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Let

2 -1 -1 1
A= |-1 3 -1 and b=10
-1 -1 2 1

Use the CG-method with initialisation xg = 0 for solving the linear system Ax = b.

Solution: Applying Algorithm 5.2 in Nocedal & Wright, we find that

To = (07070)7 o = (_1707 _1)7 Po = (1707 1)7 Qg = 17
Iy = (1707 1)7 ™ = (07270)7 61 = 27 pP1 = (27272)7 a1 = 17
T2 = (37273)7 r3 = (0,0,0)

Since r3 = 0—which it should as convergence is guaranteed within 3 steps—we stop
and conclude that z = (3,2, 3) solves the linear system.

Assume that A € R™*" is a matrix and that b € R™.
a) Show that z* € R™ solves the least squares problem

in || Az — b||® 1
min || Az — b||%, (1)

if and only if x* satisfies the normal equations
AT Az* = A"b.
Solution: The least squares problem is an unconstrained minimisation problem
for the function f(z) = ||Az — b|> on R"™. Observe that f is smooth, and that
Vf(z)=24T(Az —b) and  V%f(x) =24TA

Calculation of V f follows either from the chain rule in the multivariable setting,
or by direct expansion

|Az — b||> = (Az — b)T (Az — b) = 2TAT Az — 20T Az + bTb.
Matrix AT A is symmetric, and also positive semi-definite, because
vI AT Av = (Av)TAv = ||Av||> > 0 for all v e R™

Hence, f is convex and we infer that every critical point is a global minimiser
(and conversely). As such, z* minimises f if and only if V f(z*) = 0. In other
words,

AT Az* = A b,
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b)

d)

Show that the optimization problem (1) admits a solution z* € R™.

Solution: There are many ways of proving this result; in particular, this is
a special case of a so-called Frank—Wolfe’s theorem, which states that is a
quadratic function is bounded below on a non-empty polyhedron, then it attains
its infimum on this polyhedron.
The latter result can be proved by induction in the number of spatial dimentions
n.
Ifn=1,then A € R™! b e R™ and f(x) = bTb—2ATbx +22ATA. If ATA #
0 then the problem admits the unique global minumum z* = ATh/(ATA);
otherwise any x € R is a global minimum as then A = 0 and therefore f(z) = b?
for any = € R.
Suppose now any k-dimensinal problem admits a solution. Let us represent
r € RFf! as Ay, where A > 0 and y belongs to the unit sphere S = {z € RFF! |
l|z| = 1}. (Indeed, for any x € R¥1\ {0} we can simply put A\ = ||z| and
y = x/||z||.) Therefore, (1) is equivalent to the problem
. : 2 T 2 2

Jminf(sy) = min[* — 2087 Ay + X2 4y
Let us put omin = minyeg [|Ay|| > 0, where the minimum is attained since we
minimize a continuous function ofer a compact set.
If 0 min > 0 We can estimate our objective function from below as ||b||2—2AbT As+
N2|| As|2 > ||b]|2 —2A||b]| | ]|+ A%02,.,,, where we have used the fact that ||y|| = 1.
The function on the right hand side of the inequality goes to infinity when
A — 00, meaning that lim o f(7) = +00. Therefore in this case the function
is coercive and continuous and as such admits a global minimum.

If omin = 0 it means that for some y; € S : Ay; = 0. Let us decompose

R into Ly = {2 = ay; | @ € R}, a one-dimensional space, and its k-
dimensional orthogonal complement Lj = Li. Then for each z € R*"! we
can uniquely write x = x1 + x, where 1 € Li, xx € Li. Furthermore,

f(x) = f(z1 4+ 2p) = | Azg + Az — b||?> = ||Azs, — b||? = f(2), and as a result

min r) = min f(zg),
in f(z) xkeka( k)
which is a k-dimensional optimization problem of the same type (with any choice
of the basis in L) and therefore admits a solution by the induction hypothesis.

Show that the solution z* of (1) is unique, if the rank of A equals n.

Solution: If rank A = n it means that the columns of A are linearly inde-
pendent, and therefore the homogeneous problem Av = 0 admits only a trivial
solution. As a result, the Hessian of our objective function is positive definite;
indeed

vIV2f(z)v =0T AT Av = || Av|?> > 0

with equality only when v = 0. Concequently the function is strictly convex,
and the global minimum is unique.

Show that, regardless of the rank of A, the optimization problem

: 2
i.t. @ solves (1 2
min ||| s.t. @ solves (1) (2)
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admits a unique solution zf € R™.

Solution: We have already shown that the function f is convex, and that its
set of global minimizers is non-empty regardless of A. Owing to the convexity
of f, its set of global minimizers is also a convex set; let us call it {2 — these are
precisely the points satisfying (1). Clearly (2 is closed (this is true for any l.s.c.
function f). Therefore, a continuous and coercive function g(x) = ||z||?> admits
at least one minimizer on 2. Further, since g is strictly convex (V2?g = 2I), there
cannot be more than one minimizer in {2 (otherwise their convex combination
would be an even better solution in §2).

Assume that A € R™*" is symmetric and positive semi-definite, b € ran A (equiva-
lently, b L ker A, or equivalently there exists a solution to the system Az = b). Show
that, in exact arithmetics, the CG algorithm converges in at most m = dimran A
iterations to a solution to the system Ax = b from any starting point xg € R".

Thus the requirement for A to be positive definite can be somewhat relaxed, and the
algorithm still works.

Solution: The main difficulty is in showing that the algorithm does not break
down with divisions by zero when the steplength oy is computed, as there are could
be directions p # 0 such that pTAp = 0. For this to be the case, however, the
direction p needs to be in ker A: indeed, if we expand p = ). ¢;v; in terms of
orthonormal eigenvectors v; of A, which correspond to eigenvalues A; > 0, then
pTAp = > Aic2. For the latter sum to be zero p must be a linear combination of
eigenvectors, corresponding to the zero eigenvalue.

We will first show that throughout the usual CG algorithm we maintain p; € ran A
so that divisions by zero are avoided. We will then show the estimate on the number
of iterations.

At iteration 0 we have pg = 19 = b— Az € ran(A) —ran(A) € ran A. Assuming that
pr € ran(A), we compute pgr1 = rg+1 + Srr1pk € ran(A) — Brpqran(A) € ran(A),
because 141 = b — Azgyq € ran(A) —ran(A) € ran A.

The usual inductive proof of convergence of CG implies that the algorithm constructs
orthogonal residuals {rg,r1,...} and conjugate directions {pg, p1, ... }. Normally we
rely on the fact that the number of conjugate or orthogonal directions in the n-
dimensional space is n, therefore the algorithm must converge in at most n steps.
Hovever, all residuals are by construction in ran A, which in the present case has
dimension m < n. Thus the algorithm will generate a zero residual (in exact arith-
metics) after at most m steps.

Assume that m > n, that A € R™*™, and that b € R™. Consider the following
algorithm:

e Choose zo € R™ arbitrary, set ro < Az —b, s < ATrg, pg < —s0, and k < 0.
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e While s # 0:
sl
1 Apk|1>’

Tpil < Tk + QgPk,

A <—

Tht1 < Tk + apApg,

T
Sky1 — A Ty,

[sk41]2
Brt1 — ———5—
- Iskll?
DPh+1 < —Sk+1 + Brt1Pk,
k<« k+1.

Assume that the matrix A has full rank. Show that the algorithm above is actually
identical with the CG-algorithm for the solution of AT Ax = A%b (in the sense that
the iterates xy, of both methods coincide).

Solution: We provide an inductive argument, showing that

256 =

cG cG cG
TR = Sk_1, Di-1 = Pk—1, ap”] = g1, and Tp

for any k, assuming xq arbitrary but equal for both methods, with superscript "CG"
for the CG-parameters. Remark: CG-algorithm is well-defined because AT A is sym-
metric positive definite (rank A = n).

Base case £ = 1 follows from

T‘OCG = (AT A)zy — ATb, ro = Axg — b, and so=ATry = rgG,
so that
ng = _TSJG = —3S0 = Po;
and
oo r8CIE SO ol _
(p59) " (ATA)PSE || ApSe|?  I14pol?
Therefore

CcG cG
r{ = xo+ oy po = To+ qopo = T1-

Suppose next that the induction hypothesis is true for some k € Z,. Then
ri% =G+ af G AT ApfY
= sp_1 + ap_1 AT App_y
= A" (rp—1 + a1 Ap—1)

:ATTk
= Sk,
cG _ . CG HTIgGHQ cG _ Bl _
R <Y e T
and )
co_ IO _ dml®
T apge|” AP ’
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so, most importantly,

caG caG CcG . CG
T =wp ) o PRy = Tk—1 + Qg—1 Pk—1 = Tk

Exercise 5.1 in Nocedal & Wright.

(Note that in MATLAB the Hilbert matrix can be produced with the command hilb,
and in Python using scipy.linalg.hilbert.)

Solution: See possible solutions on the wiki.

Exercise 5.12 in Nocedal & Wright: show that Lemma 5.6 holds for any choice of S
in the non-linear CG algorithm with |8 < ||8ER. In particular, this explains the
strategy (5.48) in the book (FR-PR CG algorithm).

Solution: Induction/direct computation as in the proof of Lemma 5.6, utilizing the
strong curvature condition.
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