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Exercise set 3

1 Consider the quadratic function

f(x) = 1
2x

TAx− bTx,

where A ∈ Rn×n is a symmetric and positive definite matrix and b ∈ Rn.

a) Let p ∈ Rn be a direction satisfying the inequality ∇f(x)Tp < 0. Compute ana-
lytically the steplength αx,p, which solves the linesearch problem minα>0 f(x+
αp)

b) Let x, p ∈ Rn and αx,p > 0 be as in the previous question. Show that the
steplength αx,p satisfies the strong Wolfe conditions if and only if c1 ≤ 1/2.

c) Let A = QΛQT be the eigenvalue decomposition of A, where Λ is a diagonal
matrix with eigenvalues on the diagonal, and columns of Q are the orthonormal
eigenvectors of A. In particular, QTQ = I, where I ∈ Rn×n is the identity
matrix.
Show that applying the steepest descent method with exact linesearch to the
problem minx∈Rn 0.5xTAx− bTx is equivalent to applying the steepest descent
method with exact linesearch to miny∈Rn 0.5yTΛy, in the following sense: if
x0 = Qy0 + A−1b then the iterates generated by the two methods satisfy the
same relation, xk = Qyk +A−1b, k ≥ 1.
In this sense, the behaviour of the steepest descent method is insensitive with
respect to translation or orthogonal transformation of coordinates.

2 Let f be twice continuously differentiable in a vicinity of x0 ∈ Rn. Assume that
∇2f(x0) is positive definite and consider the Newton’s direction px = −[∇2f(x0)]

−1∇f(x0)
together with the unit Newton’s step x1 = x0 + px.

Let us now perform an affine transformation (translation, rotation, and scaling) of
coordinates x = By + c, where B ∈ Rn×n is a non-singular matrix (not necessarily
orthogonal), and c ∈ Rn is some vector. Demonstrate that Newton’s method is
insensitive with respect to such transformations: that is, if g(y) = f(By+ c) = f(x),
x0 = By0 + c, and finally y1 = y0 − [∇2g(y0)]

−1∇g(y0) then x1 = By1 + c.

3 Let A ∈ Rn×n be an SPD matrix with the eigenvalue decomposition A = QΛQT , and
let b ∈ Rn be an arbitrary vector. We put x∗ = A−1b to be the optimal solution of
the quadratic unconstrained minimization problem minx∈Rn 0.5xTAx−bTx. Suppose
that the eigenvaluse of A are sorted as 0 < λ1 ≤ λ2 ≤ · · · ≤ λn. During the lecture
we have discussed that for starting point of the type x0 = x∗+λ−11 q1 +λ−1n qn, where
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qi are orthonormal eigenvectors of A (columns of Q) corresponding to eigenvalues λi,
the steepest descent method with exact linesearch for this problem generates iterates
satisfying

‖xk − x∗‖ =

(
λn − λ1
λn + λ1

)k
‖x0 − x∗‖,

which converges to zero linearly, and arbitrarily slowly for large condition numbers
cond(A) = λn/λ1. Approximately, the number of iterations needed to achieve some
prescribed tolerance scales proportionally to the condition number of A.

a) Implement the steepest descent method with exact linesearch for this problem
and verify the estimate above numerically.
Hint: one can generate random positive definite matrices for example as follows:

import numpy as np
N = 10
# genera te NxN random matrix
X = np . random . randn (N,N)
# genera te NxN or thogona l matrix from i t
Q = np . l i n a l g . qr (X) [ 0 ]
# genera te some random e i g enva l u e s between lam_min and lam_max
lam_min = 1 .0
lam_max = 100 .0
lmbda = lam_min + (lam_max−lam_min)∗np . s o r t (np . random . rand (N) )
lmbda [ 0 ] = lam_min
lmbda[−1]=lam_max
Lambda = np . diag ( lmbda )
A = np . matmul (Q, np . matmul (Lambda ,Q.T) )
# random vec to r
b = np . random . randn (N)
# A^{−1}b
xs ta r = np . l i n a l g . s o l v e (A, b)
# s t a r t i n g po in t
x0 = xs ta r + 1 .0/ lmbda [ 0 ] ∗Q[ : , 0 ] + 1 .0/ lmbda [−1]∗Q[ : , −1 ]

b) Not everyone has given up on the steepest descent method. Consider for example
the following accelerated version of the method due to Nesterov:

pk = −∇f(xk),

yk+1 = xk + λ−1n pk,

xk+1 = s1yk+1 + s0yk,

where we put y0 = x0, s0 = −(λ
1/2
n − λ1/21 )/(λ

1/2
n + λ

1/2
1 ), and s1 = 1.0− s0.

Implement this method and verify numerically, that the number of iterations
needed to achieve some prescribed tolerance scales proportionally to the square
root of the condition number of A, λ1/2n /λ

1/2
1 .

4 Implement both the steepest descent method and the Newton’s method with line-
search satisfying Wolfe conditions (use a bisection algorithm for this).
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Apply the method to minimizing the Rosenbrock function:

f(x, y) := 100(y − x2)2 + (1− x)2.

As Newtons direction is not necessarily a descent direction, we can simply use the
steepest descent direction when the following inequality holds:

−∇f(xk)
TpNewton

k ≤ ε‖∇f(xk)‖‖pNewton
k ‖,

that is, when the angle between the Newton’s direction and the steepest descent
direction gets dangerously close to π/2 or exceeds this value.

Verify numerically that the unit Newton’s steps are accepted by the linesearch al-
gorithm provided that the sufficient decrease parameter satisfies the inequality 0 <
c1 < 1/2.
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