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Solutions to exercise set 4

1 Let

A =

 2 −1 −1
−1 3 −1
−1 −1 2

 and b =

10
1

 .
Use the CG-method with initialisation x0 = 0 for solving the linear system Ax = b.

Solution: Applying Algorithm 5.2 in Nocedal & Wright, we find that

x0 = (0, 0, 0), r0 = (−1, 0,−1), p0 = (1, 0, 1), α0 = 1,

x1 = (1, 0, 1), r1 = (0, 2, 0), β1 = 2, p1 = (2, 2, 2), α1 = 1,

x2 = (3, 2, 3), r3 = (0, 0, 0).

Since r3 = 0—which it should as convergence is guaranteed within 3 steps—we stop
and conclude that x = (3, 2, 3) solves the linear system.

2 Assume that A ∈ Rm×n is a matrix and that b ∈ Rm.

a) Show that x∗ ∈ Rn solves the least squares problem

min
x∈Rn
‖Ax− b‖2, (1)

if and only if x∗ satisfies the normal equations

ATAx∗ = ATb.

Solution: The least squares problem is an unconstrained minimisation problem
for the function f(x) = ‖Ax− b‖2 on Rn. Observe that f is smooth, and that

∇f(x) = 2AT(Ax− b) and ∇2f(x) = 2ATA.

Calculation of ∇f follows either from the chain rule in the multivariable setting,
or by direct expansion

‖Ax− b‖2 = (Ax− b)T(Ax− b) = xTATAx− 2bTAx+ bTb.

Matrix ATA is symmetric, and also positive semi-definite, because

vTATAv = (Av)TAv = ‖Av‖2 ≥ 0 for all v ∈ Rn.

Hence, f is convex and we infer that every critical point is a global minimiser
(and conversely). As such, x∗ minimises f if and only if ∇f(x∗) = 0. In other
words,

ATAx∗ = ATb.
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b) Show that the optimization problem (1) admits a solution x∗ ∈ Rn.

Solution: There are many ways of proving this result; in particular, this is
a special case of a so-called Frank–Wolfe’s theorem, which states that is a
quadratic function is bounded below on a non-empty polyhedron, then it attains
its infimum on this polyhedron.
The latter result can be proved by induction in the number of spatial dimentions
n.
If n = 1, then A ∈ Rm×1, b ∈ Rm, and f(x) = bTb−2ATbx+x2ATA. If ATA 6=
0 then the problem admits the unique global minumum x∗ = ATb/(ATA);
otherwise any x ∈ R is a global minimum as then A = 0 and therefore f(x) = b2

for any x ∈ R.
Suppose now any k-dimensinal problem admits a solution. Let us represent
x ∈ Rk+1 as λy, where λ ≥ 0 and y belongs to the unit sphere S = {x ∈ Rk+1 |
‖x‖ = 1 }. (Indeed, for any x ∈ Rk+1 \ {0} we can simply put λ = ‖x‖ and
y = x/‖x‖.) Therefore, (1) is equivalent to the problem

min
λ≥0,y∈S

f(sy) = min
λ≥0,y∈S

‖b‖2 − 2λbTAy + λ2‖Ay‖2.

Let us put σmin = miny∈S ‖Ay‖ ≥ 0, where the minimum is attained since we
minimize a continuous function ofer a compact set.
If σmin > 0 we can estimate our objective function from below as ‖b‖2−2λbTAs+
λ2‖As‖2 ≥ ‖b‖2−2λ‖b‖‖A‖+λ2σ2min, where we have used the fact that ‖y‖ = 1.
The function on the right hand side of the inequality goes to infinity when
λ→∞, meaning that lim‖x‖→∞ f(x) = +∞. Therefore in this case the function
is coercive and continuous and as such admits a global minimum.
If σmin = 0 it means that for some y1 ∈ S : Ay1 = 0. Let us decompose
Rk+1 into L1 = {x = αy1 | α ∈ R }, a one-dimensional space, and its k-
dimensional orthogonal complement Lk = L⊥1 . Then for each x ∈ Rk+1 we
can uniquely write x = x1 + xk, where x1 ∈ L1, xk ∈ Lk. Furthermore,
f(x) = f(x1 + xk) = ‖Axk +Ax1 − b‖2 = ‖Axk − b‖2 = f(xk), and as a result

min
x∈Rk+1

f(x) = min
xk∈Lk

f(xk),

which is a k-dimensional optimization problem of the same type (with any choice
of the basis in Lk) and therefore admits a solution by the induction hypothesis.

c) Show that the solution x∗ of (1) is unique, if the rank of A equals n.

Solution: If rankA = n it means that the columns of A are linearly inde-
pendent, and therefore the homogeneous problem Av = 0 admits only a trivial
solution. As a result, the Hessian of our objective function is positive definite;
indeed

vT∇2f(x)v = vTATAv = ‖Av‖2 ≥ 0

with equality only when v = 0. Concequently the function is strictly convex,
and the global minimum is unique.

d) Show that, regardless of the rank of A, the optimization problem

min
x∈Rn
‖x‖2 s.t. x solves (1) (2)
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admits a unique solution x† ∈ Rn.

Solution: We have already shown that the function f is convex, and that its
set of global minimizers is non-empty regardless of A. Owing to the convexity
of f , its set of global minimizers is also a convex set; let us call it Ω — these are
precisely the points satisfying (1). Clearly Ω is closed (this is true for any l.s.c.
function f). Therefore, a continuous and coercive function g(x) = ‖x‖2 admits
at least one minimizer onΩ. Further, since g is strictly convex (∇2g = 2I), there
cannot be more than one minimizer in Ω (otherwise their convex combination
would be an even better solution in Ω).

3 Assume that A ∈ Rn×n is symmetric and positive semi-definite, b ∈ ranA (equiva-
lently, b ⊥ kerA, or equivalently there exists a solution to the system Ax = b). Show
that, in exact arithmetics, the CG algorithm converges in at most m = dim ranA
iterations to a solution to the system Ax = b from any starting point x0 ∈ Rn.
Thus the requirement for A to be positive definite can be somewhat relaxed, and the
algorithm still works.

Solution: The main difficulty is in showing that the algorithm does not break
down with divisions by zero when the steplength αk is computed, as there are could
be directions p 6= 0 such that pTAp = 0. For this to be the case, however, the
direction p needs to be in kerA: indeed, if we expand p =

∑
i civi in terms of

orthonormal eigenvectors vi of A, which correspond to eigenvalues λi ≥ 0, then
pTAp =

∑
i λic

2
i . For the latter sum to be zero p must be a linear combination of

eigenvectors, corresponding to the zero eigenvalue.

We will first show that throughout the usual CG algorithm we maintain pk ∈ ranA
so that divisions by zero are avoided. We will then show the estimate on the number
of iterations.

At iteration 0 we have p0 = r0 = b−Ax0 ∈ ran(A)− ran(A) ∈ ranA. Assuming that
pk ∈ ran(A), we compute pk+1 = rk+1 + βk+1pk ∈ ran(A) − βk+1 ran(A) ∈ ran(A),
because rk+1 = b−Axk+1 ∈ ran(A)− ran(A) ∈ ranA.

The usual inductive proof of convergence of CG implies that the algorithm constructs
orthogonal residuals {r0, r1, . . . } and conjugate directions {p0, p1, . . . }. Normally we
rely on the fact that the number of conjugate or orthogonal directions in the n-
dimensional space is n, therefore the algorithm must converge in at most n steps.
Hovever, all residuals are by construction in ranA, which in the present case has
dimension m ≤ n. Thus the algorithm will generate a zero residual (in exact arith-
metics) after at most m steps.

4 Assume that m > n, that A ∈ Rm×n, and that b ∈ Rm. Consider the following
algorithm:

• Choose x0 ∈ Rn arbitrary, set r0 ← Ax0− b, s0 ← ATr0, p0 ← −s0, and k ← 0.
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• While sk 6= 0:

αk ←
‖sk‖2

‖Apk‖2
,

xk+1 ← xk + αkpk,

rk+1 ← rk + αkApk,

sk+1 ← ATrk+1,

βk+1 ←
‖sk+1‖2

‖sk‖2
,

pk+1 ← −sk+1 + βk+1pk,

k ← k + 1.

Assume that the matrix A has full rank. Show that the algorithm above is actually
identical with the CG-algorithm for the solution of ATAx = ATb (in the sense that
the iterates xk of both methods coincide).

Solution: We provide an inductive argument, showing that

rCG
k−1 = sk−1, pCG

k−1 = pk−1, αCG
k−1 = αk−1, and xCG

k = xk

for any k, assuming x0 arbitrary but equal for both methods, with superscript "CG"
for the CG-parameters. Remark: CG-algorithm is well-defined because ATA is sym-
metric positive definite (rankA = n).

Base case k = 1 follows from

rCG
0 = (ATA)x0 −ATb, r0 = Ax0 − b, and s0 = ATr0 = rCG

0 ,

so that
pCG
0 = −rCG

0 = −s0 = p0,

and

αCG
0 =

∥∥rCG
0

∥∥2(
pCG
0

)T
(ATA)pCG

0

=

∥∥rCG
0

∥∥2∥∥ApCG
0

∥∥2 =
‖s0‖2

‖Ap0‖2
= α0.

Therefore
xCG
1 = x0 + αCG

0 p0 = x0 + α0p0 = x1.

Suppose next that the induction hypothesis is true for some k ∈ Z+. Then

rCG
k = rCG

k−1 + αCG
k−1A

TApCG
k−1

= sk−1 + αk−1A
TApk−1

= AT (rk−1 + αk−1Apk−1)

= ATrk

= sk,

pCG
k = −rCG

k +

∥∥rCG
k

∥∥2∥∥rCG
k−1
∥∥2 pCG

k−1 = −sk +
‖sk‖2

‖sk−1‖2
pk = pk,

and

αCG
k =

∥∥rCG
k

∥∥2∥∥ApCG
k

∥∥2 =
‖sk‖2

‖Apk‖2
= αk,
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so, most importantly,

xCG
k = xCG

k−1 + αCG
k−1 p

CG
k−1 = xk−1 + αk−1 pk−1 = xk.

5 Exercise 5.1 in Nocedal & Wright.

(Note that in Matlab the Hilbert matrix can be produced with the command hilb,
and in Python using scipy.linalg.hilbert.)

Solution: See possible solutions on the wiki.

6 Exercise 5.12 in Nocedal & Wright: show that Lemma 5.6 holds for any choice of βk
in the non-linear CG algorithm with |βk| ≤ ‖βFR

k . In particular, this explains the
strategy (5.48) in the book (FR–PR CG algorithm).

Solution: Induction/direct computation as in the proof of Lemma 5.6, utilizing the
strong curvature condition.
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