TMA4180

Optimisation I

Spring 2017
Norwegian University of Science and Technology
Department of Mathematical
Sciences

1 Applying Algorithm 5.2 in Nocedal \& Wright, we find that

$$
\begin{aligned}
& x_{0}=(0,0,0), \quad r_{0}=(-1,0,-1), \quad p_{0}=(1,0,1), \quad \alpha_{0}=1, \\
& x_{1}=(1,0,1), \quad r_{1}=(0,2,0), \quad \beta_{1}=2, \quad p_{1}=(2,2,2), \quad \alpha_{1}=1, \\
& x_{2}=(3,2,3), \quad r_{3}=(0,0,0) .
\end{aligned}
$$

Since $r_{3}=0$ - which it should as convergence is guaranteed within 3 steps-we stop and conclude that $x=(3,2,3)$ solves the linear system.

2 a) The least squares problem is an unconstrained minimisation problem for the function $f(x)=\|A x-b\|^{2}$ on \mathbb{R}^{n}. Observe that f is smooth, and that

$$
\nabla f(x)=2 A^{\top}(A x-b) \quad \text { and } \quad \nabla^{2} f(x)=2 A^{\top} A
$$

Calculation of ∇f follows either from the chain rule in the multivariable setting, or by direct expansion

$$
\|A x-b\|^{2}=(A x-b)^{\top}(A x-b)=x^{\top} A^{\top} A x-2 b^{\top} A x+b^{\top} b .
$$

Matrix $A^{\top} A$ is symmetric, and also positive semi-definite, because

$$
v^{\top} A^{\top} A v=(A v)^{\top} A v=\|A v\|^{2} \geq 0 \quad \text { for all } \quad v \in \mathbb{R}^{n} .
$$

Hence, f is convex and we infer that every critical point is a global minimiser (and conversely). As such, x^{*} minimises f if and only if $\nabla f\left(x^{*}\right)=0$. In other words,

$$
A^{\top} A x^{*}=A^{\top} b .
$$

b) If we can show that the normal equations admit a solution, then we are done. Specifically, this amounts to proving that $A^{\top} b \in \operatorname{ran} A^{\top} A$. Now,

$$
\operatorname{ran} A^{\top} A=\left(\operatorname{ker}\left(A^{\top} A\right)^{\top}\right)^{\perp}=\left(\operatorname{ker} A^{\top} A\right)^{\perp}
$$

from the fundamental theorem of linear algebra, where B^{\perp} denotes the orthogonal complement of a set B. Since $\operatorname{ker} A^{\top} A=\operatorname{ker} A$ (why?), it follows that

$$
\operatorname{ran} A^{\top} A=(\operatorname{ker} A)^{\perp}
$$

Observe next that if $y \in \operatorname{ker} A$, then $\left(A^{\top} b\right)^{\top} y=b^{\top}(A y)=0$. Consequently, we have $A^{\top} b \in(\operatorname{ker} A)^{\perp}=\operatorname{ran} A^{\top} A$, as desired.
c) If $\operatorname{rank} A=n$, then by the rank-nullity theorem the null space (kernel) of A is trivial, that is, ker $A=\{0\}$. Thus $A v=0$ if and only if $v=0$, and so $\nabla^{2} f=A^{\top} A$ is positive definite:

$$
v^{\top} A^{\top} A v=(A v)^{\top} A v=\|A v\|^{2}>0 \quad \text { for all } \quad v \in \mathbb{R}^{n} \backslash\{0\} .
$$

Therefore f is strictly convex, which implies uniqueness of the global minimiser.
d) From a) and b) we know that f is a convex function whose set $\Omega \subset \mathbb{R}^{n}$ of minimiser(s) is nonempty. Moreover, it follows that Ω is convex (why?), so we may write the new optimisation problem as

$$
\min _{x \in \Omega} g(x), \quad \text { where } \quad g(x)=\|x\|^{2} .
$$

Note that $\nabla^{2} g=2 I_{n \times n}$ is symmetric positive definite. In particular, g is strictly convex on Ω^{1}, and has at most one solution $x^{\dagger} \in \Omega$.
If rank $A=n$, then $\Omega=\left\{x^{*}\right\}$, from which we conclude that $x^{\dagger}=x^{*}$. If, however $\operatorname{rank} A<n$, then Ω is at least a one-dimensional subspace of \mathbb{R}^{n} (there is at least one free parameter in the normal equations). In this case, Ω is unbounded, but we are saved by coercivity of g. Indeed,

$$
x \in \Omega \text { with }\|x\| \rightarrow \infty \quad \text { implies } \quad g(x)=\|x\|^{2} \rightarrow \infty .
$$

Since g is lower semi-continuous - in fact, smooth-and coercive, it admits a global minimum $x^{\dagger} \in \Omega$.
e) By construction of the optimisation problem in d), x^{\dagger} satisfies $A^{\top} A x^{\dagger}=A^{\top} b$. In order to see that $x^{\dagger} \in \operatorname{ran} A^{\top}$, observe first that

$$
\mathbb{R}^{n}=\operatorname{ran} A^{\top} \Theta \operatorname{ker} A
$$

(orthogonal direct sum) by the rank-nullity theorem. Hence, x^{\dagger} may be written uniquely as $x^{\dagger}=y+z$ for some $y \in \operatorname{ran} A^{\top}$ and $z \in \operatorname{ker} A$, satisfying $y^{\top} z=0$. We want to show that $z=0$. This rests upon two observations: 1) perturbing z inside $\operatorname{ker} A$ has no effect on the normal equations (or the value of f):

$$
A^{\top} A(y+\widetilde{z})=A^{\top} A y+A^{\top}(A \widetilde{z})=A^{\top} A y
$$

for any $\widetilde{z} \in \operatorname{ker} A$; and 2) by orthogonality between $\operatorname{ran} A^{\top}$ and $\operatorname{ker} A$ we have

$$
g\left(x^{\dagger}\right)=\left\|x^{\dagger}\right\|^{2}=\|y\|^{2}+y^{\top} z+\|z\|^{2}=\|y\|^{2}+\|z\|^{2},
$$

and similarly

$$
g(y+\widetilde{z})=\|y\|^{2}+\|\widetilde{z}\|^{2} .
$$

If $z \neq 0$, we can therefore just pick any $\widetilde{z} \in \operatorname{ker} A$ with $\|\widetilde{z}\|<\|z\|$ and obtain that $g(y+\tilde{z})<g\left(x^{\dagger}\right)$. But this is a contradiction to the fact that x^{\dagger} minimises g, so z must indeed be 0 .

[^0]3 a) We provide an inductive argument, showing that

$$
r_{k-1}^{\mathrm{CG}}=s_{k-1}, \quad p_{k-1}^{\mathrm{CG}}=p_{k-1}, \quad \alpha_{k-1}^{\mathrm{CG}}=\alpha_{k-1}, \quad \text { and } \quad x_{k}^{\mathrm{CG}}=x_{k}
$$

for any k, assuming x_{0} arbitrary but equal for both methods, with superscript "CG" for the CG-parameters. Remark: CG-algorithm is well-defined because $A^{\top} A$ is symmetric positive definite $(\operatorname{rank} A=n)$.
Base case $k=1$ follows from

$$
r_{0}^{\mathrm{CG}}=\left(A^{\top} A\right) x_{0}-A^{\top} b, \quad r_{0}=A x_{0}-b, \quad \text { and } \quad s_{0}=A^{\top} r_{0}=r_{0}^{\mathrm{CG}},
$$

so that

$$
p_{0}^{\mathrm{CG}}=-r_{0}^{\mathrm{CG}}=-s_{0}=p_{0},
$$

and

$$
\alpha_{0}^{\mathrm{CG}}=\frac{\left\|r_{0}^{\mathrm{CG}}\right\|^{2}}{\left(p_{0}^{\mathrm{CG}}\right)^{\top}\left(A^{\top} A\right) p_{0}^{\mathrm{CG}}}=\frac{\left\|r_{0}^{\mathrm{CG}}\right\|^{2}}{\left\|A p_{0}^{\mathrm{CG}}\right\|^{2}}=\frac{\left\|s_{0}\right\|^{2}}{\left\|A p_{0}\right\|^{2}}=\alpha_{0} .
$$

Therefore

$$
x_{1}^{\mathrm{CG}}=x_{0}+\alpha_{0}^{\mathrm{CG}} p_{0}=x_{0}+\alpha_{0} p_{0}=x_{1} .
$$

Suppose next that the induction hypothesis is true for some $k \in \mathbb{Z}_{+}$. Then

$$
\begin{aligned}
& r_{k}^{\mathrm{CG}}=r_{k-1}^{\mathrm{CG}}+\alpha_{k-1}^{\mathrm{CG}} A^{\top} A p_{k-1}^{\mathrm{CG}} \\
&=s_{k-1}+\alpha_{k-1} A^{\top} A p_{k-1} \\
&=A^{\top}\left(r_{k}+\alpha_{k-1} A p_{k-1}\right) \\
&=A^{\top} r_{k} \\
&=s_{k}, \\
& p_{k}^{\mathrm{CG}}=-r_{k}^{\mathrm{CG}}+\frac{\left\|r_{k}^{\mathrm{CG}}\right\|^{2}}{\left\|r_{k-1}^{\mathrm{CG}}\right\|^{2}} p_{k-1}^{\mathrm{CG}}=-s_{k}+\frac{\left\|s_{k}\right\|^{2}}{\left\|s_{k-1}\right\|^{2}} p_{k}=p_{k},
\end{aligned}
$$

and

$$
\alpha_{k}^{\mathrm{CG}}=\frac{\left\|r_{k}^{\mathrm{CG}}\right\|^{2}}{\left\|A p_{k}^{\mathrm{CG}}\right\|^{2}}=\frac{\left\|s_{k}\right\|^{2}}{\left\|A p_{k}\right\|^{2}}=\alpha_{k}
$$

so, most importantly,

$$
x_{k}^{\mathrm{CG}}=x_{k-1}^{\mathrm{CG}}+\alpha_{k-1}^{\mathrm{CG}} p_{k-1}^{\mathrm{CG}}=x_{k-1}+\alpha_{k-1} p_{k-1}=x_{k} .
$$

b) There are two key arguments in this exercise: 1) the equivalence between the given algorithm and the CG-algorithm for the solution of $A^{\top} A x=A^{\top} b$, and 2) the characterisation in 2 e) of optimisation problem (2).
Hence, by algorithmic equivalence, if the new algorithm converges to some x^{\dagger}, then necessarily $A^{\top} A x^{\dagger}=A^{\top} b$. Since $x_{0}=0$, it follows that $p_{0}=A^{\top} b \in \operatorname{ran} A^{\top}$, and $x_{1}=\alpha_{0} p_{0} \in \operatorname{ran} A^{\top}$. All subsequent search directions are of the form

$$
p_{k}=-A^{\top} r_{k}+\beta_{k} p_{k-1},
$$

from which we infer both that $p_{k} \in \operatorname{ran} A^{\top}$ and $x_{k}=x_{k-1}+\alpha_{k-1} p_{k-1} \in \operatorname{ran} A^{\top}$. Therefore, if the given algorithm converges to some x^{\dagger}, then $x^{\dagger} \in \operatorname{ran} A^{\top}$, yielding a solution of optimisation problem (2).

But does the algorithm converge, and if so, in at most r steps? We first need to examine if all algorithmic operations are legal; especially, whether we risk division by zero anywhere. This could occur if

$$
\left\|A p_{k}\right\|=0, \quad \text { or } \quad\left\|s_{k}\right\|=0
$$

The latter is not a problem, because the algorithm has converged if $s_{k}=0$ (in general, s_{k} is the current residual of $A^{\top} A x=A^{\top} b$). Moreover, $A p_{k}=0$ if and only if $p_{k} \in \operatorname{ker} A=\left(\operatorname{ran} A^{\top}\right)^{\perp}$. In the previous paragraph we showed that $p_{k} \in \operatorname{ran} A^{\top}$ for all k, and so $A p_{k}=0$ if and only if $p_{k}=0$. But $p_{k}=0$ implies $s_{k}=0$ also, and consequently, convergence.
Since all operations in the algorithm are legal, we can use the algorithmic equivalence with the CG-algorithm for the solution of $A^{\top} A x=A^{\top} b$, and follow the proof of Theorem 5.3 in Nocedal \& Wright, which shows that the generated p_{k} 's are conjugate with respect to $A^{\top} A$. In the end of N\&W's proof, Theorem 5.1 is invoked, stating that the algorithm will converge in at most n iterations. In our case, however, this reduces to at most r iterations, because solution x^{\dagger} lies in the r-dimensional subspace $\operatorname{ran} A^{\top} \subset \mathbb{R}^{n}$, spanned by the r linearly independent vectors p_{0}, \ldots, p_{r-1}.

4 See file tma4180s17_ex04_4.m on the website.

[^0]: ${ }^{1}$ Remark: never forget that we cannot talk about convexity of a function unless its underlying domain is convex (why not?).

