

1 Applying Algorithm 5.2 in Nocedal & Wright, we find that

 $\begin{array}{ll} x_0 = (0,0,0), & r_0 = (-1,0,-1), & p_0 = (1,0,1), & \alpha_0 = 1, \\ x_1 = (1,0,1), & r_1 = (0,2,0), & \beta_1 = 2, & p_1 = (2,2,2), & \alpha_1 = 1, \\ x_2 = (3,2,3), & r_3 = (0,0,0). \end{array}$

Since $r_3 = 0$ —which it should as convergence is guaranteed within 3 steps—we stop and conclude that x = (3, 2, 3) solves the linear system.

a) The least squares problem is an unconstrained minimisation problem for the function $f(x) = ||Ax - b||^2$ on \mathbb{R}^n . Observe that f is smooth, and that

 $\nabla f(x) = 2A^{\top}(Ax - b)$ and $\nabla^2 f(x) = 2A^{\top}A$.

Calculation of ∇f follows either from the chain rule in the multivariable setting, or by direct expansion

$$||Ax - b||^{2} = (Ax - b)^{\top}(Ax - b) = x^{\top}A^{\top}Ax - 2b^{\top}Ax + b^{\top}b.$$

Matrix $A^{\top}A$ is symmetric, and also positive semi-definite, because

$$v^{\top}A^{\top}Av = (Av)^{\top}Av = ||Av||^2 \ge 0$$
 for all $v \in \mathbb{R}^n$.

Hence, f is convex and we infer that every critical point is a global minimiser (and conversely). As such, x^* minimises f if and only if $\nabla f(x^*) = 0$. In other words,

$$A^{\top}Ax^* = A^{\top}b.$$

b) If we can show that the normal equations admit a solution, then we are done. Specifically, this amounts to proving that $A^{\top}b \in \operatorname{ran} A^{\top}A$. Now,

$$\operatorname{ran} A^{\top} A = \left(\ker(A^{\top} A)^{\top} \right)^{\perp} = \left(\ker A^{\top} A \right)^{\perp}$$

from the fundamental theorem of linear algebra, where B^{\perp} denotes the orthogonal complement of a set B. Since ker $A^{\top}A = \text{ker }A$ (why?), it follows that

$$\operatorname{ran} A^{\top} A = (\ker A)^{\perp}$$

Observe next that if $y \in \ker A$, then $(A^{\top}b)^{\top}y = b^{\top}(Ay) = 0$. Consequently, we have $A^{\top}b \in (\ker A)^{\perp} = \operatorname{ran} A^{\top}A$, as desired.

c) If rank A = n, then by the rank-nullity theorem the null space (kernel) of A is trivial, that is, ker $A = \{0\}$. Thus Av = 0 if and only if v = 0, and so $\nabla^2 f = A^{\top} A$ is positive definite:

$$v^{\top}A^{\top}Av = (Av)^{\top}Av = ||Av||^2 > 0 \quad \text{for all} \quad v \in \mathbb{R}^n \setminus \{0\}.$$

Therefore f is strictly convex, which implies uniqueness of the global minimiser.

d) From a) and b) we know that f is a convex function whose set $\Omega \subset \mathbb{R}^n$ of minimiser(s) is nonempty. Moreover, it follows that Ω is convex (why?), so we may write the new optimisation problem as

$$\min_{x \in \Omega} g(x), \quad \text{where} \quad g(x) = \|x\|^2.$$

Note that $\nabla^2 g = 2I_{n \times n}$ is symmetric positive definite. In particular, g is strictly convex on Ω^1 , and has at most one solution $x^{\dagger} \in \Omega$.

If rank A = n, then $\Omega = \{x^*\}$, from which we conclude that $x^{\dagger} = x^*$. If, however rank A < n, then Ω is at least a one-dimensional subspace of \mathbb{R}^n (there is at least one free parameter in the normal equations). In this case, Ω is unbounded, but we are saved by coercivity of g. Indeed,

$$x \in \Omega$$
 with $||x|| \to \infty$ implies $g(x) = ||x||^2 \to \infty$.

Since g is lower semi-continuous—in fact, smooth—and coercive, it admits a global minimum $x^{\dagger} \in \Omega$.

e) By construction of the optimisation problem in d), x^{\dagger} satisfies $A^{\top}Ax^{\dagger} = A^{\top}b$. In order to see that $x^{\dagger} \in \operatorname{ran} A^{\top}$, observe first that

$$\mathbb{R}^n = \operatorname{ran} A^\top \oplus \ker A$$

(orthogonal direct sum) by the rank–nullity theorem. Hence, x^{\dagger} may be written uniquely as $x^{\dagger} = y + z$ for some $y \in \operatorname{ran} A^{\top}$ and $z \in \ker A$, satisfying $y^{\top}z = 0$. We want to show that z = 0. This rests upon two observations: 1) perturbing zinside ker A has no effect on the normal equations (or the value of f):

$$A^{\top}A(y+\widetilde{z}) = A^{\top}Ay + A^{\top}(A\widetilde{z}) = A^{\top}Ay$$

for any $\tilde{z} \in \ker A$; and 2) by orthogonality between $\operatorname{ran} A^{\top}$ and $\ker A$ we have

$$g(x^{\dagger}) = ||x^{\dagger}||^{2} = ||y||^{2} + y^{\top}z + ||z||^{2} = ||y||^{2} + ||z||^{2},$$

and similarly

$$g(y + \tilde{z}) = ||y||^2 + ||\tilde{z}||^2.$$

If $z \neq 0$, we can therefore just pick any $\tilde{z} \in \ker A$ with $\|\tilde{z}\| < \|z\|$ and obtain that $g(y + \tilde{z}) < g(x^{\dagger})$. But this is a contradiction to the fact that x^{\dagger} minimises g, so z must indeed be 0.

¹Remark: never forget that we cannot talk about convexity of a function unless its underlying domain is convex (why not?).

a) We provide an inductive argument, showing that

$$r_{k-1}^{\text{CG}} = s_{k-1}, \qquad p_{k-1}^{\text{CG}} = p_{k-1}, \qquad \alpha_{k-1}^{\text{CG}} = \alpha_{k-1}, \qquad \text{and} \qquad x_k^{\text{CG}} = x_k$$

for any k, assuming x_0 arbitrary but equal for both methods, with superscript "CG" for the CG-parameters. Remark: CG-algorithm is well-defined because $A^{\top}A$ is symmetric positive definite (rank A = n). Base case k = 1 follows from

 $r_0^{\text{CG}} = (A^{\top}A)x_0 - A^{\top}b, \quad r_0 = Ax_0 - b, \quad \text{and} \quad s_0 = A^{\top}r_0 = r_0^{\text{CG}},$

so that

$$p_0^{\rm CG} = -r_0^{\rm CG} = -s_0 = p_0,$$

and

$$\alpha_0^{\text{CG}} = \frac{\|r_0^{\text{CG}}\|^2}{(p_0^{\text{CG}})^\top (A^\top A) p_0^{\text{CG}}} = \frac{\|r_0^{\text{CG}}\|^2}{\|Ap_0^{\text{CG}}\|^2} = \frac{\|s_0\|^2}{\|Ap_0\|^2} = \alpha_0.$$

Therefore

$$x_1^{\text{CG}} = x_0 + \alpha_0^{\text{CG}} p_0 = x_0 + \alpha_0 p_0 = x_1.$$

Suppose next that the induction hypothesis is true for some $k \in \mathbb{Z}_+$. Then

$$r_k^{\text{CG}} = r_{k-1}^{\text{CG}} + \alpha_{k-1}^{\text{CG}} A^\top A p_{k-1}^{\text{CG}}$$
$$= s_{k-1} + \alpha_{k-1} A^\top A p_{k-1}$$
$$= A^\top (r_k + \alpha_{k-1} A p_{k-1})$$
$$= A^\top r_k$$
$$= s_k,$$

$$p_k^{\text{CG}} = -r_k^{\text{CG}} + \frac{\left\|r_k^{\text{CG}}\right\|^2}{\left\|r_{k-1}^{\text{CG}}\right\|^2} p_{k-1}^{\text{CG}} = -s_k + \frac{\|s_k\|^2}{\|s_{k-1}\|^2} p_k = p_k,$$

and

$$\alpha_k^{\text{CG}} = \frac{\|r_k^{\text{CG}}\|^2}{\|Ap_k^{\text{CG}}\|^2} = \frac{\|s_k\|^2}{\|Ap_k\|^2} = \alpha_k,$$

so, most importantly,

$$x_k^{\rm CG} = x_{k-1}^{\rm CG} + \alpha_{k-1}^{\rm CG} p_{k-1}^{\rm CG} = x_{k-1} + \alpha_{k-1} p_{k-1} = x_k.$$

b) There are two key arguments in this exercise: 1) the equivalence between the given algorithm and the CG-algorithm for the solution of $A^{\top}Ax = A^{\top}b$, and 2) the characterisation in 2 e) of optimisation problem (2).

Hence, by algorithmic equivalence, if the new algorithm converges to some x^{\dagger} , then necessarily $A^{\top}Ax^{\dagger} = A^{\top}b$. Since $x_0 = 0$, it follows that $p_0 = A^{\top}b \in \operatorname{ran} A^{\top}$, and $x_1 = \alpha_0 p_0 \in \operatorname{ran} A^{\top}$. All subsequent search directions are of the form

$$p_k = -A^\top r_k + \beta_k p_{k-1},$$

from which we infer both that $p_k \in \operatorname{ran} A^{\top}$ and $x_k = x_{k-1} + \alpha_{k-1} p_{k-1} \in \operatorname{ran} A^{\top}$. Therefore, if the given algorithm converges to some x^{\dagger} , then $x^{\dagger} \in \operatorname{ran} A^{\top}$, yielding a solution of optimisation problem (2). But does the algorithm converge, and if so, in at most r steps? We first need to examine if all algorithmic operations are legal; especially, whether we risk division by zero anywhere. This could occur if

$$||Ap_k|| = 0,$$
 or $||s_k|| = 0.$

The latter is not a problem, because the algorithm has converged if $s_k = 0$ (in general, s_k is the current residual of $A^{\top}Ax = A^{\top}b$). Moreover, $Ap_k = 0$ if and only if $p_k \in \ker A = (\operatorname{ran} A^{\top})^{\perp}$. In the previous paragraph we showed that $p_k \in \operatorname{ran} A^{\top}$ for all k, and so $Ap_k = 0$ if and only if $p_k = 0$. But $p_k = 0$ implies $s_k = 0$ also, and consequently, convergence.

Since all operations in the algorithm are legal, we can use the algorithmic equivalence with the CG-algorithm for the solution of $A^{\top}Ax = A^{\top}b$, and follow the proof of Theorem 5.3 in Nocedal & Wright, which shows that the generated p_k 's are conjugate with respect to $A^{\top}A$. In the end of N&W's proof, Theorem 5.1 is invoked, stating that the algorithm will converge in at most n iterations. In our case, however, this reduces to at most r iterations, because solution x^{\dagger} lies in the r-dimensional subspace ran $A^{\top} \subset \mathbb{R}^n$, spanned by the r linearly independent vectors p_0, \ldots, p_{r-1} .

4 See file tma4180s17_ex04_4.m on the website.