Optimization Theory

Convergence of descent methods with backtracking (Armijo) linesearch

Anton Evgrafov
Department of Mathematical Sciences, NTNU anton.evgrafov@math.ntnu.no

Read: Section 3.1 in Nocedal and Wright, "Numerical optimization," in particular Algorithm 3.1, p. 37.

Consider the following iteration:

$$
x_{k+1}=x_{k}+\alpha_{k} p_{k}, \quad k=0,1,2, \ldots
$$

where $B_{k}=B_{k}^{T}$,

$$
B_{k} p_{k}=-\nabla f\left(x_{k}\right),
$$

and α_{k} is selected using the backtracking (Armijo) linesearch with parameters $c, \rho \in(0,1)$.

Theorem 1. Suppose that

1. $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuously differentiable;
2. the set $S:=\left\{x \in \mathbb{R}^{n} \mid f(x) \leq f\left(x_{0}\right)\right\}$ is bounded;
3. the matrices B_{k} are uniformly positive definite and bounded, that is $\exists m>$ $0, M>0: m \leq \lambda_{\min }\left(B_{k}\right) \leq \lambda_{\max }\left(B_{k}\right) \leq M$, where $\lambda_{\min }$ and $\lambda_{\max }$ are the smallest and the largest eigenvalues of B_{k}.

Then the sequence $\left\{x_{k}\right\}$ is bounded, and every its limit point \hat{x} is a stationary point for f.

Proof. Owing to the sufficient decrease condition in the linesearch procedure the sequence $f\left(x_{k}\right), k=0,1,2, \ldots$ is non-increasing; thus $x_{k} \in S$ for all k; in particular it is bounded and therefore has at least one limit point. The set S is closed because f is continuous, and thus is compact owing to the assumption 2 and Heine-Borel theorem. Therefore, the function f attains its minimum value on S (Weierstrass theorem) and thus is bounded from below on S. As a result, the non-increasing sequence $f\left(x_{k}\right)$ has a finite limit, and furthermore $\lim _{k \rightarrow \infty}\left[f\left(x_{k+1}\right)-f\left(x_{k}\right)\right]=0$.

Owing to the sufficient decrease condition it holds that

$$
\begin{align*}
f\left(x_{k+1}\right)-f\left(x_{k}\right) & \leq c \alpha_{k} \nabla f\left(x_{k}\right)^{T} p_{k}=-c \alpha_{k} \nabla f\left(x_{k}\right)^{T} B_{k}^{-1} \nabla f\left(x_{k}\right) \\
& \leq-c \alpha_{k} \lambda_{\min }\left(B_{k}^{-1}\right)\left\|\nabla f\left(x_{k}\right)\right\|^{2} \tag{1}\\
& \leq-c M^{-1} \alpha_{k}\left\|\nabla f\left(x_{k}\right)\right\|^{2} \leq 0 .
\end{align*}
$$

The sequence on the left converges to 0 , meaning that the sequence on the right must also converge to zero. We will show that this implies that $\lim _{k \rightarrow \infty}\left\|\nabla f\left(x_{k}\right)\right\|=$ 0 .

Suppose that this is not true; then, for some subsequence of indices k^{\prime} and some $\epsilon>0$ we must have that $\left\|\nabla f\left(x_{k^{\prime}}\right)\right\| \geq \epsilon$. From (1) it then follows that $\lim _{k^{\prime} \rightarrow \infty} \alpha_{k^{\prime}}=0$. In particular, it means that the step $\alpha_{k^{\prime}} / \rho$ was not acceptable to the linesearch procedure for all large k^{\prime}, that is

$$
\begin{equation*}
f\left(x_{k^{\prime}}+\alpha_{k^{\prime}} \rho^{-1} p_{k^{\prime}}\right)>f\left(x_{k^{\prime}}\right)+c \alpha_{k^{\prime}} \rho^{-1} \nabla f\left(x_{k^{\prime}}\right)^{T} p_{k^{\prime}} . \tag{2}
\end{equation*}
$$

The sequence of directions $p_{k}=-B_{k}^{-1} \nabla f\left(x_{k}\right)$ is bounded. Indeed, by our assumption 3 the norms $\left\|B_{k}^{-1}\right\|=\lambda_{\text {min }}^{-1}\left(B_{k}\right) \leq m^{-1}$. Furthermore, the continuous function $x \mapsto\|\nabla f(x)\|$ attains its maximum over the compact set S, and thus $\left\|\nabla f\left(x_{k}\right)\right\|$ is bounded by this maximum value, for all k. As a result, we may assume that for some subsequence of k^{\prime}, say $k^{\prime \prime}$, it holds that $\lim _{k^{\prime \prime} \rightarrow \infty} x_{k^{\prime \prime}}=\hat{x}$ and $\lim _{k^{\prime \prime} \rightarrow \infty} p_{k^{\prime \prime}}=\hat{p}$. Rearranging the terms in (2) we get

$$
\begin{align*}
0 & \leq \lim _{k^{\prime \prime} \rightarrow \infty} \frac{f\left(x_{k^{\prime \prime}}+\alpha_{k^{\prime \prime}} \rho^{-1} p_{k^{\prime \prime}}\right)-f\left(x_{k^{\prime \prime}}\right)}{\alpha_{k^{\prime \prime}} \rho^{-1}}-c \nabla f\left(x_{k^{\prime \prime}}\right)^{T} p_{k^{\prime \prime}} \tag{3}\\
& =(1-c) \nabla f(\hat{x})^{T} \hat{p},
\end{align*}
$$

and therefore $\nabla f(\hat{x})^{T} \hat{p} \geq 0$ as $0<c<1$. On the other hand,

$$
\begin{align*}
\nabla f(\hat{x})^{T} \hat{p} & =\lim _{k^{\prime \prime} \rightarrow \infty} \nabla f\left(x_{k^{\prime \prime}}\right)^{T} p_{k^{\prime \prime}}=-\lim _{k^{\prime \prime} \rightarrow \infty} \nabla f\left(x_{k^{\prime \prime}}\right)^{T} B_{k^{\prime \prime}}^{-1} \nabla f\left(x_{k^{\prime \prime}}\right) \tag{4}\\
& \leq-M^{-1} \epsilon^{2}<0
\end{align*}
$$

However, equations (3) and (4) contradict each other. This must mean that our assumption that $\left\|\nabla f\left(x_{k^{\prime}}\right)\right\| \geq \epsilon$ over some subsequence k^{\prime} is wrong and in fact

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|\nabla f\left(x_{k}\right)\right\|=0 \tag{5}
\end{equation*}
$$

Finally, let \hat{x} be an arbitrary limit point of $\left\{x_{k}\right\}$, that is, $\hat{x}=\lim _{k^{\prime \prime \prime} \rightarrow \infty} x_{k^{\prime \prime \prime}}$ for some subsequence $k^{\prime \prime \prime}$. Owing to the continuity of the function $x \mapsto\|\nabla f(x)\|$ (assumption 1) and (5) it holds that $\|\nabla f(\hat{x})\|=0$, as we claimed.

Exercise: Using this theorem, show that the steepest descent algorithm with Armijo (backtracking) linesearch converges to the minimim of Rosenbrock function from any starting point.

