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Solutions to exercise set 5

Assume that Ω ⊂ Rn is a closed and convex set. Recall that we can define in this case for
x ∈ Ω the normal cone NΩ(x) as

NΩ(x) =
{
q ∈ Rn : qT (x̂− x) ≤ 0 for all x̂ ∈ Ω

}
,

and the tangent cone TΩ(x) as

TΩ(x) =
{
p ∈ Rn : pT q ≤ 0 for all q ∈ NΩ(x)

}
.

1 Assume that Ω ⊂ Rn is non-empty, convex, and closed, and that x ∈ Ω. Show that
NΩ(x) and TΩ(x) are non-empty, closed, and convex cones.1

Solution: We shall prove said properties for NΩ(x) only; the proofs for TΩ(x) are
similar. As we have 0 ∈ NΩ(x), it is not empty. To prove that NΩ(x) is closed, we
note that any sequence (qi) ⊂ NΩ(x) satisfies (by definition) qi

T (x̂ − x) ≤ 0 for all
x̂ ∈ Ω, and so if qi → q ∈ Rn, we must have by continuity qT (x̂ − x) ≤ 0 for all
x̂ ∈ Ω; thus q ∈ NΩ(x) and so NΩ(x) is closed. To show that NΩ(x) is a cone, note
that for t > 0 we have

tqT (x̂− x) ≤ 0 ⇔ qT (x̂− x) ≤ 0,

and so tq ∈ NΩ(x) ⇔ q ∈ NΩ(x). For convexity, we pick q0, q1 ∈ NΩ(x) and
0 < t < 1. By the cone property we have tq0 ∈ NΩ(x) and (1 − t)q1 ∈ NΩ(x), and
so for any x̂ ∈ Ω

tqT0 (x̂− x) ≤ 0, (1− t)qT1 (x̂− x) ≤ 0.

Adding this two inequalities together, we obtain (for any x̂ ∈ Ω)

0 ≥ tqT0 (x̂− x) + (1− t)qT1 (x̂− x),

= (tq0 + (1− t)q1)T (x̂− x),

and so (tq0 + (1− t)q1) ∈ NΩ(x); in particular, NΩ(x) is convex.

2 Consider the sets
Ω1 :=

{
x ∈ Rn : ‖x‖∞ ≤ 1

}
and

Ω2 :=
{
x ∈ Rn : ‖x‖2 ≤ 1

}
.

1A subset C ⊂ Rn is called a cone, if, whenever p ∈ C, then also λp ∈ C for all λ > 0.
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a) Show that Ω1 and Ω2 are non-empty, convex, and closed.

Solution: 0 ∈ Ωi, i = 1, 2 so the sets are non-empty. Since both sets are unit
balls with respect to to some norm, we have for arbitrary x, y ∈ Ωi, i = 1, 2,
λ ∈ [0, 1]: ‖λx+ (1− λ)y‖ ≤ ‖λx‖+ ‖(1− λ)y‖ = λ‖x‖+ (1− λ)‖y‖; thereby
we have shown convexity.

Closedness follows immediately from the continuity of the norm.

b) In dimension d = 2, determine the normal and tangent cones to the sets Ω1

and Ω2 at the point x = (1, 0). In addition, determine the normal and tangent
cones to Ω1 at the point x = (1, 1).

Hint: This exercise will probably become easier if you start with drawing a
sketch.

Solution: Ω1 can be defined by the four (smooth) inequality constraints

0 ≥ c1(x) = −x1 − 1,

0 ≥ c2(x) = x1 − 1,

0 ≥ c3(x) = −x2 − 1,

0 ≥ c4(x) = x2 − 1.

At the point x̂ = (x̂1, x̂2) = (1, 0) we see that only c2 = 0, that is c2 is the
only ‘active’ constraint here. The normal cone is then generated by −∇c2(x̂)
(meaning that all elements of NΩ1(x̂) are given by this vector times a positive
constant). Since −∇c2(x̂) = [1, 0]T , we obtain

NΩ1(x̂) =
{[t

0

]
: t ≥ 0

}
.

We easily get the tangent cone by noting that pT (−∇c2(x̂)) = p1∗1+p2∗0 = p1,
and so for all (nonzero) q ∈ NΩ1(x̂), we have pT q ≤ 0 if, and only if, p1 ≤ 0.
Thus

TΩ1(x̂) = {p ∈ R2 : p1 ≤ 0}.

For Ω2, we see that it is given by the inequality constraint

0 ≥ c(x) = 1− x21 − x22.

As c(x̂) = 0 the normal cone is generated by −∇c(x̂) = [2, 0]T , or equivalently
generated by [1, 0]T , thus NΩ2(x̂) = NΩ1(x̂), and consequently we also have
TΩ2(x̂) = TΩ2(x̂).

For the last part of the exercise, we set x̂ = (1, 1). At this point we see
that both c2(x̂) = 0 and c4(x̂) = 0, while c1(x̂) 6= 0 6= c3(x̂). Consequently the
normal cone is generated by −∇c2(x̂) = [1, 0]T and −∇c4(x̂) = [0, 1]T and so

NΩ1(x̂) =
{[t

s

]
: t, s ≥ 0

}
.

To calculate the tangent cone we see that a vector p satisfies

p1 · t+ p2 · s ≤ 0,
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for all t, s ≥ 0 if, and only if, p1, p2 ≤ 0. Thus

TΩ1(x̂) =
{[t

s

]
: t, s ≤ 0

}
.

c) Consider the projection problems

πΩi(z) = arg min
x∈Ωi

1

2
‖x− z‖22.

Use the variational characterisation of the projection ((πΩi(z)−z)T (x−πΩi(z)) ≥
0 for all x ∈ Ωi) to verify the formulas

πΩ1(z) =
(
max{−1,min{1, zi}}

)
i=1,...,n

and
πΩ2(z) =

z

max{1, ‖z‖2}
.

Solution: Starting with Ω1, we denote for simplicity x∗ = πΩ1(z). By the
variational characterisation, we get

0 ≤ (x∗ − z)T (x− x∗) =
n∑
i=1

(x∗i − zi)(xi − x∗i ), (1)

for all x ∈ Ω1. We can analyse this sum term by term, by simply selecting
x = (x∗1, . . . , x

∗
i−1, xi, x

∗
i+1, . . . , x

∗
n). Then all the terms in the sum above vanish,

except for the ith, and we obtain

0 ≤ (x∗i − zi)(xi − x∗i ). (2)

We break the analysis down to three cases.
Case 1 : −1 ≤ zi ≤ 1. We set xi = zi and (2) becomes 0 ≤ −(x∗i − zi)2. For
this to be satisfied, we deduce that x∗i = zi.
Case 2 : zi < −1. We set xi = −1, and (2) becomes 0 ≤ −(x∗i − zi)(1 + x∗i ).
Note that, since ‖x∗‖∞ ≤ 1, we have x∗i ≥ −1 and so consequently x∗i − zi > 0
while (1 + x∗i ) ≥ 0. Thus 0 ≤ −(x∗i − zi)(1 + x∗i ) if, and only if, x∗i = −1.
Case 3 : zi ≥ 1. By similar analysis as in the previous case (now with xi = 1),
we deduce that x∗i = 1.

We have componentwise computed x∗i given zi. The three cases can be sum-
marized as x∗i = min{1,max{−1, zi}}.

Let us now deal with projections onto Ω2. Again, we denote x∗ = πΩ2(z). In
the previous part, we used different values of x to compute x∗. Although this
could similarly be done here, it is easier to insert the given expression for x∗

and see that the optimality condition (variational characterisation) is satisfied.
If ‖z‖2 ≤ 1 then we can put x∗ = z, and the optimality conditions will be
satisfied (left hand side of the inequality will be identically equal to zero). If,
on the other hand ‖z‖2 > 1, we plug x = z/‖z‖2 into (1) and get

0 ≤ (x∗ − z)T (x− x∗)
= (1− 1/‖z‖2)(‖z‖2 − zTx).

As 1− 1/‖z‖2 > 0 and ‖z‖2 − zTx ≥ ‖z‖2(1− ‖x‖2) ≥ 0 (as ‖x‖2 ≤ 1), we see
that the optimality condition is satisfied for all ‖x‖2 ≤ 1.

In summary, x∗ = z/max{1, ‖z‖}.
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d) Consider now the case n = 2 and let

f(x) = x21 + (x2 + 2)2.

Find the global solution of the problem

min
x∈Ω1

f(x)

(you can do this graphically, if you want) and perform one step of the gradient
projection method

x(k+1) ← πΩ1(x(k) − α∇f(x(k)))

with step length α = 1/2 starting at x(0) = (1, 1).

Solution: We are looking for the point in Ω1 which is closest to z = (0,−2).
This is evidently x∗ = (0,−1), which is a projection of z onto Ω1.

We now compute the projected gradient step. First note that ∇f(x(0)) =

[2x
(0)
1 , 2(x

(0)
2 + 2)]> = [2, 6]>. And so x(0) − 1

2∇f(x(0)) = (0,−2). Therefore

x(1) = πΩ1((0,−2)) = (0,−1), that is, the method converges in one step.

3 Assume that Ω ⊂ Rn is non-empty, convex and closed. Show that the projection
mapping πΩ : Rn → Ω is a non-expansive map in the sense that

‖πΩ(x)− πΩ(y)‖2 ≤ ‖x− y‖2

for all x, y ∈ Rn.

Hint: Show first that

(πΩ(x)− x)T (πΩ(y)− πΩ(x)) ≥ 0 and (πΩ(y)− y)T (πΩ(x)− πΩ(y)) ≥ 0.

Then consider the function g : R→ R,

g(λ) := ‖λ(x− y) + (1− λ)(πΩ(x)− πΩ(y))‖22.

Show that g′(0) ≥ 0 and deduce from the fact that g is quadratic that g(1) ≥ g(0).

Solution: Fix x ∈ Rn. By the variational conditions given in the previous exercise,
we know that

(πΩ(x)− x)T (v − πΩ(x)) ≥ 0,

for all v ∈ Ω. In particular, πΩ(y) ∈ Ω for all y ∈ Rn, and so we get

(πΩ(x)− x)T (πΩ(y)− πΩ(x)) ≥ 0.

By swapping x and y we also get the second inequality from the hint. Let g(λ) be
defined as in the hint. Then

g′(λ) = (x− y − πΩ(x) + πΩ(y))T (λ(x− y) + (1− λ)(πΩ(x)− πΩ(y))).
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And so for λ = 0 we get

g′(0) = (x− y − πΩ(x) + πΩ(y))T (πΩ(x)− πΩ(y))

= (πΩ(x)− x)T (πΩ(y)− πΩ(x)) + (πΩ(y)− y)T (πΩ(x)− πΩ(y))

≥ 0.

As g is a positive quadratic function g′ is non-decreasing function, and so g′(λ) ≥ 0
for all 0 ≤ λ ≤ 1. In particular, this implies g(1) − g(0) =

∫ 1
0 g
′(λ)dλ ≥ 0. Writing

this inequality out in full, we get the result

‖πΩ(x)− πΩ(y)‖22 = g(0) ≤ g(1) = ‖x− y‖22.

4 Let A ∈ Rm×n with m ≥ n have full rank, let b ∈ Rm, and let Ω ⊂ Rn be non-empty,
convex, and closed. Consider the restricted least squares problem

min
x∈Ω

f(x) with f(x) =
1

2
‖Ax− b‖22 (3)

and the gradient projection algorithm

x(k+1) ← πΩ
(
x(k) − α∇f(x(k))

)
.

Show that this algorithm converges to the unique solution of (3) provided that
0 < α < 2/σ2max, where σmax denotes the largest singular value of A.

Hint: Show that the gradient descent step x 7→ x− α∇f(x) is a contraction on Rn,
and then use the result of the previous exercise.

Solution: We want to show that the map T : x 7→ x − α∇f(x) is a contraction
mapping. First note that

∇f(x) = ATAx−AT b,

and so a quick calculations gives

‖T (x)− T (y)‖2 = ‖x− y − α(∇f(x)−∇f(y))‖2
= ‖(I − αATA)(x− y)‖2
=: ‖B(x− y)‖2,

where we define B = (I − αATA). Denote the singular values of A by σ1, σ2, ..., σn.
The singular values of ATA are then given by σ21, σ

2
2, ..., σ

2
n, and furthermore, the

singular values of B are exactly σ̃i = |1 − ασ2i | for i = 1, 2, ..., n. For simplicity,
denote

ρ := max
i=1,2,...,n

|1− ασ2i |.

As ρ is the largest singular value of B, we have ‖B(x− y)‖2 ≤ ρ‖x− y‖2; from this,
and the calculation above, we see that T is a contraction on Rn if ρ < 1. To see that
this is indeed true, define

σmin := min
i=1,2,...,n

σi, σmax := max
i=1,2,...,n

σi.
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We have 1 − ασ2max ≤ 1 − ασ2i ≤ 1 − ασ2min for all i, since α is positive. Exploiting
α < 2/σ2max, we get

−1 < 1− ασ2max,

and since A has full rank we also have 0 < σmin, which implies

1− ασ2min < 1.

Thus |1 − ασ2i | < 1 for all i, and so ρ < 1, which implies that T is a contraction
mapping.

Finally, the gradient projection algorithm can be summarized as

x(k+1) ← πΩ ◦ T (x(k)).

By the previous exercise we saw that πΩ is a non-expansive map, and so πΩ ◦ T
is also a contraction mapping. The algorithm then converges by the Banach fixed
point theorem.
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