Norwegian University of Science and Technology
Department of Mathematical
Sciences

Solutions to exercise set 5

Assume that $\Omega \subset \mathbb{R}^{n}$ is a closed and convex set. Recall that we can define in this case for $x \in \Omega$ the normal cone $N_{\Omega}(x)$ as

$$
N_{\Omega}(x)=\left\{q \in \mathbb{R}^{n}: q^{T}(\hat{x}-x) \leq 0 \text { for all } \hat{x} \in \Omega\right\}
$$

and the tangent cone $T_{\Omega}(x)$ as

$$
T_{\Omega}(x)=\left\{p \in \mathbb{R}^{n}: p^{T} q \leq 0 \text { for all } q \in N_{\Omega}(x)\right\}
$$

1 Assume that $\Omega \subset \mathbb{R}^{n}$ is non-empty, convex, and closed, and that $x \in \Omega$. Show that $N_{\Omega}(x)$ and $T_{\Omega}(x)$ are non-empty, closed, and convex cones. ${ }^{1}$

Solution: We shall prove said properties for $N_{\Omega}(x)$ only; the proofs for $T_{\Omega}(x)$ are similar. As we have $0 \in N_{\Omega}(x)$, it is not empty. To prove that $N_{\Omega}(x)$ is closed, we note that any sequence $\left(q_{i}\right) \subset N_{\Omega}(x)$ satisfies (by definition) $q_{i}{ }^{T}(\hat{x}-x) \leq 0$ for all $\hat{x} \in \Omega$, and so if $q_{i} \rightarrow q \in \mathbb{R}^{n}$, we must have by continuity $q^{T}(\hat{x}-x) \leq 0$ for all $\hat{x} \in \Omega$; thus $q \in N_{\Omega}(x)$ and so $N_{\Omega}(x)$ is closed. To show that $N_{\Omega}(x)$ is a cone, note that for $t>0$ we have

$$
t q^{T}(\hat{x}-x) \leq 0 \quad \Leftrightarrow \quad q^{T}(\hat{x}-x) \leq 0
$$

and so $t q \in N_{\Omega}(x) \Leftrightarrow q \in N_{\Omega}(x)$. For convexity, we pick $q_{0}, q_{1} \in N_{\Omega}(x)$ and $0<t<1$. By the cone property we have $t q_{0} \in N_{\Omega}(x)$ and $(1-t) q_{1} \in N_{\Omega}(x)$, and so for any $\hat{x} \in \Omega$

$$
t q_{0}^{T}(\hat{x}-x) \leq 0, \quad(1-t) q_{1}^{T}(\hat{x}-x) \leq 0
$$

Adding this two inequalities together, we obtain (for any $\hat{x} \in \Omega$)

$$
\begin{aligned}
0 & \geq t q_{0}^{T}(\hat{x}-x)+(1-t) q_{1}^{T}(\hat{x}-x), \\
& =\left(t q_{0}+(1-t) q_{1}\right)^{T}(\hat{x}-x),
\end{aligned}
$$

and so $\left(t q_{0}+(1-t) q_{1}\right) \in N_{\Omega}(x)$; in particular, $N_{\Omega}(x)$ is convex.

2 Consider the sets

$$
\Omega_{1}:=\left\{x \in \mathbb{R}^{n}:\|x\|_{\infty} \leq 1\right\}
$$

and

$$
\Omega_{2}:=\left\{x \in \mathbb{R}^{n}:\|x\|_{2} \leq 1\right\}
$$

[^0]a) Show that Ω_{1} and Ω_{2} are non-empty, convex, and closed.

Solution: $0 \in \Omega_{i}, i=1,2$ so the sets are non-empty. Since both sets are unit balls with respect to to some norm, we have for arbitrary $x, y \in \Omega_{i}, i=1,2$, $\lambda \in[0,1]:\|\lambda x+(1-\lambda) y\| \leq\|\lambda x\|+\|(1-\lambda) y\|=\lambda\|x\|+(1-\lambda)\|y\|$; thereby we have shown convexity.
Closedness follows immediately from the continuity of the norm.
b) In dimension $d=2$, determine the normal and tangent cones to the sets Ω_{1} and Ω_{2} at the point $x=(1,0)$. In addition, determine the normal and tangent cones to Ω_{1} at the point $x=(1,1)$.

Hint: This exercise will probably become easier if you start with drawing a sketch.

Solution: Ω_{1} can be defined by the four (smooth) inequality constraints

$$
\begin{aligned}
& 0 \geq c_{1}(x)=-x_{1}-1 \\
& 0 \geq c_{2}(x)=x_{1}-1 \\
& 0 \geq c_{3}(x)=-x_{2}-1 \\
& 0 \geq c_{4}(x)=x_{2}-1
\end{aligned}
$$

At the point $\hat{x}=\left(\hat{x}_{1}, \hat{x}_{2}\right)=(1,0)$ we see that only $c_{2}=0$, that is c_{2} is the only 'active' constraint here. The normal cone is then generated by $-\nabla c_{2}(\hat{x})$ (meaning that all elements of $N_{\Omega_{1}}(\hat{x})$ are given by this vector times a positive constant). Since $-\nabla c_{2}(\hat{x})=[1,0]^{T}$, we obtain

$$
N_{\Omega_{1}}(\hat{x})=\left\{\left[\begin{array}{l}
t \\
0
\end{array}\right]: t \geq 0\right\} .
$$

We easily get the tangent cone by noting that $p^{T}\left(-\nabla c_{2}(\hat{x})\right)=p_{1} * 1+p_{2} * 0=p_{1}$, and so for all (nonzero) $q \in N_{\Omega_{1}}(\hat{x})$, we have $p^{T} q \leq 0$ if, and only if, $p_{1} \leq 0$. Thus

$$
T_{\Omega_{1}}(\hat{x})=\left\{p \in \mathbb{R}^{2}: p_{1} \leq 0\right\}
$$

For Ω_{2}, we see that it is given by the inequality constraint

$$
0 \geq c(x)=1-x_{1}^{2}-x_{2}^{2}
$$

As $c(\hat{x})=0$ the normal cone is generated by $-\nabla c(\hat{x})=[2,0]^{T}$, or equivalently generated by $[1,0]^{T}$, thus $N_{\Omega_{2}}(\hat{x})=N_{\Omega_{1}}(\hat{x})$, and consequently we also have $T_{\Omega_{2}}(\hat{x})=T_{\Omega_{2}}(\hat{x})$.

For the last part of the exercise, we set $\hat{x}=(1,1)$. At this point we see that both $c_{2}(\hat{x})=0$ and $c_{4}(\hat{x})=0$, while $c_{1}(\hat{x}) \neq 0 \neq c_{3}(\hat{x})$. Consequently the normal cone is generated by $-\nabla c_{2}(\hat{x})=[1,0]^{T}$ and $-\nabla c_{4}(\hat{x})=[0,1]^{T}$ and so

$$
N_{\Omega_{1}}(\hat{x})=\left\{\left[\begin{array}{l}
t \\
s
\end{array}\right]: t, s \geq 0\right\}
$$

To calculate the tangent cone we see that a vector p satisfies

$$
p_{1} \cdot t+p_{2} \cdot s \leq 0
$$

for all $t, s \geq 0$ if, and only if, $p_{1}, p_{2} \leq 0$. Thus

$$
T_{\Omega_{1}}(\hat{x})=\left\{\left[\begin{array}{l}
t \\
s
\end{array}\right]: t, s \leq 0\right\}
$$

c) Consider the projection problems

$$
\pi_{\Omega_{i}}(z)=\underset{x \in \Omega_{i}}{\arg \min } \frac{1}{2}\|x-z\|_{2}^{2}
$$

Use the variational characterisation of the projection $\left(\left(\pi_{\Omega_{i}}(z)-z\right)^{T}\left(x-\pi_{\Omega_{i}}(z)\right) \geq\right.$ 0 for all $\left.x \in \Omega_{i}\right)$ to verify the formulas

$$
\pi_{\Omega_{1}}(z)=\left(\max \left\{-1, \min \left\{1, z_{i}\right\}\right\}\right)_{i=1, \ldots, n}
$$

and

$$
\pi_{\Omega_{2}}(z)=\frac{z}{\max \left\{1,\|z\|_{2}\right\}}
$$

Solution: Starting with Ω_{1}, we denote for simplicity $x^{*}=\pi_{\Omega_{1}}(z)$. By the variational characterisation, we get

$$
\begin{equation*}
0 \leq\left(x^{*}-z\right)^{T}\left(x-x^{*}\right)=\sum_{i=1}^{n}\left(x_{i}^{*}-z_{i}\right)\left(x_{i}-x_{i}^{*}\right) \tag{1}
\end{equation*}
$$

for all $x \in \Omega_{1}$. We can analyse this sum term by term, by simply selecting $x=\left(x_{1}^{*}, \ldots, x_{i-1}^{*}, x_{i}, x_{i+1}^{*}, \ldots, x_{n}^{*}\right)$. Then all the terms in the sum above vanish, except for the i th, and we obtain

$$
\begin{equation*}
0 \leq\left(x_{i}^{*}-z_{i}\right)\left(x_{i}-x_{i}^{*}\right) \tag{2}
\end{equation*}
$$

We break the analysis down to three cases.
Case 1: $-1 \leq z_{i} \leq 1$. We set $x_{i}=z_{i}$ and (2) becomes $0 \leq-\left(x_{i}^{*}-z_{i}\right)^{2}$. For this to be satisfied, we deduce that $x_{i}^{*}=z_{i}$.
Case 2: $z_{i}<-1$. We set $x_{i}=-1$, and (2) becomes $0 \leq-\left(x_{i}^{*}-z_{i}\right)\left(1+x_{i}^{*}\right)$. Note that, since $\left\|x^{*}\right\|_{\infty} \leq 1$, we have $x_{i}^{*} \geq-1$ and so consequently $x_{i}^{*}-z_{i}>0$ while $\left(1+x_{i}^{*}\right) \geq 0$. Thus $0 \leq-\left(x_{i}^{*}-z_{i}\right)\left(1+x_{i}^{*}\right)$ if, and only if, $x_{i}^{*}=-1$.
Case 3: $z_{i} \geq 1$. By similar analysis as in the previous case (now with $x_{i}=1$), we deduce that $x_{i}^{*}=1$.
We have componentwise computed x_{i}^{*} given z_{i}. The three cases can be summarized as $x_{i}^{*}=\min \left\{1, \max \left\{-1, z_{i}\right\}\right\}$.
Let us now deal with projections onto Ω_{2}. Again, we denote $x^{*}=\pi_{\Omega_{2}}(z)$. In the previous part, we used different values of x to compute x^{*}. Although this could similarly be done here, it is easier to insert the given expression for x^{*} and see that the optimality condition (variational characterisation) is satisfied. If $\|z\|_{2} \leq 1$ then we can put $x^{*}=z$, and the optimality conditions will be satisfied (left hand side of the inequality will be identically equal to zero). If, on the other hand $\|z\|_{2}>1$, we plug $x=z /\|z\|_{2}$ into (1) and get

$$
\begin{aligned}
0 & \leq\left(x^{*}-z\right)^{T}\left(x-x^{*}\right) \\
& =\left(1-1 /\|z\|_{2}\right)\left(\|z\|_{2}-z^{T} x\right)
\end{aligned}
$$

As $1-1 /\|z\|_{2}>0$ and $\|z\|_{2}-z^{T} x \geq\|z\|_{2}\left(1-\|x\|_{2}\right) \geq 0\left(\right.$ as $\|x\|_{2} \leq 1$), we see that the optimality condition is satisfied for all $\|x\|_{2} \leq 1$.
In summary, $x^{*}=z / \max \{1,\|z\|\}$.
d) Consider now the case $n=2$ and let

$$
f(x)=x_{1}^{2}+\left(x_{2}+2\right)^{2}
$$

Find the global solution of the problem

$$
\min _{x \in \Omega_{1}} f(x)
$$

(you can do this graphically, if you want) and perform one step of the gradient projection method

$$
x^{(k+1)} \leftarrow \pi_{\Omega_{1}}\left(x^{(k)}-\alpha \nabla f\left(x^{(k)}\right)\right)
$$

with step length $\alpha=1 / 2$ starting at $x^{(0)}=(1,1)$.
Solution: We are looking for the point in Ω_{1} which is closest to $z=(0,-2)$. This is evidently $x^{*}=(0,-1)$, which is a projection of z onto Ω_{1}.
We now compute the projected gradient step. First note that $\nabla f\left(x^{(0)}\right)=$ $\left[2 x_{1}^{(0)}, 2\left(x_{2}^{(0)}+2\right)\right]^{\top}=[2,6]^{\top}$. And so $x^{(0)}-\frac{1}{2} \nabla f\left(x^{(0)}\right)=(0,-2)$. Therefore $x^{(1)}=\pi_{\Omega_{1}}((0,-2))=(0,-1)$, that is, the method converges in one step.

3 Assume that $\Omega \subset \mathbb{R}^{n}$ is non-empty, convex and closed. Show that the projection mapping $\pi_{\Omega}: \mathbb{R}^{n} \rightarrow \Omega$ is a non-expansive map in the sense that

$$
\left\|\pi_{\Omega}(x)-\pi_{\Omega}(y)\right\|_{2} \leq\|x-y\|_{2}
$$

for all $x, y \in \mathbb{R}^{n}$.
Hint: Show first that

$$
\left(\pi_{\Omega}(x)-x\right)^{T}\left(\pi_{\Omega}(y)-\pi_{\Omega}(x)\right) \geq 0 \quad \text { and } \quad\left(\pi_{\Omega}(y)-y\right)^{T}\left(\pi_{\Omega}(x)-\pi_{\Omega}(y)\right) \geq 0
$$

Then consider the function $g: \mathbb{R} \rightarrow \mathbb{R}$,

$$
g(\lambda):=\left\|\lambda(x-y)+(1-\lambda)\left(\pi_{\Omega}(x)-\pi_{\Omega}(y)\right)\right\|_{2}^{2}
$$

Show that $g^{\prime}(0) \geq 0$ and deduce from the fact that g is quadratic that $g(1) \geq g(0)$.

Solution: Fix $x \in \mathbb{R}^{n}$. By the variational conditions given in the previous exercise, we know that

$$
\left(\pi_{\Omega}(x)-x\right)^{T}\left(v-\pi_{\Omega}(x)\right) \geq 0
$$

for all $v \in \Omega$. In particular, $\pi_{\Omega}(y) \in \Omega$ for all $y \in \mathbb{R}^{n}$, and so we get

$$
\left(\pi_{\Omega}(x)-x\right)^{T}\left(\pi_{\Omega}(y)-\pi_{\Omega}(x)\right) \geq 0
$$

By swapping x and y we also get the second inequality from the hint. Let $g(\lambda)$ be defined as in the hint. Then

$$
g^{\prime}(\lambda)=\left(x-y-\pi_{\Omega}(x)+\pi_{\Omega}(y)\right)^{T}\left(\lambda(x-y)+(1-\lambda)\left(\pi_{\Omega}(x)-\pi_{\Omega}(y)\right)\right)
$$

And so for $\lambda=0$ we get

$$
\begin{aligned}
g^{\prime}(0) & =\left(x-y-\pi_{\Omega}(x)+\pi_{\Omega}(y)\right)^{T}\left(\pi_{\Omega}(x)-\pi_{\Omega}(y)\right) \\
& =\left(\pi_{\Omega}(x)-x\right)^{T}\left(\pi_{\Omega}(y)-\pi_{\Omega}(x)\right)+\left(\pi_{\Omega}(y)-y\right)^{T}\left(\pi_{\Omega}(x)-\pi_{\Omega}(y)\right) \\
& \geq 0
\end{aligned}
$$

As g is a positive quadratic function g^{\prime} is non-decreasing function, and so $g^{\prime}(\lambda) \geq 0$ for all $0 \leq \lambda \leq 1$. In particular, this implies $g(1)-g(0)=\int_{0}^{1} g^{\prime}(\lambda) d \lambda \geq 0$. Writing this inequality out in full, we get the result

$$
\left\|\pi_{\Omega}(x)-\pi_{\Omega}(y)\right\|_{2}^{2}=g(0) \leq g(1)=\|x-y\|_{2}^{2}
$$

44 Let $A \in \mathbb{R}^{m \times n}$ with $m \geq n$ have full rank, let $b \in \mathbb{R}^{m}$, and let $\Omega \subset \mathbb{R}^{n}$ be non-empty, convex, and closed. Consider the restricted least squares problem

$$
\begin{equation*}
\min _{x \in \Omega} f(x) \quad \text { with } f(x)=\frac{1}{2}\|A x-b\|_{2}^{2} \tag{3}
\end{equation*}
$$

and the gradient projection algorithm

$$
x^{(k+1)} \leftarrow \pi_{\Omega}\left(x^{(k)}-\alpha \nabla f\left(x^{(k)}\right)\right)
$$

Show that this algorithm converges to the unique solution of (3) provided that $0<\alpha<2 / \sigma_{\max }^{2}$, where $\sigma_{\max }$ denotes the largest singular value of A.

Hint: Show that the gradient descent step $x \mapsto x-\alpha \nabla f(x)$ is a contraction on \mathbb{R}^{n}, and then use the result of the previous exercise.

Solution: We want to show that the map $T: x \mapsto x-\alpha \nabla f(x)$ is a contraction mapping. First note that

$$
\nabla f(x)=A^{T} A x-A^{T} b
$$

and so a quick calculations gives

$$
\begin{aligned}
\|T(x)-T(y)\|_{2} & =\|x-y-\alpha(\nabla f(x)-\nabla f(y))\|_{2} \\
& =\left\|\left(I-\alpha A^{T} A\right)(x-y)\right\|_{2} \\
& =:\|B(x-y)\|_{2}
\end{aligned}
$$

where we define $B=\left(I-\alpha A^{T} A\right)$. Denote the singular values of A by $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}$. The singular values of $A^{T} A$ are then given by $\sigma_{1}^{2}, \sigma_{2}^{2}, \ldots, \sigma_{n}^{2}$, and furthermore, the singular values of B are exactly $\tilde{\sigma}_{i}=\left|1-\alpha \sigma_{i}^{2}\right|$ for $i=1,2, \ldots, n$. For simplicity, denote

$$
\rho:=\max _{i=1,2, \ldots, n}\left|1-\alpha \sigma_{i}^{2}\right|
$$

As ρ is the largest singular value of B, we have $\|B(x-y)\|_{2} \leq \rho\|x-y\|_{2}$; from this, and the calculation above, we see that T is a contraction on \mathbb{R}^{n} if $\rho<1$. To see that this is indeed true, define

$$
\sigma_{\min }:=\min _{i=1,2, \ldots, n} \sigma_{i}, \quad \sigma_{\max }:=\max _{i=1,2, \ldots, n} \sigma_{i}
$$

We have $1-\alpha \sigma_{\max }^{2} \leq 1-\alpha \sigma_{i}^{2} \leq 1-\alpha \sigma_{\text {min }}^{2}$ for all i, since α is positive. Exploiting $\alpha<2 / \sigma_{\text {max }}^{2}$, we get

$$
-1<1-\alpha \sigma_{\max }^{2},
$$

and since A has full rank we also have $0<\sigma_{\min }$, which implies

$$
1-\alpha \sigma_{\min }^{2}<1
$$

Thus $\left|1-\alpha \sigma_{i}^{2}\right|<1$ for all i, and so $\rho<1$, which implies that T is a contraction mapping.
Finally, the gradient projection algorithm can be summarized as

$$
x^{(k+1)} \leftarrow \pi_{\Omega} \circ T\left(x^{(k)}\right) .
$$

By the previous exercise we saw that π_{Ω} is a non-expansive map, and so $\pi_{\Omega} \circ T$ is also a contraction mapping. The algorithm then converges by the Banach fixed point theorem.

[^0]: ${ }^{1} \mathrm{~A}$ subset $C \subset \mathbb{R}^{n}$ is called a cone, if, whenever $p \in C$, then also $\lambda p \in C$ for all $\lambda>0$.

