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Problem 1 Consider the unconstrained optimisation problem

min
x,y

f(x, y),

where f : R2 → R is defined as

f(x, y) = 2x2 − 4xy + y4 + 5y2 − 10y.

a) Determine whether the function f is convex.
(5 points)

b) Find all local and global minimisers of f .
(10 points)

c) Consider now the gradient descent method and the Newton method for the
solution of this optimisation problem, with step lengths chosen according
to backtracking (Armijo) linesearch. Do these methods converge towards a
solution of this optimisation problem? If yes, which of these two methods
would you recommend, and why?
(10 points)

d) Perform one step of the gradient descent method with backtracking (Armijo)
linesearch starting from the point (x, y) = (0, 0). Start with an initial step
length α = 1, and use the parameters c = 0.1 (sufficient decrease parameter)
and ρ = 0.1 (contraction factor).
(10 points)

• Possible solution: We first compute

∇f(x, y) =
(

4x− 4y
−4x+ 4y3 + 10y − 10

)

and
∇2f(x, y) =

(
4 −4
−4 12y2 + 10

)
.

a) Since the first entry of the Hessian matrix ∇2f(x, y) is positive and the
determinant is

det∇2f(x, y) = 48y2 + 40− 16 = 24 + 48y2 ≥ 24 > 0,
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it follows that f is (strongly!) convex.1

Alternatively, one can write

f(x, y) = (x− 2y)2 + x2 + y2 + y4 − 10y,

which is a sum of convex functions, implying that f is convex.
b) Since f is strongly convex, it follows that f has a unique local and global

minimiser, which can be found by setting the gradient of f to zero. Doing
this, we obtain the equations

4x− 4y = 0,
−4x+ 4y3 + 10y − 10 = 0.

From the first equation, we obtain that x = y. Inserting this into the second
equation, we obtain the condition

4y3 + 6y − 10 = 0,

which has the obvious solution y = 1. (Since f is strictly convex, this is
necessarily the only solution of this equation!) Thus the unique global and
local minimum is (x, y) = (1, 1).

c) As shown in part a), the function f is strongly convex. Moreover, it is a
polynomial and thus in particular C2. Since f in particular is coercive, it
follows that the sequence (xk)k∈N of iterates is bounded (and thus in particu-
lar has a convergent subsequence) and that ∇f(xk)→ 0. Since the function
f only has a single critical point, this implies already that the whole sequence
converges to that critical point (and global minimum). Since f is strongly
convex and C2, the same holds true for the Newton iteration.
The gradient descent method is expected to converge linearly2 whereas the
Newton method is expected to converge quadratically (as long as the line
search is implemented in a reasonable way, that is, that the initial step
length is α = 1 and that c < 0.5). Thus it can be expected to converge in
a much smaller number of steps than the gradient descent method. More-
over, each Newton step can, in this two-dimensional situation, be computed
very efficiently, and thus each single Newton step is only marginally more
expensive than a gradient descent step. As a consequence, I would strongly
recommend the Newton method in this situation.

d) At (x, y) = (0, 0) we have

f(0, 0) = 0 and ∇f(0, 0) =
(

0
−10

)
.

1Stating that f is strongly (or strictly) convex is not required.
2Apart from very simple cases, the only situation where we can hope for a faster convergence

is the case where the Hessian at the minimum is a multiple of the identity, which is (obviously)
not the case in our situation.
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Thus the gradient descent step is (p, q) = α(0, 10), and the Armijo condition
(with c = 0.1) reads

f(0, 10α) ≤ f(0, 0)− αc‖∇f(0, 0)‖2 = −10α.

For the function value at (0, 10α) we have the explicit expression

f(0, 10α) = 104α4 + 500α2 − 100α.

Thus the Armijo condition reads

104α4 + 500α2 ≤ 90α.

For α = 1, this condition fails. Thus we try α = ρ · 1 = 0.1 as next possible
step length. Here the left hand side becomes 104 ·0.14 +500 ·0.12 = 6 and the
left hand side becomes 90 · 0.1 = 9. Thus the Armijo condition is satisfied
and we choose the step length α = 0.1. The next iterate in the gradient
descent methods therefore becomes (x1, y1) = (0, 0) + 0.1 · (0, 10) = (0, 1).

Problem 2 We consider the constrained optimisation problem

−x2 − (y − 2)2 → min

subject to the constraint (x, y) ∈ Ω, where the set Ω is given by the inequalities

y ≥ 0 and x2(x+ 1)− y ≥ 0.

a) Sketch the set Ω and determine for each point in Ω whether the LICQ holds.
(5 points)

b) Determine the tangent cone and the cone of linearised feasible directions to
the set Ω in the points (x, y) = (−1, 0), (−2/3, 0), and (0, 0).
(10 points)

c) Find all KKT points and all local and global minimisers for this optimisation
problem.
(15 points)
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• Possible solution:
We denote in the following

f(x, y) = −x2 − (y − 2)2,

c1(x, y) = y,

c2(x, y) = x2(x+ 1)− y.

a) We first note that

∇c1(x, y) =
(

0
1

)
and ∇c2(x, y) =

(
3x2 + 2x
−1

)
.

Since none of the gradients becomes zero, it follows that the LICQ holds at
every point where none or only one of the constraints is active.
Next we see that the only two points, where both constraints are active, are
the points

(x0, y0) = (0, 0) and (x1, y1) = (−1, 0).

At (−1, 0) we have

∇c1(−1, 0) =
(

0
1

)
and ∇c2(−1, 0) =

(
1
−1

)
,

which are linearly independent; thus the LICQ holds at this point. At (0, 0)
we have

∇c1(0, 0) =
(

0
1

)
and ∇c2(0, 0) =

(
0
−1

)
,

which are linearly dependent; thus the LICQ fails here.
To summarise, the LICQ holds at every point in Ω apart from (x0, y0) =
(0, 0).

b) At the point (x1, y1) = (−1, 0), both constraints are active and we have

F(−1, 0) =
{

(p, q) ∈ R2 : (p, q)
(

0
1

)
≥ 0 and (p, q)

(
1
−1

)
≥ 0

}
=
{
(p, q) ∈ R2 : p ≥ q ≥ 0

}
.

Moreover, the LICQ holds, and thus TΩ(−1, 0) = F(−1, 0).
At the point (x2, y2) = (−2/3, 0), only the first constraint is active. Thus

F(−2/3, 0) =
{
(p, q) ∈ R2 : q ≥ 0

}
.

Since, again, the LICQ holds, it follows that TΩ(−2/3, 0) = F(−2/3, 0).
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Finally, at (x0, y0) = (0, 0) both constraints are active and we have

F(0, 0) =
{

(p, q) ∈ R2 : (p, q)
(

0
1

)
≥ 0 and (p, q)

(
0
−1

)
≥ 0

}
=
{
(p, q) ∈ R2 : q = 0

}
.

At this point, the LICQ fails, and thus we cannot conclude that the tangent
cone is equal to the cone of linearised feasible directions.
In order to compute the tangent cone, we consider first for τ > 0 the
sequences (pk, qk) = (±1/k, 0) and tk = τ/k. Since c1(pk, qk) = 0 and
c2(pk, qk) = (1± 1/k)/k2 ≥ 0 it follows that the sequence (pk, qk) is admissi-
ble and therefore

(±τ, 0) = lim
k→∞

1
tk

(pk, qk) ∈ TΩ(0, 0).

Moreover, the direction (0, 0) lies always in the tangent cone (here we can
use the admissible sequence (pk, qk) = (0, 0)). Thus it follows that

F(0, 0) =
{
(p, q) ∈ R2 : q = 0

}
⊂ TΩ(0, 0).

Since the converse inclusion TΩ(0, 0) ⊂ F(0, 0) always holds, this implies
that, actually,

TΩ(0, 0) = F(0, 0) =
{
(p, q) ∈ R2 : q = 0

}
.

Alternatively, one can show the converse inclusion directly by the following
argument: If (pk, qk) is any admissible sequence approaching (0, 0), we have
that

0 ≤ qk ≤ p2
k(pk + 1) ≤ 2p2

k

for sufficiently large k (such that |pk| ≤ 1). Thus, if tk is a sequence of
positive numbers converging to zero and (p, q) ∈ Rd satisfies

(p, q) = lim
k→∞

1
tk

(pk, qk),

then

|q| = lim
k→∞

|qk|
tk
≤ lim inf

k→∞

2p2
k

tk
= 2

(
lim
k→∞

pk
tk

)(
lim
k→∞

pk
)

= p · 0 = 0.

As a consequence, every tangent direction (p, q) necessarily satisfies q = 0
and thus TΩ(0, 0) ⊂

{
(p, q) ∈ R2 : q = 0}.

c) We note first that the points (k, 0) are feasible and f(k, 0) = −k2−4→ −∞.
Thus the problem is unbounded below and therefore does not admit a global



Page 6 of 10 TMA4180 Optimization I, 14th May 2019

minimum. Moreover, the point (0, 0) is the only point at which the LICQ
fails; apart from this point, only KKT-points are candidates for local minima.
Next we compute

∇f(x, y) =
(
−2x

4− 2y

)
.

The only point where ∇f(x, y) = 0, is (x, y) = (0, 2), which is not feasible.
Thus no point, where none of the constraints are active, can be a KKT point
and thus neither a local minimum.
Next we consider the point (x0, y0) = (0, 0). Here both constraints are active
and we can write

∇f(0, 0) =
(

0
4

)
= λ1

(
0
1

)
+ λ2

(
0
−1

)
= λ1∇c1(0, 0) + λ2∇c2(0, 0)

with Lagrange parameters λ2 ≥ 0 and λ1 = λ2 + 4. Thus (0, 0) is a KKT
point. However, the point (0, 0) is no local minimiser, since the points
(1/k, 0), k ∈ N, are feasible and

f(1/k, 0) = − 1
k2 − 4 < −4 = f(0, 0).

The next point we consider is (x1, y1) = (−1, 0), where again both constraints
are active. Here we can write

∇f(−1, 0) =
(

2
4

)
= 6∇c1(−1, 0) + 2∇c2(−1, 0).

Thus (−1, 0) is a KKT point with Lagrange multipliers λ1 = 6 and λ2 =
2. Since both Lagrange multipliers are non-zero and the constraints are
linearly independent, it follows that the critical cone at (−1, 0) consists only
of the direction (0, 0) and thus the second order sufficient condition is trivial
satisfied. Thus the point (−1, 0) is a (strict and isolated) local minimum.
Now we consider the situation where only the first constraint is active, that
is, y = 0 and y 6= x2(x+ 1). In this case, the KKT condition requires that

∇f(x, 0) =
(
−x
2

)
= λ1

(
0
1

)
= λ1∇c1(x, 0).

This system can only be satisfied for x = 0, in which case the second con-
straint is also active. Thus there is no KKT point for which only the first
constraint is active.
Finally, we assume that only the second constraint is active, that is y =
x2(x+ 1) and y > 0. In this case, the KKT condition requires that

∇f(x, y) =
(
−2x

4− 2y

)
= λ2

(
3x2 + 2x
−1

)
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for some λ2 ≥ 0. Since we require the Lagrange parameter λ2 to be non-
negative, it follows that

0 ≤ λ2 = 2y − 4

and thus
y ≥ 2.

As a consequence it follows that

x2(x+ 1) ≥ 2,

which is only possible for x ≥ 1. Since x 6= 0 (else both constraints are
active), the equation −2x = λ2(3x2 + 2x) simplifies to

λ2 = − 2
3x+ 2 .

Since x ≥ 1, this implies that λ2 < 0. Thus there is no KKT point with only
the second constraint active.
To summarise, there are two KKT points, (x0, y0) = (0, 0) and (x1, y1) =
(−1, 0), the second of which is the only local, but not global, solution of the
constrained optimisation problem.

Problem 3 For a fixed t ∈ R, we consider the elastic net optimisation problem

f(x) = 1
2(x− t)2 + 1

2x
2 + |x| → min . (P )

An equivalent formulation (in the sense that x∗ solves (P ) if and only if x∗ = y∗

solve (P ′)) is the problem

min
x,y

1
2(x− t)2 + 1

2x
2 + |y| → min subject to x = y. (P ′)

a) Formulate the Lagrangian dual of the problem (P ′) as a constrained optimi-
sation problem.
(10 points)

b) Find an explicit formula for the solution of (P ) depending on t.
(10 points)
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• Possible solution:

a) The Lagrangian for the problem (P ′) is

L(x, y;λ) = 1
2(x− t)2 + 1

2x
2 + |y| − λ(x− y).

Thus the dual problem is

max
λ∈R

min
x,y

(1
2(x− t)2 + 1

2x
2 + |y| − λ(x− y)

)
.

In order to find a reasonable formulation for this problem, we compute the
(extended real-valued) function q : R→ R ∪ {−∞},

q(λ) = min
x,y

(1
2(x− t)2 + 1

2x
2 + |y| − λ(x− y)

)
= min

x

(1
2(x− t)2 + 1

2x
2 − λx

)
+ min

y

(
|y|+ λy

)
.

The minimum for the first term is attained for x− t+ x− λ = 0, that is,

x = (λ+ t)/2,

at which point the value is

min
x

(1
2(x− t)2 + 1

2x
2 − λx

)
= 1

2
(λ− t

2
)2

+ 1
2
(λ+ t

2
)2
− λλ+ t

2

= t2

4 −
λ2

4 −
λt

2

= −1
4(λ+ t)2 + t2

2 .

For the second term we obtain

min
y

(
|y|+ λy

)
=
{

0 if |λ| ≤ 1,
−∞ if |λ| > 1,

Thus

q(λ) =

−
1
4(λ+ t)2 + t2

2 if |λ| ≤ 1,

−∞ if |λ| > 1.

Thus we can write the dual problem as

max
λ

(
−1

4(λ+ t)2 + t2

2
)

subject to |λ| ≤ 1. (D)



TMA4180 Optimization I, 14th May 2019 Page 9 of 10

b) Since the function

g(x, y) = 1
2(x− t)2 + 1

2x
2 + |y|

is convex and the constraint x = y is linear, strong duality holds. In particu-
lar, this implies that, if (x∗, y∗) solve (P ′) and λ∗ solves the dual problem (D),
then (x∗, y∗) solve

min
x,y
L(x, y;λ∗). (1)

Moreover, as has already been computed in the first part of this problem,
the x-coordinate of the solution of minx,y L(x, y;λ∗) is

x∗ = λ∗ + t

2 .

The dual problem (D) is (apart from constants and constant factors) simply
the projection of −t to the interval [−1, 1]. Thus the solution is

λ∗ = max{−1,min{1,−t}}.

As a consequence, we obtain

x∗ = λ∗ + t

2 = max{−1,min{1,−t}}+ t

2 =


t− 1

2 if t ≥ 1,

0 if − 1 ≤ t ≤ 1,
t+ 1

2 if t ≤ −1.

Problem 4 We consider the optimisation problem

f(x)→ min s.t. c(x) ≥ 0,

where f : Rd → R is convex and C1, and c : Rd → R is concave and C1. Moreover,
we assume that the feasible set Ω =

{
x ∈ Rd : c(x) ≥ 0

}
is non-empty.

a) Formulate the KKT conditions for this optimisation problem and state (with
a brief explanation) if they are sufficient and/or necessary optimality condi-
tions.
(5 points)

b) Show that in this situation Slater’s constraint qualification is satisfied, if and
only if every point x ∈ Ω satisfies the LICQ.
(10 points)
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• Possible solution:

a) The KKT conditions read

∇f(x) = λ∇c(x),
c(x) ≥ 0,
λ ≥ 0,
λ = 0 if c(x) = 0.

Since we have a convex optimisation problem with a concave constraint, it
follows that the KKT conditions are sufficient optimality conditions. How-
ever, they are not necessary, unless in addition some constraint qualification
is satisfied.
(Consider for instance the (univariate) problem f(x) = x → min subject to
c(x) = −x2 ≥ 0. Here the points x = 0 is the only feasible point and thus
the unique global solution of the problem, but f ′(0) = 1 cannot be written
as a positive multiple of c′(0) = 0.)

b) We recall first that Slater’s constraint qualification requires the existence of
x ∈ Rd with c(x) > 0, whereas the LICQ requires that at each point x with
c(x) = 0 we have ∇c(x) 6= 0 (the gradient being zero at a point where the
constraint c is active is the only possibility for the LICQ to fail).
Assume now that Slater’s constraint qualification holds. That is, there exists
x0 ∈ Rd with c(x0) > 0. Then, if x ∈ Rd satisfies c(x) = 0, then x is no
maximum of c. Since c is concave (or: −c is convex), this implies that
∇c(x) 6= 0, and thus the LICQ holds at x.
Conversely, assume that Slater’s constraint qualification does not hold. Then
there exists no x ∈ Rd with c(x) > 0, which implies that every point x with
c(x) = 0 is a maximum of c (such points exist, as Ω is non-empty). As a
consequence we have∇c(x) = 0 at every such point (the first order optimality
condition holds), and thus the LICQ fails.


