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Applying Algorithm 5.2 in Nocedal & Wright, we find that

To = (07070)7 o = (_1707 _1)7 Po = (1707 1)7 Qg = 17
T = (1707 1)7 = (0a270>7 61 = 27 b1 = (27272)7 a; =1,
T2 = (37273)7 r3 = (01010)

Since r3 = 0—which it should as convergence is guaranteed within 3 steps—we stop

and

conclude that x = (3,2, 3) solves the linear system.

a) The least squares problem is an unconstrained minimisation problem for the

b)

function f(x) = ||Az — b||? on R™. Observe that f is smooth, and that
Vf(z)=24" (Az —b) and Vif(z) =247 A.

Calculation of V f follows either from the chain rule in the multivariable setting,
or by direct expansion

|Az — b)) = (Az —b) T (Az —b) =2  ATAx — 20" Az +b'b.
Matrix AT A is symmetric, and also positive semi-definite, because
v AT Av = (Av) T Av = ||Av||? >0 for all v e R".

Hence, f is convex and we infer that every critical point is a global minimiser
(and conversely). As such, * minimises f if and only if V f(z*) = 0. In other
words,

AT Az* = ATb.

If we can show that the normal equations admit a solution, then we are done.
Specifically, this amounts to proving that A"b € ran AT A. Now,

ranA' A= (ker(ATA)T)L = (ker ATA)J'

from the fundamental theorem of linear algebra, where B+ denotes the orthog-
onal complement of a set B. Since ker AT A = ker A (why?), it follows that

ran A" A = (ker A)*.

Observe next that if y € ker A, then (A7) Ty = b" (Ay) = 0. Consequently, we
have ATb € (ker A)* =ran AT A, as desired.
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c) If rank A = n, then by the rank-nullity theorem the null space (kernel) of A is
trivial, that is, ker A = {0}. Thus Av = 0if and only if v = 0, and so V2f = AT A
is positive definite:

v AT Av = (Av)TAv = ||[Av||? >0 forall veR™\ {0}

Therefore f is strictly convex, which implies uniqueness of the global minimiser.

d) From a) and b) we know that f is a convex function whose set 2 C R" of
minimiser(s) is nonempty. Moreover, it follows that {2 is convex (why?), so we
may write the new optimisation problem as

min g(x), where g(x) = ||z

TEef?
Note that V2g = 21,,%,, is symmetric positive definite. In particular, g is strictly
convex on £2', and has at most one solution zf € 2.
If rank A = n, then 2 = {z*}, from which we conclude that zf = 2*. If, how-
ever rank A < n, then (2 is at least a one-dimensional subspace of R"™ (there is at

least one free parameter in the normal equations). In this case, {2 is unbounded,
but we are saved by coercivity of g. Indeed,

z € Qwith |[z]| = oo implies  g(z) = |jz]|* = oc.

Since ¢ is lower semi-continuous—in fact, smooth—and coercive, it admits a
global minimum z! € .

e) By construction of the optimisation problem in d), ' satisfies AT Azt = ATb.
In order to see that ' € ran AT, observe first that

R" =ran AT @ ker A

(orthogonal direct sum) by the rank-nullity theorem. Hence, 7 may be written
uniquely as &' =y + 2z for some y € ran A" and z € ker A, satisfying y' z = 0.
We want to show that z = 0. This rests upon two observations: 1) perturbing z
inside ker A has no effect on the normal equations (or the value of f):

ATAly+2) = ATAy+ AT(A2) = AT 4y
for any Z € ker A; and 2) by orthogonality between ran AT and ker A we have
g(=") = 12712 = Iyl + vz + 12017 = lyl® + |11,

and similarly
9y +2) = llylI* + 12>
If z # 0, we can therefore just pick any z € ker A with [|Z]| < ||z|| and obtain

that g(y + ) < g(«'). But this is a contradiction to the fact that 2T minimises g,
so z must indeed be 0.

'Remark: never forget that we cannot talk about convexity of a function unless its underlying domain
is convex (why not?).
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a) We provide an inductive argument, showing that

b)

CG

CG CG CG
Tk—1 = Sk—1, Pr—1 = Pk—1, Qp 1 = Qk—1, and T~ =

Ty,
for any k, assuming xzg arbitrary but equal for both methods, with super-
script "CG" for the CG-parameters. Remark: CG-algorithm is well-defined
because A" A is symmetric positive definite (rank A = n).

Base case £ = 1 follows from

r§S = (AT A)zg — ATb, ro = Axg — b, and  so=ATrg =15,
so that
ng = —TSJG = —50 = Po;
and ca 2 CG||2 2
oo IS I sol® _

(v5%) " (ATAREE [ Aap§S]® lApol”
Therefore
279 = 2o + af “po = w0 + agpo = 1.
Suppose next that the induction hypothesis is true for some k € Z,. Then
A9 = S+ AT A,
= sp_1 +ap_1 AT Apy_4
= AT (rp + ap—1Ap_1)

= ATTk
= Sk,
CG|2 2
G _ _,CG HT’k H CG _ o 1 skl _
S oY A e A
and )
CG _ [l _ Isxll? — a
|ApSC|®  1Apel®
so, most importantly,
x%G = x%f;l + a%?l p%?l = Tp_1+ Qf—1 Pk—1 = Tk

There are two key arguments in this exercise: 1) the equivalence between
the given algorithm and the CG-algorithm for the solution of AT Az = ATb,
and 2) the characterisation in 2 ¢) of optimisation problem (2).

Hence, by algorithmic equivalence, if the new algorithm converges to some T,
then necessarily AT AzT = ATb. Since 29 = 0, it follows that pg = ATb € ran AT,
and 21 = agpo € ran A" . All subsequent search directions are of the form

pr = —Ary + Brpr_1,

from which we infer both that p, € ran AT and ), = 241 + ap_1pp—_1 € ran A
Therefore, if the given algorithm converges to some x', then 2T € ran AT, yield-
ing a solution of optimisation problem (2).
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But does the algorithm converge, and if so, in at most r steps? We first need
to examine if all algorithmic operations are legal; especially, whether we risk
division by zero anywhere. This could occur if

[Apkll =0,  or skl =0.

The latter is not a problem, because the algorithm has converged if s =0
(in general, s; is the current residual of AT Az = ATb). Moreover, Ap, =0
if and only if py € ker A = (ran AT)l. In the previous paragraph we showed
that pp € ran AT for all k, and so Apy = 0 if and only if p, =0. But pp =0
implies s, = 0 also, and consequently, convergence.

Since all operations in the algorithm are legal, we can use the algorithmic equiv-
alence with the CG-algorithm for the solution of AT Az = ATb, and follow the
proof of Theorem 5.3 in Nocedal & Wright, which shows that the generated p;’s
are conjugate with respect to AT A. In the end of N&W’s proof, Theorem 5.1 is
invoked, stating that the algorithm will converge in at most n iterations. In our
case, however, this reduces to at most r iterations, because solution z' lies in
the r-dimensional subspace ran AT C R", spanned by the 7 linearly independent
vectors pg, ..., Pr—1.

See file tma4180s17 ex04 4.m on the website.
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