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Assume that 2 C R" is a closed and convex set. Recall that we can define in this case for
x € {2 the normal cone N (x) as

No(z) ={q€R": ¢" (2 —2) <0 for all # € 2},

and the tangent cone T () as

To(z) = {peR" :plqg<0forallge No(z)}.

Assume that 2 C R” is non-empty, convex, and closed, and that x € (2. Show that
Ngp(z) and T (x) are non-empty, closed, and convex cones. !

Solution: We shall prove said properties for Np(x) only; the proofs for Ty (x) are
similar. As we have 0 € Ng(z), it is not empty. To prove that Np(x) is closed, we
note that any sequence (q;) C Ng(z) satisfies (by definition) ¢;7(# — x) < 0 for all
# € 2, and so if ¢; — ¢ € R”, we must have by continuity ¢’ (# — z) < 0 for all
Z € §2; thus ¢ € Np(z) and so Np(z) is closed. To show that Np(x) is a cone, note
that for ¢ > 0 we have

t"(@-2)<0 <« ¢"(@-2)<0,

and so tq € Ng(z) & ¢ € Ng(z). For convexity, we pick qo,q1 € Ngp(z) and
0 <t < 1. By the cone property we have tqy € No(z) and (1 —t)q1 € Np(x), and
so for any z € {2

tgy (2 —2) <0, (1-t)q (& —x) <0,

Adding this two inequalities together, we obtain (for any & € {2)
0> tg] (& — 2) + (1 - )T (& - ),
= (tgo + (1 = t)q1)" (& — ),

and so (tqo + (1 —t)q1) € No(z); in particular, Ng(z) is convex.

Consider the sets
2 = {.7; ER": ||z|loo < 1}

and
Q2 :={z eR": |zl]z < 1}.

LA subset C' C R" is called a cone, if, whenever p € C, then also Ap € C for all A > 0.
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a)

b)

Show that §2; and {25 are non-empty, convex, and closed.

Solution: 0 € £2;, i = 1,2 so the sets are non-empty. Since both sets are unit
balls with respect to to some norm, we have for arbitrary x,y € (2, i = 1,2,
A€ [0,1]: []Az + (1= Nyl < Azl +[[(1 = Nyl = Az + (1 = A)|ly[|; thereby
we have shown convexity.

Closedness follows immediately from the continuity of the norm.

In dimension d = 2, determine the normal and tangent cones to the sets 21
and (2, at the point z = (1,0). In addition, determine the normal and tangent
cones to {21 at the point x = (1,1).

Hint: This exercise will probably become easier if you start with drawing a
sketch.

Solution: {2 can be defined by the four (smooth) inequality constraints

0>ci(z)=—21—1,
0>cox) =21 — 1,
0>c3(x)=—x9—1,
0>cy(x)=20—1

At the point & = (Z1,22) = (1,0) we see that only co = 0, that is ¢z is the
only ‘active’ constraint here. The normal cone is then generated by —Vea(Z)
(meaning that all elements of N, (%) are given by this vector times a positive
constant). Since —Vez(2) = [1,0]7, we obtain

N, (2) = { m > 0}.

We easily get the tangent cone by noting that p? (=Vea(2)) = p1+1+p2*0 = p1,
and so for all (nonzero) ¢ € Np,(2), we have p’'q < 0 if, and only if, p; < 0.
Thus

To,(2) = {p € R*: p1 < 0}.

For (2, we see that it is given by the inequality constraint
0>clx)=1—2?— 23

As ¢(#) = 0 the normal cone is generated by —Ve(#) = [2,0]T, or equivalently
generated by [1,0]”, thus Np,(2) = Ng,(2), and consequently we also have
T,(2) = To,(2).

For the last part of the exercise, we set £ = (1,1). At this point we see
that both co(#) = 0 and c4(Z) = 0, while ¢ (&) # 0 # c3(2). Consequently the
normal cone is generated by —Vea(2) = [1,0]7 and —Vey(2) = [0,1]7 and so

N, (3) = { [z] Lt5 > 0}.

To calculate the tangent cone we see that a vector p satisfies

p1-t+p2-s<0,
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for all ¢, s > 0 if, and only if, p1, p2 < 0. Thus

T, (&) = { [z] Lts < 0}.

Consider the projection problems

1
7, (2) = arg min §||a: — 2||3.

TES;
Use the variational characterisation of the projection (7, (2)—2)T (z—7g,(2)) >
0 for all = € £2;) to verify the formulas

T (2) = (max{—l, min{1, Zi}})izl,...,

n

and
z

") = LAY

Solution: Starting with (21, we denote for simplicity * = m,(z). By the
variational characterisation, we get

n

0< (z*—2)T(x— 2% :Z(xf—zi)(%—xf)a (1)

=1

for all x € §2;. We can analyse this sum term by term, by simply selecting

r=(x],...,T;_1, T, %], ., ). Then all the terms in the sum above vanish,
except for the ith, and we obtain
0< (2} — 20)(ws — 7). 2)

We break the analysis down to three cases.

Case 1: —1 < z; < 1. We set z; = 2; and (2) becomes 0 < —(z} — z;)?. For
this to be satisfied, we deduce that x} = z;.

Case 2: z; < —1. We set z; = —1, and (2) becomes 0 < —(z} — 2;)(1 + z}).
Note that, since ||2*[|s < 1, we have z7 > —1 and so consequently z} — z; > 0
while (14 z7) > 0. Thus 0 < —(z} — 2z;)(1 + ) if, and only if, 27 = —1.

Case 3: z; > 1. By similar analysis as in the previous case (now with z; = 1),
we deduce that z} = 1.

We have componentwise computed z; given z;. The three cases can be sum-
marized as =7 = min{l, max{—1, z;}}.

Let us now deal with projections onto (2. Again, we denote z* = m,(2). In
the previous part, we used different values of x to compute z*. Although this
could similarly be done here, it is easier to insert the given expression for x*
and see that the optimality condition (variational characterisation) is satisfied.
If ||zll2 < 1 then we can put z* = z, and the optimality conditions will be
satisfied (left hand side of the inequality will be identically equal to zero). If,
on the other hand ||z]|2 > 1, we plug = = z/||z]||2 into (1) and get

0<(z*—2)T(x -2
= (1= 1/lzl2)(ll2ll2 = 2").

As1—1/|z|l2 >0 and ||z|l2 — 272 > ||z]]2(1 — ||z]|2) > 0 (as ||z|2 < 1), we see
that the optimality condition is satisfied for all ||z||s < 1.
In summary, z* = z/ max{1, ||| }.
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d) Consider now the case n = 2 and let
flz) = o+ (22 +2)%
Find the global solution of the problem

min f(z)

(you can do this graphically, if you want) and perform one step of the gradient
projection method
2* D) g (2 — aV ()

with step length o = 1/2 starting at 20 = (1,1).

Solution: We are looking for the point in 2; which is closest to z = (0, —2).
This is evidently «* = (0, —1), which is a projection of z onto §2;.

We now compute the projected gradient step. First note that Vf (w(o)) =
[2x§0),2(x§0) +2)]7 = [2,6]". And so 29 — 1V f(2®) = (0,-2). Therefore
M =75 ((0,-2)) = (0,—1), that is, the method converges in one step.

Assume that 2 C R™ is non-empty, convex and closed. Show that the projection
mapping 7 : R — {2 is a non-expansive map in the sense that

[mo(z) — Tz < [z -yl
for all z, y € R™.
Hint: Show first that
(ro(@) — ) (ro(y) —mo@) =0  and  (roly) — ) (to(z) — maly)) > 0.
Then consider the function g: R — R,
g(N) = Az —y) + (1 = N (mo(z) — 7a2())|5.

Show that ¢'(0) > 0 and deduce from the fact that g is quadratic that g(1) > g(0).

Solution: Fix x € R™. By the variational conditions given in the previous exercise,
we know that
(ra(z) — )T (v = 7a(z)) > 0,

for all v € £2. In particular, mo(y) € £2 for all y € R™, and so we get
(mo(z) — )" (ra(y) — ma(z)) > 0.

By swapping = and y we also get the second inequality from the hint. Let g(\) be
defined as in the hint. Then

g\ = (@ —y = 7mo@) + 7o) Az —y) + (1 = N(ra(z) - ma(y))).

February 10, 2020 Page 4 of 6



Solutions to exercise set 5

And so for A =0 we get
J(0) = (z —y — ma(z) + ma(y) (re(z) — To(y))

= (mo(z) — 2)" (ma(y) — ma(2) + (raly) —y)" (ra(z) — ma(y))

> 0.

As g is a positive quadratic function ¢’ is non-decreasing function, and so g’(\) > 0
for all 0 < A < 1. In particular, this implies g(1) — g(0) = 01 g (A\)d\ > 0. Writing
this inequality out in full, we get the result

Ime(z) — ma(y)l3 = 9(0) < g(1) = [l — yll5.

Let A € R™*™ with m > n have full rank, let b € R™, and let {2 C R™ be non-empty,
convex, and closed. Consider the restricted least squares problem

min f(2) with f(r) = 3| Az — |3 (3)

and the gradient projection algorithm
25 g (x(k) — onf(x(k))).

Show that this algorithm converges to the unique solution of (3) provided that

0 < a<2/ok,., where oyax denotes the largest singular value of A.

Hint: Show that the gradient descent step x +— x — aV f(x) is a contraction on R,
and then use the result of the previous exercise.

Solution: We want to show that the map T : x — x — aV f(z) is a contraction
mapping. First note that
Vf(x)= AT Az — ATb,

and so a quick calculations gives

IT(x) = T2 = llz =y — a(Vf(x) = V)l
=l - aATA)(x — y)|2
=Bz = y)l2,

where we define B = (I — aAT A). Denote the singular values of A by 01,09, ..., 0p.
The singular values of AT A are then given by 02,03, ...,02, and furthermore, the
singular values of B are exactly ; = |1 — aal~2| for i = 1,2,...,n. For simplicity,
denote

pi= max [l—ac]
As p is the largest singular value of B, we have ||B(z —y)||2 < p|lz — y||2; from this,
and the calculation above, we see that 1" is a contraction on R™ if p < 1. To see that

this is indeed true, define

Omin ‘= min oy, Omax ‘= Max oj.
i=1,2,....n 1=1,2,....n

February 10, 2020 Page 5 of 6



Solutions to exercise set 5

2
We have 1 — o ..

a <2/l we get

<1- aa? <1- aafmn for all 4, since « is positive. Exploiting

—1<1-— ao?

max’

and since A has full rank we also have 0 < o, which implies

1-—- ao’?nin <1

Thus |1 — ac?| < 1 for all 4, and so p < 1, which implies that T is a contraction
mapping.

Finally, the gradient projection algorithm can be summarized as
25 7 0 T(a™).

By the previous exercise we saw that m( is a non-expansive map, and so mp o T
is also a contraction mapping. The algorithm then converges by the Banach fixed
point theorem.
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