Representation theorem for polyhedral sets*

Anton Evgrafov

Department of Mathematical Sciences, NTNU anton.evgrafov@math.ntnu.no

Consider the following linear programming problem in the standard form:

\[
\begin{align*}
\text{minimize} & \quad c^T x, \\
\text{subject to} & \quad Ax = b, \\
& \quad x \geq 0,
\end{align*}
\]

where \(A \in \mathbb{R}^{m \times n} \), \(c \in \mathbb{R}^N \), \(b \in \mathbb{R}^m \). The existence of solutions for a feasible and bounded problem (1) relies upon the representation of the feasible set \(\Omega = \{ x \in \mathbb{R}^n \mid Ax = b, x \geq 0 \} \) as a sum \(\Omega = P + C \), \(P \) is a convex, closed, and bounded set and \(C \) is a closed convex cone.

Before we begin, we reformulate \(\Omega \) in terms of inequalities only:

\[
\Omega = \{ x \in \mathbb{R}^n \mid \tilde{A}x \leq \tilde{b} \},
\]

where

\[
\tilde{A} = \begin{pmatrix} A \\ -A \\ -I \end{pmatrix}, \quad \tilde{b} = \begin{pmatrix} b \\ -b \\ 0 \end{pmatrix}.
\]

Note that the matrix \(\tilde{A} \in \mathbb{R}^{(2m+n) \times n} \) always has rank \(n \) due to the presence of the identity matrix in the last block-row. The representation theorem applies to all matrices \(\tilde{A} \in \mathbb{R}^{\ell \times n} \) with rank \(n \) (full column rank in particular \(\ell \geq n \)), not only matrices of the form (3).

For every \(x \in \Omega \) we will write \(\tilde{A}_x \) and \(\tilde{b}_x \) to denote those rows of \(\tilde{A} \) and the corresponding components of \(\tilde{b} \), where the inequalities are active (binding) at \(x \). The rest of the rows of \(\tilde{A} \)/components of \(\tilde{b} \) will be denoted with \(\tilde{A}_x \) and \(\tilde{b}_x \). Thus \(\tilde{A}_x x = \tilde{b}_x \) and \(\tilde{A}_x x < \tilde{b}_x \).

Consider all points \(v_i \in \Omega \) such that rank \(\tilde{A}_{v_i} = n \); thus \(v_i = \tilde{A}_{v_i}^{-1}\tilde{b}_{v_i} \). Note that the number of such points is not larger than the number of ways of selecting \(n \) rows out of \(\ell \) possibilities, that is \(\ell!/(n!(\ell-n)!)) \), and in principle could be 0. For a given \(\tilde{A} \) and \(\tilde{b} \) we will denote this number with \(N \). Let

\[
P = \left\{ \sum_{i=1}^{N} \lambda_i v_i \mid \lambda_i \geq 0, \sum_{i=1}^{N} \lambda_i = 1 \right\},
\]

\[
C = \{ d \in \mathbb{R}^n \mid \tilde{A}d \leq 0 \}.
\]

* Based on Section 3.2.3 in "Introduction to continuous optimization" by N. Andréasson, AE, M. Patriksson, E. Gustavsson, M. Önnheim: Studentlitteratur (2013), 2nd ed.
Theorem 1 (Representation theorem). Consider a matrix \(\tilde{A} \in \mathbb{R}^{t \times n} \) and a vector \(\tilde{b} \in \mathbb{R}^t \) defining the set (2), and the sets \(P \) and \(C \) defined in (4). Suppose that \(\text{rank} \tilde{A} = n \). If \(P \) is non-empty then \(\Omega = P + C \).

Proof. The inclusion \(P + C \subset \Omega \) is easy to verify. The other inclusion is proved by induction in \(\text{rank} \tilde{A}_x, x \in \Omega \).

First, consider the points in \(x \in \Omega \) with \(\text{rank} \tilde{A}_x = n \). These are precisely the points \(v_i \) defining the non-empty set \(P \). Thus \(x = v_i + 0 \), for some \(i = 1, \ldots, N \). Note that \(0 \in C \), thus \(x \in P + C \).

Now assume that the representation holds for all \(x \in \Omega \) such that \(k \leq \text{rank} \tilde{A}_x \leq n \). We will show that the representation holds also for points \(x \in \Omega \) with \(\text{rank} \tilde{A}_x = k - 1 \).

Let \(x \in \Omega \) be such a point. Since \(\text{rank} \tilde{A}_x < n \) there is \(0 \neq z \in \text{null} \tilde{A}_x \).

Consider a perturbed point \(x + \lambda z, \lambda \in \mathbb{R} \). Since \(\tilde{A}_x x < \tilde{b}_x \) and \(\tilde{A}_x z = 0 \), it holds that \(x + \lambda z \in \Omega \) for all small \(\lambda \).

Let \(\lambda^+ = \sup \{ \lambda \in \mathbb{R} : x + \lambda z \in \Omega \} \) and \(\lambda^- = \sup \{ \lambda \in \mathbb{R} : x - \lambda z \in \Omega \} \). If \(\lambda^+ = +\infty \) then

\[
\tilde{A} z = \lim_{\lambda \to +\infty} \lambda^{-1} \tilde{A} [x + \lambda z] \leq \lim_{\lambda \to +\infty} \lambda^{-1} \tilde{b} = 0.
\]

and therefore \(z \in C \). Similarly, if \(\lambda^- = +\infty \) then \(-z \in C \).

Case 1: Suppose that \(\lambda^- = \lambda^+ = +\infty \); then \(0 \neq z \in C \cap [-C] = \text{null} \tilde{A} \), which contradicts the assumption \(\text{rank} \tilde{A} = n \).

Case 2: Suppose \(\lambda^+ < \infty \) but \(\lambda^- = +\infty \). Consider the point \(x^+ = x + \lambda^+ z \).

Then \(x^+ \in \Omega \) since \(\Omega \) is closed. We claim that \(\text{rank} \tilde{A}_{x^+} \geq k \). Indeed, \(\tilde{A}_{x^+} \) is a submatrix of \(\tilde{A}_{x^+} \) (recall, \(\tilde{A}_x z = 0 \)) and thus \(\text{rank} \tilde{A}_{x^+} \geq k - 1 \). If \(\text{rank} \tilde{A}_{x^+} = k - 1 \) then the additional rows in \(\tilde{A}_{x^+} \) (in relation to \(\tilde{A}_x \)) may be expressed as linear combinations of rows in \(\tilde{A}_x \). Therefore, \(z \in \text{null} \tilde{A}_{x^+} \) and \(x^+ + \lambda z \in \Omega \), for all small \(\lambda \). This contradicts the selection of \(\lambda^+ \), which was such that \(x + \lambda z \notin \Omega \), \(\lambda > \lambda^+ \). It remains to utilize the induction hypothesis for \(x^+ \), that is \(x^+ = x + \lambda z \in P + C \), and as a result \(x \in P + (C + \lambda^+ \Omega) = P + C \), since in this case \(-z \in C \).

Case 3: Suppose \(\lambda^+ = +\infty \) but \(\lambda^- < \infty \). This case is completely symmetric with Case 2.

Case 4: Suppose that \(\lambda^+ < \infty \) and \(\lambda^- < \infty \). In this case the induction hypothesis applies to both \(x^+ \) and \(x^- \). Therefore

\[
x = \frac{\lambda^+}{\lambda^+ + \lambda^-} x^- + \frac{\lambda^-}{\lambda^+ + \lambda^-} x^+ \in \frac{\lambda^+}{\lambda^+ + \lambda^-} (P + C) + \frac{\lambda^-}{\lambda^+ + \lambda^-} (P + C) \subset P + C,
\]

where the last inclusion is owing to the convexity of \(P, C \). \(\square \)

Proposition 1 (Existence of extreme points; see Theorem 13.2 in N&W). Suppose that \(\Omega \) given by (2) is non-empty and \(\text{rank} \tilde{A} = n \). Then the set \(P \) defined in (4) is non-empty.
Proof. Take any $x \in \Omega \neq \emptyset$. If rank $\bar{A}_x = n$ we are done; otherwise we proceed as in the proof of Theorem 1 and define λ^+, λ^-. If $\lambda^+ < \infty$ we then go to the point x^+; otherwise $\lambda^- < \infty$ and then we go to the point x^-. In any case, rank $\bar{A}_{x^+} > \text{rank } \bar{A}_x$ or rank $\bar{A}_{x^-} > \text{rank } \bar{A}_x$. Repeating this procedure, we eventually reach a point $x \in \Omega$ where rank $\bar{A}_x = n$. \square