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Exercise set 4

1 Applying Algorithm 5.2 in Nocedal & Wright, we find that

x0 = (0, 0, 0), r0 = (−1, 0,−1), p0 = (1, 0, 1), α0 = 1,

x1 = (1, 0, 1), r1 = (0, 2, 0), β1 = 2, p1 = (2, 2, 2), α1 = 1,

x2 = (3, 2, 3), r3 = (0, 0, 0).

Since r3 = 0—which it should as convergence is guaranteed within 3 steps—we stop
and conclude that x = (3, 2, 3) solves the linear system.

2 a) The least squares problem is an unconstrained minimisation problem for the
function f(x) = ‖Ax− b‖2 on Rn. Observe that f is smooth, and that

∇f(x) = 2A>(Ax− b) and ∇2f(x) = 2A>A.

Calculation of ∇f follows either from the chain rule in the multivariable setting,
or by direct expansion

‖Ax− b‖2 = (Ax− b)>(Ax− b) = x>A>Ax− 2b>Ax+ b>b.

Matrix A>A is symmetric, and also positive semi-definite, because

v>A>Av = (Av)>Av = ‖Av‖2 ≥ 0 for all v ∈ Rn.

Hence, f is convex and we infer that every critical point is a global minimiser
(and conversely). As such, x∗ minimises f if and only if ∇f(x∗) = 0. In other
words,

A>Ax∗ = A>b.

b) If we can show that the normal equations admit a solution, then we are done.
Specifically, this amounts to proving that A>b ∈ ranA>A. Now,

ranA>A =
(
ker(A>A)>

)⊥
=
(
kerA>A

)⊥
from the fundamental theorem of linear algebra, where B⊥ denotes the orthog-
onal complement of a set B. Since kerA>A = kerA (why?), it follows that

ranA>A = (kerA)⊥.

Observe next that if y ∈ kerA, then (A>b)>y = b>(Ay) = 0. Consequently, we
have A>b ∈ (kerA)⊥ = ranA>A, as desired.
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c) If rankA = n, then by the rank-nullity theorem the null space (kernel) of A is
trivial, that is, kerA = {0}. ThusAv = 0 if and only if v = 0, and so∇2f = A>A
is positive definite:

v>A>Av = (Av)>Av = ‖Av‖2 > 0 for all v ∈ Rn \ {0}.

Therefore f is strictly convex, which implies uniqueness of the global minimiser.

d) From a) and b) we know that f is a convex function whose set Ω ⊂ Rn of
minimiser(s) is nonempty. Moreover, it follows that Ω is convex (why?), so we
may write the new optimisation problem as

min
x∈Ω

g(x), where g(x) = ‖x‖2.

Note that ∇2g = 2In×n is symmetric positive definite. In particular, g is strictly
convex on Ω1, and has at most one solution x† ∈ Ω.
If rankA = n, then Ω = {x∗}, from which we conclude that x† = x∗. If, how-
ever rankA < n, then Ω is at least a one-dimensional subspace of Rn (there is at
least one free parameter in the normal equations). In this case, Ω is unbounded,
but we are saved by coercivity of g. Indeed,

x ∈ Ω with ‖x‖ → ∞ implies g(x) = ‖x‖2 →∞.

Since g is lower semi-continuous—in fact, smooth—and coercive, it admits a
global minimum x† ∈ Ω.

e) By construction of the optimisation problem in d), x† satisfies A>Ax† = A>b.
In order to see that x† ∈ ranA>, observe first that

Rn = ranA> k kerA

(orthogonal direct sum) by the rank–nullity theorem. Hence, x† may be written
uniquely as x† = y + z for some y ∈ ranA> and z ∈ kerA, satisfying y>z = 0.
We want to show that z = 0. This rests upon two observations: 1) perturbing z
inside kerA has no effect on the normal equations (or the value of f):

A>A(y + z̃) = A>Ay +A>(Az̃) = A>Ay

for any z̃ ∈ kerA; and 2) by orthogonality between ranA> and kerA we have

g(x†) = ‖x†‖2 = ‖y‖2 + y>z + ‖z‖2 = ‖y‖2 + ‖z‖2,

and similarly
g(y + z̃) = ‖y‖2 + ‖z̃‖2.

If z 6= 0, we can therefore just pick any z̃ ∈ kerA with ‖z̃‖ < ‖z‖ and obtain
that g(y + z̃) < g(x†). But this is a contradiction to the fact that x† minimises g,
so z must indeed be 0.

1Remark: never forget that we cannot talk about convexity of a function unless its underlying domain
is convex (why not?).
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3 a) We provide an inductive argument, showing that

rCG
k−1 = sk−1, pCG

k−1 = pk−1, αCG
k−1 = αk−1, and xCG

k = xk

for any k, assuming x0 arbitrary but equal for both methods, with super-
script "CG" for the CG-parameters. Remark: CG-algorithm is well-defined
because A>A is symmetric positive definite (rankA = n).
Base case k = 1 follows from

rCG
0 = (A>A)x0 −A>b, r0 = Ax0 − b, and s0 = A>r0 = rCG

0 ,

so that
pCG
0 = −rCG

0 = −s0 = p0,

and

αCG
0 =

∥∥rCG
0

∥∥2(
pCG
0

)>
(A>A)pCG

0

=

∥∥rCG
0

∥∥2∥∥ApCG
0

∥∥2 =
‖s0‖2

‖Ap0‖2
= α0.

Therefore
xCG
1 = x0 + αCG

0 p0 = x0 + α0p0 = x1.

Suppose next that the induction hypothesis is true for some k ∈ Z+. Then

rCG
k = rCG

k−1 + αCG
k−1A

>ApCG
k−1

= sk−1 + αk−1A
>Apk−1

= A> (rk + αk−1Apk−1)

= A>rk

= sk,

pCG
k = −rCG

k +

∥∥rCG
k

∥∥2∥∥rCG
k−1
∥∥2 pCG

k−1 = −sk +
‖sk‖2

‖sk−1‖2
pk = pk,

and

αCG
k =

∥∥rCG
k

∥∥2∥∥ApCG
k

∥∥2 =
‖sk‖2

‖Apk‖2
= αk,

so, most importantly,

xCG
k = xCG

k−1 + αCG
k−1 p

CG
k−1 = xk−1 + αk−1 pk−1 = xk.

b) There are two key arguments in this exercise: 1) the equivalence between
the given algorithm and the CG-algorithm for the solution of A>Ax = A>b,
and 2) the characterisation in 2 e) of optimisation problem (2).
Hence, by algorithmic equivalence, if the new algorithm converges to some x†,
then necessarilyA>Ax† = A>b. Since x0 = 0, it follows that p0 = A>b ∈ ranA>,
and x1 = α0p0 ∈ ranA>. All subsequent search directions are of the form

pk = −A>rk + βkpk−1,

from which we infer both that pk ∈ ranA> and xk = xk−1 + αk−1pk−1 ∈ ranA>.
Therefore, if the given algorithm converges to some x†, then x† ∈ ranA>, yield-
ing a solution of optimisation problem (2).
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But does the algorithm converge, and if so, in at most r steps? We first need
to examine if all algorithmic operations are legal; especially, whether we risk
division by zero anywhere. This could occur if

‖Apk‖ = 0, or ‖sk‖ = 0.

The latter is not a problem, because the algorithm has converged if sk = 0
(in general, sk is the current residual of A>Ax = A>b). Moreover, Apk = 0

if and only if pk ∈ kerA =
(
ranA>

)⊥. In the previous paragraph we showed
that pk ∈ ranA> for all k, and so Apk = 0 if and only if pk = 0. But pk = 0
implies sk = 0 also, and consequently, convergence.
Since all operations in the algorithm are legal, we can use the algorithmic equiv-
alence with the CG-algorithm for the solution of A>Ax = A>b, and follow the
proof of Theorem 5.3 in Nocedal & Wright, which shows that the generated pk’s
are conjugate with respect to A>A. In the end of N&W’s proof, Theorem 5.1 is
invoked, stating that the algorithm will converge in at most n iterations. In our
case, however, this reduces to at most r iterations, because solution x† lies in
the r-dimensional subspace ranA> ⊂ Rn, spanned by the r linearly independent
vectors p0, . . . , pr−1.

4 See file tma4180s17_ex04_4.m on the website.
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