Norwegian University of Science and Technology

Solutions to exercise set 4

1 Let

$$
A=\left[\begin{array}{rrr}
2 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 2
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] .
$$

Use the CG-method with initialisation $x_{0}=0$ for solving the linear system $A x=b$.
Solution: Applying Algorithm 5.2 in Nocedal \& Wright, we find that

$$
\begin{array}{llll}
x_{0}=(0,0,0), & r_{0}=(-1,0,-1), & p_{0}=(1,0,1), & \alpha_{0}=1, \\
x_{1}=(1,0,1), & r_{1}=(0,2,0), & \beta_{1}=2, & p_{1}=(2,2,2), \\
x_{2}=(3,2,3), & r_{3}=(0,0,0) . & &
\end{array}
$$

Since $r_{3}=0$ - which it should as convergence is guaranteed within 3 steps-we stop and conclude that $x=(3,2,3)$ solves the linear system.

2 Assume that $A \in \mathbb{R}^{m \times n}$ is a matrix and that $b \in \mathbb{R}^{m}$.
a) Show that $x^{*} \in \mathbb{R}^{n}$ solves the least squares problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}}\|A x-b\|^{2} \tag{1}
\end{equation*}
$$

if and only if x^{*} satisfies the normal equations

$$
A^{\mathrm{T}} A x^{*}=A^{\mathrm{T}} b
$$

Solution: The least squares problem is an unconstrained minimisation problem for the function $f(x)=\|A x-b\|^{2}$ on \mathbb{R}^{n}. Observe that f is smooth, and that

$$
\nabla f(x)=2 A^{\mathrm{T}}(A x-b) \quad \text { and } \quad \nabla^{2} f(x)=2 A^{\mathrm{T}} A
$$

Calculation of ∇f follows either from the chain rule in the multivariable setting, or by direct expansion

$$
\|A x-b\|^{2}=(A x-b)^{\mathrm{T}}(A x-b)=x^{\mathrm{T}} A^{\mathrm{T}} A x-2 b^{\mathrm{T}} A x+b^{\mathrm{T}} b .
$$

Matrix $A^{\mathrm{T}} A$ is symmetric, and also positive semi-definite, because

$$
v^{\mathrm{T}} A^{\mathrm{T}} A v=(A v)^{\mathrm{T}} A v=\|A v\|^{2} \geq 0 \quad \text { for all } \quad v \in \mathbb{R}^{n} .
$$

Hence, f is convex and we infer that every critical point is a global minimiser (and conversely). As such, x^{*} minimises f if and only if $\nabla f\left(x^{*}\right)=0$. In other words,

$$
A^{\mathrm{T}} A x^{*}=A^{\mathrm{T}} b .
$$

b) Show that the optimization problem (1) admits a solution $x^{*} \in \mathbb{R}^{n}$.

Solution: There are many ways of proving this result; in particular, this is a special case of a so-called Frank-Wolfe's theorem, which states that is a quadratic function is bounded below on a non-empty polyhedron, then it attains its infimum on this polyhedron.
The latter result can be proved by induction in the number of spatial dimentions n.
If $n=1$, then $A \in \mathbb{R}^{m \times 1}, b \in \mathbb{R}^{m}$, and $f(x)=b^{\mathrm{T}} b-2 A^{\mathrm{T}} b x+x^{2} A^{\mathrm{T}} A$. If $A^{\mathrm{T}} A \neq$ 0 then the problem admits the unique global minumum $x^{*}=A^{\mathrm{T}} b /\left(A^{\mathrm{T}} A\right)$; otherwise any $x \in \mathbb{R}$ is a global minimum as then $A=0$ and therefore $f(x)=b^{2}$ for any $x \in \mathbb{R}$.
Suppose now any k-dimensinal problem admits a solution. Let us represent $x \in \mathbb{R}^{k+1}$ as λy, where $\lambda \geq 0$ and y belongs to the unit sphere $S=\left\{x \in \mathbb{R}^{k+1} \mid\right.$ $\|x\|=1\}$. (Indeed, for any $x \in \mathbb{R}^{k+1} \backslash\{0\}$ we can simply put $\lambda=\|x\|$ and $y=x /\|x\|$.) Therefore, (1) is equivalent to the problem

$$
\min _{\lambda \geq 0, y \in S} f(s y)=\min _{\lambda \geq 0, y \in S}\|b\|^{2}-2 \lambda b^{\mathrm{T}} A y+\lambda^{2}\|A y\|^{2}
$$

Let us put $\sigma_{\min }=\min _{y \in S}\|A y\| \geq 0$, where the minimum is attained since we minimize a continuous function ofer a compact set.
If $\sigma_{\text {min }}>0$ we can estimate our objective function from below as $\|b\|^{2}-2 \lambda b^{\mathrm{T}} A s+$ $\lambda^{2}\|A s\|^{2} \geq\|b\|^{2}-2 \lambda\|b\|\|A\|+\lambda^{2} \sigma_{\text {min }}^{2}$, where we have used the fact that $\|y\|=1$. The function on the right hand side of the inequality goes to infinity when $\lambda \rightarrow \infty$, meaning that $\lim _{\|x\| \rightarrow \infty} f(x)=+\infty$. Therefore in this case the function is coercive and continuous and as such admits a global minimum.
If $\sigma_{\text {min }}=0$ it means that for some $y_{1} \in S: A y_{1}=0$. Let us decompose \mathbb{R}^{k+1} into $L_{1}=\left\{x=\alpha y_{1} \mid \alpha \in \mathbb{R}\right\}$, a one-dimensional space, and its k dimensional orthogonal complement $L_{k}=L_{1}^{\perp}$. Then for each $x \in \mathbb{R}^{k+1}$ we can uniquely write $x=x_{1}+x_{k}$, where $x_{1} \in L_{1}, x_{k} \in L_{k}$. Furthermore, $f(x)=f\left(x_{1}+x_{k}\right)=\left\|A x_{k}+A x_{1}-b\right\|^{2}=\left\|A x_{k}-b\right\|^{2}=f\left(x_{k}\right)$, and as a result

$$
\min _{x \in \mathbb{R}^{k+1}} f(x)=\min _{x_{k} \in L_{k}} f\left(x_{k}\right)
$$

which is a k-dimensional optimization problem of the same type (with any choice of the basis in L_{k}) and therefore admits a solution by the induction hypothesis.
c) Show that the solution x^{*} of (1) is unique, if the rank of A equals n.

Solution: If $\operatorname{rank} A=n$ it means that the columns of A are linearly independent, and therefore the homogeneous problem $A v=0$ admits only a trivial solution. As a result, the Hessian of our objective function is positive definite; indeed

$$
v^{\mathrm{T}} \nabla^{2} f(x) v=v^{\mathrm{T}} A^{\mathrm{T}} A v=\|A v\|^{2} \geq 0
$$

with equality only when $v=0$. Concequently the function is strictly convex, and the global minimum is unique.
d) Show that, regardless of the rank of A, the optimization problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}}\|x\|^{2} \quad \text { s.t. } x \text { solves } \tag{2}
\end{equation*}
$$

admits a unique solution $x^{\dagger} \in \mathbb{R}^{n}$.

Solution: We have already shown that the function f is convex, and that its set of global minimizers is non-empty regardless of A. Owing to the convexity of f, its set of global minimizers is also a convex set; let us call it Ω - these are precisely the points satisfying (1). Clearly Ω is closed (this is true for any l.s.c. function f). Therefore, a continuous and coercive function $g(x)=\|x\|^{2}$ admits at least one minimizer on Ω. Further, since g is strictly convex $\left(\nabla^{2} g=2 I\right)$, there cannot be more than one minimizer in Ω (otherwise their convex combination would be an even better solution in Ω).

3 Assume that $A \in \mathbb{R}^{n \times n}$ is symmetric and positive semi-definite, $b \in \operatorname{ran} A$ (equivalently, $b \perp \operatorname{ker} A$, or equivalently there exists a solution to the system $A x=b)$. Show that, in exact arithmetics, the CG algorithm converges in at most $m=\operatorname{dim} \operatorname{ran} A$ iterations to a solution to the system $A x=b$ from any starting point $x_{0} \in \mathbb{R}^{n}$.
Thus the requirement for A to be positive definite can be somewhat relaxed, and the algorithm still works.

Solution: The main difficulty is in showing that the algorithm does not break down with divisions by zero when the steplength α_{k} is computed, as there are could be directions $p \neq 0$ such that $p^{\mathrm{T}} A p=0$. For this to be the case, however, the direction p needs to be in ker A : indeed, if we expand $p=\sum_{i} c_{i} v_{i}$ in terms of orthonormal eigenvectors v_{i} of A, which correspond to eigenvalues $\lambda_{i} \geq 0$, then $p^{\mathrm{T}} A p=\sum_{i} \lambda_{i} c_{i}^{2}$. For the latter sum to be zero p must be a linear combination of eigenvectors, corresponding to the zero eigenvalue.
We will first show that throughout the usual CG algorithm we maintain $p_{k} \in \operatorname{ran} A$ so that divisions by zero are avoided. We will then show the estimate on the number of iterations.
At iteration 0 we have $p_{0}=r_{0}=b-A x_{0} \in \operatorname{ran}(A)-\operatorname{ran}(A) \in \operatorname{ran} A$. Assuming that $p_{k} \in \operatorname{ran}(A)$, we compute $p_{k+1}=r_{k+1}+\beta_{k+1} p_{k} \in \operatorname{ran}(A)-\beta_{k+1} \operatorname{ran}(A) \in \operatorname{ran}(A)$, because $r_{k+1}=b-A x_{k+1} \in \operatorname{ran}(A)-\operatorname{ran}(A) \in \operatorname{ran} A$.
The usual inductive proof of convergence of CG implies that the algorithm constructs orthogonal residuals $\left\{r_{0}, r_{1}, \ldots\right\}$ and conjugate directions $\left\{p_{0}, p_{1}, \ldots\right\}$. Normally we rely on the fact that the number of conjugate or orthogonal directions in the n dimensional space is n, therefore the algorithm must converge in at most n steps. Hovever, all residuals are by construction in $\operatorname{ran} A$, which in the present case has dimension $m \leq n$. Thus the algorithm will generate a zero residual (in exact arithmetics) after at most m steps.

4 Assume that $m>n$, that $A \in \mathbb{R}^{m \times n}$, and that $b \in \mathbb{R}^{m}$. Consider the following algorithm:

- Choose $x_{0} \in \mathbb{R}^{n}$ arbitrary, set $r_{0} \leftarrow A x_{0}-b, s_{0} \leftarrow A^{\mathrm{T}} r_{0}, p_{0} \leftarrow-s_{0}$, and $k \leftarrow 0$.
- While $s_{k} \neq 0$:

$$
\begin{aligned}
\alpha_{k} & \leftarrow \frac{\left\|s_{k}\right\|^{2}}{\left\|A p_{k}\right\|^{2}}, \\
x_{k+1} & \leftarrow x_{k}+\alpha_{k} p_{k}, \\
r_{k+1} & \leftarrow r_{k}+\alpha_{k} A p_{k}, \\
s_{k+1} & \leftarrow A^{\mathrm{T}} r_{k+1}, \\
\beta_{k+1} & \leftarrow \frac{\left\|s_{k+1}\right\|^{2}}{\left\|s_{k}\right\|^{2}}, \\
p_{k+1} & \leftarrow-s_{k+1}+\beta_{k+1} p_{k}, \\
k & \leftarrow k+1 .
\end{aligned}
$$

Assume that the matrix A has full rank. Show that the algorithm above is actually identical with the CG-algorithm for the solution of $A^{\mathrm{T}} A x=A^{\mathrm{T}} b$ (in the sense that the iterates x_{k} of both methods coincide).

Solution: We provide an inductive argument, showing that

$$
r_{k-1}^{\mathrm{CG}}=s_{k-1}, \quad p_{k-1}^{\mathrm{CG}}=p_{k-1}, \quad \alpha_{k-1}^{\mathrm{CG}}=\alpha_{k-1}, \quad \text { and } \quad x_{k}^{\mathrm{CG}}=x_{k}
$$

for any k, assuming x_{0} arbitrary but equal for both methods, with superscript "CG" for the CG-parameters. Remark: CG-algorithm is well-defined because $A^{\mathrm{T}} A$ is symmetric positive definite ($\operatorname{rank} A=n$).
Base case $k=1$ follows from

$$
r_{0}^{\mathrm{CG}}=\left(A^{\mathrm{T}} A\right) x_{0}-A^{\mathrm{T}} b, \quad r_{0}=A x_{0}-b, \quad \text { and } \quad s_{0}=A^{\mathrm{T}} r_{0}=r_{0}^{\mathrm{CG}}
$$

so that

$$
p_{0}^{\mathrm{CG}}=-r_{0}^{\mathrm{CG}}=-s_{0}=p_{0},
$$

and

$$
\alpha_{0}^{\mathrm{CG}}=\frac{\left\|r_{0}^{\mathrm{CG}}\right\|^{2}}{\left(p_{0}^{\mathrm{CG}}\right)^{\mathrm{T}}\left(A^{\mathrm{T}} A\right) p_{0}^{\mathrm{CG}}}=\frac{\left\|r_{0}^{\mathrm{CG}}\right\|^{2}}{\left\|A p_{0}^{\mathrm{CG}}\right\|^{2}}=\frac{\left\|s_{0}\right\|^{2}}{\left\|A p_{0}\right\|^{2}}=\alpha_{0}
$$

Therefore

$$
x_{1}^{\mathrm{CG}}=x_{0}+\alpha_{0}^{\mathrm{CG}} p_{0}=x_{0}+\alpha_{0} p_{0}=x_{1} .
$$

Suppose next that the induction hypothesis is true for some $k \in \mathbb{Z}_{+}$. Then

$$
\begin{aligned}
& r_{k}^{\mathrm{CG}}=r_{k-1}^{\mathrm{CG}}+\alpha_{k-1}^{\mathrm{CG}} A^{\mathrm{T}} A p_{k-1}^{\mathrm{CG}} \\
&=s_{k-1}+\alpha_{k-1} A^{\mathrm{T}} A p_{k-1} \\
&=A^{\mathrm{T}}\left(r_{k-1}+\alpha_{k-1} A p_{k-1}\right) \\
&=A^{\mathrm{T}} r_{k} \\
&=s_{k} \\
& p_{k}^{\mathrm{CG}}=-r_{k}^{\mathrm{CG}}+\frac{\left\|r_{k}^{\mathrm{CG}}\right\|^{2}}{\left\|r_{k-1}^{\mathrm{CG}}\right\|^{2}} p_{k-1}^{\mathrm{CG}}=-s_{k}+\frac{\left\|s_{k}\right\|^{2}}{\left\|s_{k-1}\right\|^{2}} p_{k}=p_{k},
\end{aligned}
$$

and

$$
\alpha_{k}^{\mathrm{CG}}=\frac{\left\|r_{k}^{\mathrm{CG}}\right\|^{2}}{\left\|A p_{k}^{\mathrm{CG}}\right\|^{2}}=\frac{\left\|s_{k}\right\|^{2}}{\left\|A p_{k}\right\|^{2}}=\alpha_{k}
$$

so, most importantly,

$$
x_{k}^{\mathrm{CG}}=x_{k-1}^{\mathrm{CG}}+\alpha_{k-1}^{\mathrm{CG}} p_{k-1}^{\mathrm{CG}}=x_{k-1}+\alpha_{k-1} p_{k-1}=x_{k} .
$$

5 Exercise 5.1 in Nocedal \& Wright.
(Note that in Matlab the Hilbert matrix can be produced with the command hilb, and in Python using scipy.linalg.hilbert.)

Solution: See possible solutions on the wiki.

6 Exercise 5.12 in Nocedal \& Wright: show that Lemma 5.6 holds for any choice of β_{k} in the non-linear CG algorithm with $\left|\beta_{k}\right| \leq \| \beta_{k}^{\mathrm{FR}}$. In particular, this explains the strategy (5.48) in the book (FR-PR CG algorithm).

Solution: Induction/direct computation as in the proof of Lemma 5.6, utilizing the strong curvature condition.

