , x

−
4 , y1 ≥ 0,

or
min
x
c>x subject to Ax = b, x ≥ 0

with x = (x1, x
+
2 , x

−
2 , x3, x

+
4 , x

−
4 , y1)>, A =

(
−1 1 −1 −1 0 0 0
3 −1 1 0 1 −1 −1

)
, b = (1, 8)>,

c = (−2, 3,−3, 0, 0, 0, 0)>.

2. The dual problem now reads
b>u→max subject to A>u ≤ c.

Therefore, we have for the dual problem:

u1 + 8u2 →max
subject to − u1 + 3u2 ≤ −2,

u1 − u2 ≤ 3,
−u1 + u2 ≤ −3

−u1 ≤ 0
u2 ≤ 0
−u2 ≤ 0
−u2 ≤ 0
u1, u2 ∈ R,

or, equivalently
u1 + 8u2 →max

bei − u1 + 3u2 ≤ −2,
u1 − u2 = 3,

u1 ≥ 0
u2 = 0.
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Because u2 = 0 and u1 − u2 = 3, we get u1 = 3. Setting ū := (3, 0)>. ū satisfies all
constraints and {ū} is therefore the set of all feasible points of the corresponding dual
problem of (LP). Therefore, ū is the optimal solution of the dual problem, with optimal
function value 3.

3. By our duality results, we get for the minimizer of (LP) that −2x1 + 3x2 = 3. Together
with the constraints we get the system

−2x1 + 3x2 = 3, (10)
−x1 + x2 − x3 = 1, (11)
3x1 − x2 + x4 ≥ 8, (12)

x1, x3 ≥ 0. (13)

(10) implies x2 = 2
3x1 + 1. Plugging this into (11) yields −x1 + 2

3x1 + 1 − x3 = 1.
Therefore,

x3 = −1
3x1 (14)

Putting this into (12) yields 3x1 − 2
3x1 − 1 + x4 ≥ 8, leading to

x4 ≥ −
7
3x1 + 9 (15)

Because of (14) and x1, x3 ≥ 0, we have x1 = x3 = 0.
Putting x1 = 0 in (15) implies x4 ≥ 9.
Setting x1 = x3 = 0 in (11) yields x2 = 1. Therefore, we can conclude that x̄ is a
minimizer for (LP) if and only if x̄ has the form x̄ = (0, 1, 0, x4)> with x4 ≥ 9.

Problem 5 (Linear Programs) [10 points]

Consider the linear optimization problem:

min
x=(x1,x2)>

−c1x1 − c2x2

subject to 2x1 − x2 ≤ 2
x1, x2 ≥ 0

Determine coefficients (c1, c2) of the objective function such that

1. the problem has a unique minimizer.
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2. the problem has multiple minimizers and the set of minimizers is bounded.

3. the problem has multiple minimizers and the set of minimizers is unbounded.

4. the problem has no minimizer.

Solution:

x1

x21 2x1 − x2 ≤ 2

2 x1 ≥ 0

3 x2 ≥ 0

(a)
(b)

(c)

(d)

(a) c = (1, −1)> opt value = 1 being attained at (1, 0)>

(b) c = (0, −1)> opt value = 0, set is line segment from (0, 0)> to (1, 0)>

(c) c = (−1, 0)> opt value = 0, set goes along the x2-axis with x2 ≥ 0

(d) c = (0, 1)>

Problem 6 (Steepest Descent) [15 points]
Consider the function f : Rn → R,

f(x) = x>Hx− b>x

with a symmetric positive definite matrix H ∈ Rn,n. Let x0− x̃ be an eigenvector of H. Show
that the iteration xk+1 = xk+αkpk with the search direction pk = −∇f(xk) finds the minimizer
x̃ in one step. Explain how αk needs to be chosen for this result to hold.
Solution: We have ∇f = 2Hx− b, and so, for a minimizer we get ∇f = 2Hx̃− b = 0, such
that x̃ = 1

2H
−1b (H−1 exists because H is a symmetric positive definite matrix). We get for
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the search direction: pk = −∇f(xk) = −2Hxk + b, and so, p0 = b− 2Hx0. We want to show
that x̃ = x0 + αp0, which is equivalent to

x0 − x̃ = −αp0. (16)

We know: −p0 = 2Hx0 − b = 2Hx0 − 2Hx̃ = 2H(x0 − x̃). With this, our claim (16) is
equivalent to

(I − 2αkH)(x0 − x̃) = 0. (17)
Since x0 − x̃ is an eigenvector of H, we have

(x0 − x̃) · λ︸︷︷︸
eigenvalue

= H(x0 − x̃),

or, equivalently,
(x0 − x̃) · (λI −H) = 0.

Comparing this with (17), we see that αk = 1
2λ yields the desired result. Note that λ > 0,

because H is symmetric positive definite, and so, αk is well-defined.

Problem 7 (Wolfe Conditions) [15 points]
In the lecture, we have proven the following results: Let the function f : Rn → R be contin-
uously differentiable, pk be a descent direction at xk , and assume that f is bounded below
along the ray {xk + αpk|α > 0}. Then, if 0 < c1 < c2 < 1, there exist intervals of step lengths
satisfying the Wolfe conditions. Show that such intervals may no longer exist if 0 < c2 < c1 < 1
by providing and discussing an explicit counterexample for a specific function f .

Solution: The Wolfe conditions are:

Φ(α) ≤ f(xk + c1α∇fk
>
pk)︸ ︷︷ ︸

sufficient decrease

(18)

Φ′(α) ≤ c2Φ′(0)︸ ︷︷ ︸
curvature condition

(19)

For example, let f(x) = x2, xk = x = −1, pk = p = 1, c1 = 0.98, c2 = 0.02. Then
Φ(α) = f(x+αp) = (x+αp)2 = x2 +2αxp+α2p2 = α2−2α+1. We also have Φ′(α) = 2α−2.
The sufficient decrease condition (18) yields

Φ(α) ≤ f(x) + c1αf
′(x)p = 1− 2c1α.

Thus,
Φ(α) = α2 − 2α− 1 ≤ 1− 1.98α,
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leading to α2− 0.02α ≤ 0. This holds true only for α ∈ [0, 0.02]. The curvature condition (19)
leads to

Φ′(α) = 2α− 2 ≥ c2 · Φ′(0) = −0.02,

which gives α ≥ 0.99, a contradiction.

Problem 8 (Trust-Region Method) [15 points]
Let x = (x1, x2)>,

f(x) = x4
1 + 3x2

1 + 4x2
2.

Compute, explicitly and in detail, one step for the trust region method (that is, until
you reach x1) with the model function m(p) = f(xk) + gk

>
p + 1

2p
>Hkp, with gk = ∇f(xk),

Hk = ∇2f(xk), trust-region radius ∆ = 1, parameters η1 = 0.2, η2 = 0.9, σ1 = 0.5, σ2 = 2 and
starting point

x0 = (−2, 0)>.

Solution: It holds
∇f(x) =

(
4x3

1 + 6x1
8x2,

)
and

∇2f(x) =
(

12x2
1 + 6 0
0 8

)
.

Note that ∇2f(x) is symmetric and positive definite for all x:

x>∇2f(x)x = (x1, x2)
(

12x2
1 + 6 0
0 8

)(
x1
x2

)
= (12x2

1 + 6)x2
1 + 8x2

2 > 0 for all x ∈ R2

(or, because the matrix is symmetric and the eigenvalues are the elements in the diagonal, it
can be seen that the eigenvalues are positive for all x ∈ R2, and thus the matrix is symmetric
positive definite). We have

g0 = ∇f(x0) =
(

4 · (−2)3 − 6 · 2
0

)
=
(
−44

0

)

and
H0 = ∇2f(x0) =

(
12 · (−2)2 + 6 0

0 8

)
=
(

54 0
0 8

)
.

We get

H−1
0 =

(
1
54 0
0 1

8

)
.
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Furthermore,

||H−1
0 g0|| = ||

(
1
54 0
0 1

8

)
·
(
−44

0

)
|| = ||

(
−44

54
0

)
|| = ||

(
−22

27
0

)
|| =

√(−22
27

)2
= 22

27 < 1 = ∆.

Therefore, p0 = −H−1
0 g0 =

(
44
54
0

)
=
(

22
27
0

)
. So we get x̂0 = x0 + p0 =

(
−2
0

)
+
(

22
27
0

)
=
(
−32

27
0

)
.

We compute the decrease:

δ0 = f(x0)− f(x̂0)
m(0)︸ ︷︷ ︸
=f(x0)

− m(p0)︸ ︷︷ ︸
=28+g0>p0+ 1

2p
0>H0p0≈−7.84

≈ 28− 6.187
28 + 7.84 ≈ 0.6085.

We have δ0 ≈ 0.6085 ∈ [ η1︸︷︷︸
=0.2

, η2︸︷︷︸
=0.9

]. Therefore, we choose ∆1 ∈ [ σ1︸︷︷︸
=0.5

·∆,∆], which means that

the trust-region radius will be shrinked. Moreover, δ0 > η1 = 0.2, and so, x1 := x̂0 is the new
iteration point.


