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Solutions to exercise set 3

1 Consider the quadratic function

f(x) = 1
2x

TAx− bTx,

where A ∈ Rn×n is a symmetric and positive definite matrix and b ∈ Rn.

a) Let p ∈ Rn be a direction satisfying the inequality ∇f(x)Tp < 0. Compute ana-
lytically the steplength αx,p, which solves the linesearch problem minα>0 f(x+
αp)

Solution: First of all, to avoid trivial cases let us note that p 6= 0 and ∇f(x) =
Ax− b 6= 0 owing to the inequality ∇f(x)Tp < 0.
Now, let us look at the first order necessary conditions for αx,p to be a minimizer:

d

dα
f(x+ αx,pp) = pT∇f(x+ αx,pp) = pT[A(x+ αx,pp)− b] = 0,

or

αx,p = −
pT[Ax− b]
pTAp

> 0,

since pTAp > 0 owing to A being positive definite, and pT[Ax−b] = pT∇f(x) <
0 by our assumption.
Since d2/dα2f(x + αp) = pTAp > 0 the linesearch problem is strictly convex,
and therefore αx,p is the unique global minimum.

b) Let x, p ∈ Rn and αx,p > 0 be as in the previous question. Show that the
steplength αx,p satisfies the strong Wolfe conditions if and only if c1 ≤ 1/2.

Solution: Clearly the strong curvature condition is satisfied because ∇f(x +
αx,pp)

Tp = d/dαf(x+αx,pp) = 0, thus the “new” slope is 0 and must be smaller
than or equal in magnitude than the slope we have started with.
We check the sufficient decrease condition now:

f(x+ αx,pp)− f(x) =
1

2
α2
x,pp

TAp+ αpT(Ax− b) = −1

2

[pT(Ax− b)]2

pTAp
< 0,

while

c1αx,p∇f(x)Tp = −c1
[pT(Ax− b)]2

pTAp

. Thus the sufficient decrease condition implies the inequality c1 ≤ 1/2.
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c) Let A = QΛQT be the eigenvalue decomposition of A, where Λ a diagonal
matrix with eigenvalues on the diagonal, and columns of Q are the orthonormal
eigenvectors of A. In particular, QTQ = I, where I ∈ Rn×n is the identity
matrix.
Show that applying the steepest descent method with exact linesearch to the
problem minx∈Rn 0.5xTAx− bTx is equivalent to applying the steepest descent
method with exact linesearch to miny∈Rn 0.5yTΛy, in the following sense: if
x0 = Qy0 + A−1b then the sequence of iterates generated by the two methods
satisfy the same relation, xk = Qyk +A−1b, k ≥ 1.
In this sense, the behaviour of the steepest descent method is insensitive with
respect to translation or orthogonal transformation of coordinates.

Solution: Assume that xk = Qyk +A−1b, k ≥ 0, and let us establish the same
relation after one step of steepest descent.
On the “x”-side we have

xk+1 = xk − αxk,−∇f(xk)∇f(xk) = xk −
(Axk − b)T(Axk − b)
(Axk − b)TA(Axk − b)

(Axk − b).

We substitute now xk = Qyk+A
−1b, which in particular means that Axk− b =

AQyk = QΛyk, to get the equality

xk+1 = Qyk +A−1b−
yTk Λ

TQTQΛyk

yTk Λ
TQTQΛQTQΛyk

QΛyk

= Q

[
yk −

yTk Λ
2yk

yTk Λ
3yk

Λyk

]
+A−1b.

Similarly, on the “y” side we can write:

yk+1 = yk − αyk,−ΛykΛyk = yk −
[Λyk]

TΛyk
[Λyk]TΛΛyk

Λyk = yk −
yTk Λ

2yk

yTk Λ
3yk

Λyk,

where we have used the fact that ∇y[0.5yTΛy] = Λy.
In view of the two equalities above, the proof is complete.

2 Let f be twice continuously differentiable in a vicinity of x0 ∈ Rn. Assume that
∇2f(x0) is positive definite and consider the Newton’s direction px = −[∇2f(x0)]

−1∇f(x0)
together with the unit Newton’s step x1 = x0 + px.

Let us now perform an affine transformation (translation, rotation, and scaling) of
coordinates x = By + c, where B ∈ Rn×n is a non-singular matrix (not necessarily
orthogonal), and c ∈ Rn is some vector. Demonstrate that Newton’s method is
insensitive with respect to such transformations: that is, if g(y) = f(By+ c) = f(x),
x0 = By0 + c, and finally y1 = y0 − [∇2g(y0)]

−1∇g(y0) then x1 = By1 + c.

Solution:

∂g

∂yi
(y) =

n∑
k=1

∂f

∂xk
(By + c)

∂xk
∂yi

=
n∑
k=1

∂f

∂xk
(By + c)Bki,

∂2g

∂yi∂yj
(y) =

∂

∂yj

n∑
k=1

∂f

∂xk
(By + c)Bki =

n∑
k=1

n∑
`=1

∂2f

∂xk∂x`
(By + c)BkiB`j ,
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and therefore
∇yg(y) = BT∇xf(By + c)

∇2
yg(y) = BT∇2

xf(By + c)B.

As a result

y1 = y0 − [BT∇2
xf(By + c)B]−1BT∇xf(By + c)

= y0 −B−1[∇2
xf(By + c)]−1B−TBT∇xf(By + c)

= y0 −B−1[∇2
xf(By + c)]−1∇xf(By + c),

x1 = x0 − [∇2
xf(x0)]

−1∇xf(x0)
= B{y0 −B−1[∇2

xf(By0 + c)]−1∇xf(By0 + c)}+ c = By1 + c.

3 Let A ∈ Rn×n be an SPD matrix with the eigenvalue decomposition A = QΛQT , and
let b ∈ Rn be an arbitrary vector. We put x∗ = A−1b to be the optimal solution of
the quadratic unconstrained minimization problem minx∈Rn 0.5xTAx−bTx. Suppose
that the igenvaluse of A are sorted as 0 < λ1 ≤ λ2 ≤ · · · ≤ λn. During the lecture we
have discussed that for starting point of the type x0 = x∗ + λ−11 q1 + λ−1n qn, where qi
are orthonormal eigenvectors of A (columns of Q) corresponding to eigenvalues λi,
the steepest descent method with exact linesearch for this problem generates iterates
satisfying

‖xk − x∗‖ =
(
λn − λ1
λn + λ1

)k
‖x0 − x∗‖,

which converges to zero linearly, and arbitrarily slowly for large condition numbers
cond(A) = λn/λ1. Approximately, the number of iterations needed to achieve some
prescribed tolerance scales proportionally to the condition number of A.

a) Implement the steepest descent method with exact linesearch for this problem
and verify the estimate above numerically.
Hint: one can generate random positive definite matrices for example as follows:

import numpy as np
N = 10
# genera te NxN random matrix
X = np . random . randn (N,N)
# genera te NxN or thogona l matrix from i t
Q = np . l i n a l g . qr (X) [ 0 ]
# genera te some random e i g enva l u e s between lam_min and lam_max
lam_min = 1 .0
lam_max = 100 .0
lmbda = lam_min + (lam_max−lam_min)∗np . s o r t (np . random . rand (N) )
lmbda [ 0 ] = lam_min
lmbda[−1]=lam_max
Lambda = np . diag ( lmbda )
A = np . matmul (Q, np . matmul (Lambda ,Q.T) )
# random vec to r
b = np . random . randn (N)
# A^{−1}b
xs ta r = np . l i n a l g . s o l v e (A, b)
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# s t a r t i n g po in t
x0 = xs ta r + 1 .0/ lmbda [ 0 ] ∗Q[ : , 0 ] + 1 .0/ lmbda [−1]∗Q[ : , −1 ]

Solution: See a possible implementation on the Wiki

b) Not everyone has given up on the steepest descent method. Consider for example
the following accelerated version of the method due to Nesterov:

pk = −∇f(xk),
yk+1 = xk + λ−1n pk,

xk+1 = s1yk+1 + s0yk,

where we put y0 = x0, s0 = −(λ1/2n − λ1/21 )/(λ
1/2
n + λ

1/2
1 ), and s1 = 1.0− s0.

Implement this method and verify numerically, that the number of iterations
needed to achieve some prescribed tolerance scales proportionally to the square
root of the condition number of A, λ1/2n /λ

1/2
1 .

Solution: See a possible implementation on the Wiki

4 Implement both the steepest descent method and the Newton’s method with line-
search satisfying Wolfe conditions (use a bisection algorithm for this).

Apply the method to minimizing the Rosenbrock function:

f(x, y) := 100(y − x2)2 + (1− x)2.

As Newtons direction is not necessarily a descent direction, we can simply use the
steepest descent direction when the following inequality holds:

−∇f(xk)TpNewton
k ≤ ε‖∇f(xk)‖‖pNewton

k ‖,

that is, when the angle between the Newton’s direction and the steepest descent
direction gets dangerously close to π/2 or exceeds this value.

Verify numerically that the unit Newton’s steps are accepted by the linesearch al-
gorithm provided that the sufficient decrease parameter satisfies the inequality 0 <
c1 < 1/2.

Solution: See a possible implementation on the Wiki

January 26, 2018 Page 4 of 4


